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Abstract. Let G be a finite solvable group. The element g ∈ G is said to be

a non-vanishing element of G if χ(g) 6= 0 for all χ ∈ Irr (G). It is conjectured

that all of non-vanishing elements of G lie in its Fitting subgroup F (G). In
this note, we prove that this conjecture is true for nilpotent-by-supersolvable

groups. Write V (G) to denote the subgroup generated by all non-vanishing
elements of G, and Fn(G) the nth term of the ascending Fitting series. It is

proved that V (Fn(G)) ≤ Fn−1(G) whenever G is solvable. If this conjecture

were not true, then it is proved that the minimal counterexample is a solvable
primitive permutation group and the more detailed information is presented.

Some other related results are proved.
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1. Introduction

Throughout this note, G always denotes a finite group and Irr (G) denotes the full set
of complex irreducible characters of G. Let χ ∈ Irr (G). If g ∈ G satisfies χ(g) 6= 0,
then g is said to be a non-vanishing element of χ; further if g is a non-vanishing
element for all members of Irr (G), then g is said to be a non-vanishing element of
G. In [4], it is conjectured that all non-vanishing elements of finite solvable group
G lie in its Fitting subgroup F (G), which is the largest nilpotent normal subgroup
of G. This assertion was referred to as Isaacs-Navarro-Wolf Conjecture in [8]. We
use V (G) to denote the subgroup generated by all non-vanishing elements of G, i.e.,
V (G) = 〈g |χ(g) 6= 0, all χ ∈ Irr (G)〉, which is called the strongly vanishing-off
subgroup of G. Expressed in terms of V (G), this conjecture equivalently asserts
that the inequality V (G) ≤ F (G) is true for solvable group G. Some of results are
obtained in [4]. For examples, it was proved in [4, Theorem D] that the images of
non-vanishing elements modulo F (G) are of 2-power order, which implies that the
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conjecture is true for groups of odd order. It is also proved in [4, Theorem B] that
V (G) lies in the center Z(F (G)) of F (G) for supersolvable group G, in particular,
if G is nilpotent, then V (G) ≤ Z(G).

The latter result motivates us to consider the following problem: If the solvable
group G is not supersolvable, but all of its proper subgroups or all of its proper
homomorphic images (quotient groups) are supersolvable, then does the conjecture
hold for G? We affirmatively answer the problem, actually we prove a generalized
result.

Theorem 1.1. Assume that G is a nilpotent-by-supersolvable group. Then V (G) ≤
F (G).

Observe that the groups in the above problem are all nilpotent-by-supersolvable
groups, thus the above problem is positively answered. If G is solvable but not
nilpotent, then Theorem 2.4 of [4] shows that V (G) lies in the penultimate of the
ascending Fitting series of G. By Fn(G), we denote the nth term of the ascending
Fitting series of finite group G. The following result is an improved version of
Theorem 2.4 of [4].

Theorem 1.2. Assume that G is a solvable group but not nilpotent. Then V (Fn(G)) ≤
Fn−1(G).

If this conjecture were false, then the following result shows that the minimal
counterexample is a primitive solvable permutation group.

Theorem 1.3. If Isaacs-Navarro-Wolf Conjecture were not true, then the minimal
counterexample G would be a primitive solvable permutation group. Furthermore,
V (G) = F (G)oQ, a semidirect product of 2-group Q acting coprimely and faithfully
on elementary abelian group F (G).

We mention that, for a solvable group G, A. Moretó and T. R. Wolf proved in [8]
that V (G) ≤ F10(G), and Yong Yang further proved in [11] that V (G) ≤ F8(G).

In general, Isaacs-Navarro-Wolf Conjecture is not true for non-solvable groups.
For examples, V (A5) = 1, but V (A7) = A7. In fact, using GAP (see [10]), one may
still verify V (A11) = A11. Here An denote alternating groups of degree n.

2. Preliminaries

The following list some basic properties of V (G).

Proposition 2.1. Assume that G is a finite solvable group and V (G) is its strongly
vanishing-off subgroup. Then

1. V (G) is a characteristic subgroup of G.
2. V (G) is a proper subgroup of G whenever G is nonabelian.
3. If N is a normal subgroup of G, then the preimage of V (G/N) in G contains

V (G).

Proof. Let σ be an automorphism of G, then since χσ(σ(g)) = χ(g), we get that g is a
non-vanishing element of G if and only if σ(g) is, part 1 follows. Let n be the Fitting
height of G. If n ≥ 2, then we have that V (G) lies in the penultimate term of the
ascending Fitting series by [4, Theorem 2.4], hence it is a proper subgroup; if n = 1,
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then G is a nilpotent group, Theorem B of [4] shows that V (G) ≤ Z(G) < G(since
G is nonabelian), yielding part 2. Let M/N = V (G/N), then for any non-vanishing
element g of G, gN is clear a non-vanishing element of G/N and lies in M/N , thus
we conclude that g ∈M and V (G) ≤M , yielding part 3.

It is easy to see that all of non-vanishing elements of G lie in F (G) if and only if
V (G) ≤ F (G). We shall freely use the above facts without reference. The following
lemma is quite essential to our work.

Lemma 2.1. Let M ≥ N be normal subgroups of G. If θM = eη for θ ∈ Irr (N),
η ∈ Irr (M) and e a positive integer, then there exist χ ∈ Irr (G) such that χ(a) = 0
for all a ∈M −N .

Proof. It is immediate that η(a) = 0 for any a ∈M −N . Since η ∈ Irr (M), we get
that ηg ∈ Irr (M) for any g ∈ G and ηg(a) = η(gag−1) = 0 for any a ∈ M − N .
Observe that, for all g ∈ G, ag ∈ M − N if and only if a ∈ M − N . For any
χ ∈ Irr (G) with [χM , η] 6= 0, we know that χM is a sum of some conjugates of η by
elements of G. Thus χ(a) = 0 for all a ∈M −N .

Corollary 2.1. Let N be a subnormal subgroup, and assume that χ = θG is irre-
ducible. If χ(a) 6= 0, then a ∈ N .

Proof. Using induction on |G|. Let N ≤M /G, χ = ηG and η = θM . By the above
lemma, we get that a ∈M and some conjugate ηt(a) 6= 0. It is seen that ηt = (θt)M .
Applying the inductive hypothesis to |M |, we conclude that a ∈ N .

Lemma 2.2. Let G be a non-nilpotent group with Φ(G) = 1, and D be the inter-
section of all non-normal maximal subgroups. Then D = Z(G).

Proof. Let M be any non-normal maximal subgroup, it is easy to see that Z(G) ≤M
and so Z(G) ≤ D. Conversely, since [G,D] ≤ G′ ∩ D ≤ Φ(G) = 1, it follows that
D ≤ Z(G). We attain that D = Z(G), as desired.

The following result is a sufficient condition for the existence of a regular orbit,
which is a known fact.

Lemma 2.3. Let A be an abelian group and assume that U is a completely reducible
and faithful FA-module where F is a finite field of order p. Then A has regular
orbits on U and Irr (U), respectively.

Sketch of proof. By Proposition 0.20 of [7], we get that p does not divide |A|. By
using routine arguments, the desired result may follow from [4, Lemma 3.1] and [12,
Lemma 1]. Or see the proof of Theorem 18.1 of [7].

3. Proofs of main results

Proof of Theorem 1.1. Use induction on |G|, the order of G. By induction, if Φ(G) 6=
1, we get that V (G/Φ(G)) ≤ F (G/Φ(G)) = F (G)/Φ(G), thus V (G) ≤ F (G). Hence
we may assume that Φ(G) = 1. Likewise, we may also assume that Z(G) = 1. If
G is nilpotent, the result is trivial. Otherwise, let H1, H2, · · · , Hn be non-normal
maximal subgroups of G and Ki = CoreG(Hi), the intersections of all conjugates of
Hi in G. By Lemma 2.2, we may take n minimal such that ∩ni=1Ki = 1. Assume
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that n > 1 and N = ∩n−1
i=1 Ki. Then there exists an injective homomorphism τ from

G into G/N ×G/Kn, defined by g 7→ (gN, gKn). By induction, we have

V (G/N) ≤ F (G/N) and V (G/Kn) ≤ F (G/Kn).

Since also

V (G) ∼= τ(V (G)) ≤ V (G/N)× V (G/Kn) ≤ F (G/N)× F (G/Kn)

which is nilpotent. Hence V (G) is nilpotent and V (G) ≤ F (G).
Now we assume that n = 1, thus G primitively permutes the collection of cosets of

H1 in G. We get that G is a solvable primitive permutation group and Galois’ Satz.
II.3.2 [3] shows that G = F (G) o H1, a semidirect product of H1 acting on F (G),
and F (G) is the unique minimal normal subgroup of G. It is obvious that F (G) is
an elementary abelian p-group. Also G is nilpotent-by-supersolvable, we conclude
that H1 is supersolvable. Using Theorem B of [4] (see the above Introduction), we
get that V (G/F (G)) ≤ Z(F (G/F (G))). Then V (G) = F (G) o H2, the semidirect
product of abelian group H2 acting faithfully on elementary abelian group F (G).
Thus F (G) is a completely reducible and faithful FH2-module, where F is a finite
field of order p. By Lemma 2.3, H2 has a regular orbit on Irr (F (G)), i.e., there
exists a character of F (G) inducing irreducibly to V (G). Lemma 2.1 shows that for
each element x ∈ V (G)−F (G), there exits χ ∈ Irr (G) such that χ(x) = 0. This fact
forces that V (G) = F (G), which contradicts the fact that G is a counterexample.
The proof is completed.

Corollary 3.1. Suppose that solvable group G is not supersolvable, but all of its
proper subgroups or all of its proper homomorphic images are supersolvable. Then
V (G) ≤ F (G).

Proof. By [2], we know that if G satisfies the hypotheses, then G is a semidirect
product of S acting onN . The subgroupN is either a Sylow p-subgroup or an abelian
subgroup; and the subgroup S always be supersolvable. Thus G is a nilpotent-by-
supersolvable and the desired result follows from the above theorem.

Using Theorem 1.1 of [9] and Theorem 1.1, we may get that if solvable group
G has an irreducible character which exactly vanishes on a conjugacy class, then
V (G) ≤ F (G). The following is also an application of Theorem 1.1.

Corollary 3.2. Suppose that G is a solvable group with cd(G) = {1,m, n} where m
and n are relatively prime. Then the conjecture is true for G.

Proof. By Carrison’s theorem 12.21 of [5], we know that the Fitting height h(G) of a
solvable group G is not greater than |cd(G)|. In our situation, we get that h(G) ≤ 3.
Since also (m,n) = 1 and mn 6∈ cd(G), it follows that G is not nilpotent and so
2 ≤ h(G) ≤ 3. If h(G) = 2, then G is nilpotent-by-nilpotent, yielding the result;
Otherwise h(G) = 3, by Lemma 3.1(a) of [6], we know that G/F (G) is supersolvable,
then G is a nilpotent-by-supersolvable group, the desired result may follows from
Theorem 1.1.

It is proved in [4, Theorem B] that V (G) ≤ Z(G) for nilpotent group G. The
next theorem is one of its generalized versions.
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Theorem 3.1. Let G be a finite group and Zn(G) be the final term of the upper
central series of G. Suppose that Z(G) is the center of G. Then for any g ∈
Zn(G)− Z(G), there exist χ ∈ Irr (G) such that χ(g) = 0.

Proof. It is sufficient to prove that the claim is true for any g ∈ Zi+1(G) − Zi(G).
Furthermore we only need to focus on the case i = 1 and then apply the special case
to each of the quotient groups G/Zi(G), i = 1, 2, · · · , n− 1. Let Z1(G) = Z(G) and
g ∈ Z2(G) − Z(G). Suppose that µ1, µ2, · · · , µt are all of irreducible characters of
Z(G). It is well-known that the intersection of the kernels of all these characters is
trivial. Pick g ∈ Z2(G) − Z(G), then there is an h ∈ G such that 1 6= y = [g, h] ∈
Z(G) and µs(y) 6= 1 for some 1 ≤ s ≤ t. We may take χ ∈ Irr (G) lying over µs,
then χ(g) = χ(gh) = χ(gy) = µs(y)χ(g), which forces χ(g) = 0, as desired.

The following is Theorem 1.2, which may also be regarded as a consequence of
Theorem 1.1.

Proof of Theorem 1.2. Let 1 ≤ F (G) = F1(G) ≤ F2(G) ≤ · · · ≤ Fm(G) = G be
the ascending Fitting series, that is, for each positive integer n, Fn(G)/Fn−1(G) =
F (G/Fn−1(G)), the largest nilpotent normal subgroup of G/Fn−1(G).

Let
Un−1 = F (Fn(G)/Fn−2(G))/Φ(Fn(G)/Fn−2(G)),

then Gaschütz’s theorem 1.12 of [7] shows that Un−1 is a completely reducible and
faithful Fn(G)/Fn−1(G)-module (of possibly mixed characteristic). Since An−1 =
V (Fn(G))Fn−1(G)/Fn−1(G) lies in the center of Fn(G)/Fn−1(G), Un−1 is also a
completely reducible and faithful An−1-module (of possibly mixed characteristic) by
Clifford’s theorem.

By Lemma 2.3, there exists µn−1 ∈ Irr (Un−1) such that µn−1 induces irreducibly
to V (Fn(G))Fn−1(G). Roughly speaking, there exists a linear character µn−1 ∈
Irr (Fn−1(G)) inducing irreducibly to Fn−1(G)V (Fn(G)). By Lemma 2.1, there
exists χ ∈ Irr (Fn(G) such that χ(a) = 0 for any a ∈ Fn−1(G)V (Fn(G))−Fn−1(G).
Thus all of non-vanishing elements of Fn(G) lie in Fn−1(G) and so V (Fn(G)) ≤
Fn−1(G). The proof is finished.

Proposition 3.1. Let M/N be a chief factor of solvable group G, and C = CG(M/N),
and assume that A/C is a normal abelian subgroup of G/C. Then there exist
χ ∈ Irr (G) such that χ(a) = 0 for any a ∈ A− C.

Proof. Because M/N is an irreducible faithful G/C-module, we have via Clifford’s
theorem that M/N is a faithful and completely reducible A/C-module. Lemma 2.3
shows that there is a character of C inducing irreducibly to A, thus Lemma 2.1 shows
that there exist χ ∈ Irr (G) such that χ(a) = 0 for any a ∈ A− C, as required.

Using the above result, we may further analyze the Isaacs-Navarro-Wolf Conjec-
ture. Assume that the solvable group G has a chief series

1 = G0 E G1 E G2 E · · · E Gn−1 E Gn = G,

suppose that Ci = CG(Gi/Gi−1) and Ai/Ci are normal abelian factors of G.
Let x be a non-vanishing element of G. Then x ∈ G−∪ni=1(Ai−Ci). Considering

∩ni=1Ci = F (G), this result seems to be of interesting.
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Proof of Theorem 1.3. Assume that G is a minimal counterexample to the conjec-
ture. Applying the similar techniques as in the proof of Theorem 1.1 to G, we may
reduce G to the case that G is a solvable primitive permutation group. By [3, Satz
II.3.2], it follows that G = F (G) o M , the Fitting subgroup F (G) is the uniquely
minimal normal subgroup of G, the complements M to F (G) in G are non-normal
maximal subgroups and all of them are conjugate in G.

Because G is a minimal counterexample, we have that N = V (V (G)) is nilpotent.
Then N is exactly the uniquely minimal normal subgroup F (G). It follows that
V (G/N) and V (G)/N are nilpotent. Thus we may write V (G) = P o Q where
P ≥ N is a normal Sylow p-subgroup and Q is a nilpotent Hall p′-subgroup of
V (G). The conjugation action of Q on P is faithful, because otherwise the kernel,
say K, is nontrivial and K ∩ Z(Q) 6= 1 (since Q is nilpotent). This implies that
Z(V (G)) is nontrivial. However this violates the uniqueness of the minimal normal
subgroup of G. Because Φ(P ) ≤ Φ(G) = 1, it follows that P is elementary abelian.
Further we may get that N ≤ P ≤ F (G) = N and so N = P , since F (G) is the
uniquely minimal normal subgroup of G.

The images of all non-vanishing elements of G modulo F (G) are of 2-power order
by Theorem 4.3 of [4]. Since V (G) = F (G) o Q and (|F (G)|, |Q|) = 1, it follows
that the nilpotent group Q is generated by elements of 2-power order and so it is a
2-group. The proof is completed.

Observe that ifR/F (G) ≤ V (G)/F (G) be an abelian normal subgroup ofG/F (G),
then Lemmas 2.1 and 2.3 imply that there are not non-vanishing elements in R −
F (G). If G is a solvable quasi-primitive minimally transitive permutation group,
then Proposition 2.2 of [1] shows that V (G) is cycle. If G is a solvable primitive
permutation group and V (G) be metabelian, then it is easy to prove that V (G)
is abelian. All of these facts seem to imply that the minimal counterexamples are
impossible.
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