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Abstract. In this paper, we introduce and study a new system of nonlinear
variational inclusions with (A, n)-accretive operators in Banach spaces. Using
the resolvent operator technique associated with (A, n)-accretive operator, we
prove the existence and uniqueness of solutions for the system of nonlinear vari-
ational inclusions, construct a Mann iterative algorithm with errors for solving
the system of nonlinear variational inclusions and discuss the convergence of
the iterative sequence generated by the algorithm.
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1. Introduction

It is well known that variational inequalities and variational inclusions have wide ap-
plications in mechanics, physics, optimization and control, nonlinear programming,
economics and engineering sciences and that various variational inclusions have been
intensively studied in recent years. For more details, we refer the reader to [1-12,
14-22; 24] and the references therein.

In 2006, Verma [21, 22] introduced the notions of A-maximal monotonicity and
(A, n)-maximal monotonicity for solving nonlinear variational inclusion problems.
These notions generalize the general class of maximal monotone set-valued mappings,
including the notion of H-maximal monotonicity introduced by Fang and Huang [2]
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in a Hilbert space setting. Very recently, Lan et al. [12] have introduced a new
concept of (A,n)-accretive operators, which is a generalization of the monotone or
accretive operators. They also studied a class of variational inclusions using the
resolvent operator associated with (A, n)-accretive operators in Banach spaces.

Inspired and motivated by recent research works in this field, in this paper, we
introduce and study a new system of nonlinear variational inclusions with (A,n)-
accretive operators in Banach spaces. By using the resolvent operator associated
with (A, n)-accretive operator, we construct a Mann iterative algorithm with errors
for finding the approximate solutions of the system of nonlinear variational inclusions
in Banach spaces. Under certain conditions, we obtain the existence and uniqueness
of solution for the system of nonlinear variational inclusions. Furthermore, the con-
vergence result of the iterative sequence generated by the Mann iterative algorithm
with errors is presented in this paper. Our result improves, extends and unifies the
corresponding results in [1, 3, 7, 11, 17-20].

2. Preliminaries

In what follows, let X be a real Banach space with the dual space X*, (-,-) be the
dual pair between X and X*, and 2% denote the families of all nonempty subsets of
X. The generalized duality mapping J, : X — 2X" is defined by
Jo(@) = {f € X" {a, ) = ||lz[|* and [|f*]| = |lz]|*""}, Ve X,

where g > 1 is a constant. In particular, J5 is the usual normalized duality mapping.
It is known that, in general, J,(x) = ||z||7"?J2(z) for all x # 0, and .J, is single-
valued if X* is strictly convex. In the sequel, unless otherwise specified, we assume
that X is a real Banach space such that J, is single-valued and H is a Hilbert space.
If X = H, then Jy becomes the identity mapping of H.

We recollect and introduce the following concepts and lemmas, which will be used
in the next section.

Definition 2.1. Let N, : X x X — X and g : X — X be mappings.
(1) g is said to be r-strongly accretive if there exists a constant r > 0 such that
<g(u)—g(v),Jq(u—v)>2r||u—v||q, VU,UEX;
(2) g is said to be s-Lipschitz continuous if there exists a constant s > 0 such
that
lg(u) =gl <slu—vl, VuveX;
(3) g is said to be r-strongly accretive with respect to the first argument of N if
there exists a constant v > 0 such that
<N(g(u),x) - N(g(v)a SC), Jq(u - U)> > 7“”” - v“q’ Vu, v, € X;
(4) g is said to be (r,n)-strongly accretive if there exists a constant r > 0 such
that
(9(w) = 9(0), Ty, 0))) = rllu— v}, V0 € X;
(5) N is said to be s-Lipschitz continuous in the first argument if there exists a
constant s > 0 such that

IN(u,2) = Nw,z)|| < sl|u—v]|, VYu,v,z€X.
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Similarly, we can define the Lipschitz continuity of N in the second argument and
the strong accretivity of g with respect to the second argument of V.

Definition 2.2. A single-valued mapping n: X x X — X is said to be T-Lipschitz
continuous if there exists a constant ™ > 0 such that
[n(u, v)|| < 7llu —vf|, Vu,veX.
Definition 2.3. Letn : X x X — X and A, H : X — X and M : X — 2%
mappings. Then the multi-valued mapping M : X — 2% is said to be
(1) accretive if

(x—y,Jy(u—v)) >0, Yu,veX, z€ Mu, ye Muv;
(2) n-accretive if
(x —y, Jy(n(u,v))) >0, Vu,veX, e Mu, ye Muv,

(3) strictly n-accretive if M is n-accretive and equality holds if and only if x = y;
(4) (a,n)-strongly accretive if there exists a constant o > 0 satisfying

(x —y, Jg(n(u,v))) > allu—2|?, VYu,veX, e Mu, ye Muv;
(5) (m,n)-relaxed accretive if if there exists a constant m > 0 satisfying
(x —y, Jy(n(u,v))) > —m|lu—v||?, Vu,ve X, ze€ Mu, ye Mv.

(6) (A,n)-accretive if M is (m,n)-relazed accretive and (A + pM)(X) = X for
every p > 0.

Remark 2.1. For appropriate and suitable choices of m, A, and X, it is easy to see
that Definition 2.3 (6) includes the definitions of monotone and accretive operators
(see [12]) as special cases.

It is easy to see that (A + pM)~! is a single-valued operator if M : X — 2% is
(A, n)-accretive operator and A : X — X is (r,n)-strongly accretive. Based on this
fact, we can define the resolvent operator Rfjj’p associated with an (A, n)-accretive
operator M as follows:

Definition 2.4. Let X be a Banach space, A : X — X be (r,n)-strongly accretive
and M : X — 2% be (A,n)-accretive. For any fived p > 0, the mapping RAA/[’Z) X —
X defined by

Ryl (@) = (A+ pM) "' (@), Ve e X,
is said to be resolvent operator of M.

Remark 2.2. The resolvent operators associated with (A, n)-accretive operators in-
clude as special cases the corresponding resolvent operators associated with (H,n)-
monotone operators [5], H-monotone operators [3], generalized m-accretive opera-
tors [9], maximal n-monotone operators [1], A-monotone operators [20], the classical
m~accretive and maximal monotone operators.

Lemma 2.1. [13] Let {an}n>0, {On}n>0 and {vn}n>0 be nonnegative sequences
satisfying

Qp41 S (1 - 6n>an + 6nﬁn + Tns vn Z 07
where {6, }n>0 C [0,1], Y07 0 6, = +00, limy, o0 By, = 0 and Y~ yn < +00. Then
lim,, _, o o, = 0.
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Lemma 2.2. [12] Let n : X x X — X be 7-Lipschitz continuous, A : X — X be
(r,n)-strongly accretive and M : X — 2% be (A, n)-accretive. Then the resolvent

operator R}tf’zj X — X s TT_q;n -Lipschitz continuous, that is,
A A it
1Ryzp(2) = Ragp (W)l < —— pm”x —yl, VzyeX,

where p € (0, ).

Lemma 2.3. [23] Let X be a real uniformly smooth Banach space. Then X is
g-uniformly smooth if and only if there exists a constant c; > 0 such that

e +yll* <Nzl + gy, Jo(2)) + cqllyll?, Vo, y € X.

3. A system of nonlinear variational inclusions and a Mann iterative al-
gorithm

In this section, we introduce a new system of nonlinear variational inclusions with
(A;,m;)-accretive operators and construct a new iterative algorithm for solving the
system of nonlinear variational inclusions in Banach spaces.

In what follows unless other specified, we assume that X; and X, are two real
Banach spaces, N1 : X1 X Xo — X1, Ny : X1 X Xo — X5, A;,95,04,b; : X; — X,
ni + Xi x X; — X; are mappings, M; : X; — 2% is an (4;,n;)-accretive operator and
I; : X; — X, is the identity mapping for ¢ € {1,2}. Given f; € X; for i € {1,2}, we
consider the following problem: Find (u,v) € X; x X5 such that

f1 € Ni(a1u, azv) + My (g1u),
J2 € Na(byu, bav) + Mz (g2v),

which is called a system of nonlinear variational inclusions with (A;,n;)-accretive
operators .

(3.1)

Special cases of the problem (3.1) are as follows:
(A)If fi = fo=0,91 =a1 =b1 =11, go = az = by = I, X; and X, are
real Hilbert spaces, then the problem (3.1) is equivalent to finding (u,v) €
X7 x X5 such that
0 € Ny(u,v) + My (u),

(3.2) 0 € Ny(u,v) + My(v),

which was introduced and studied by Fang-Huang-Thompson [6].

B) If X1 = Xo, fi = f2 =0, g1 = g2 = g, Ni(a1u, a2v) = Ai(gu) — A1(gv) +
p1T(v), Mi(giuw) = p1Wa(gu), Na(biu,bov) = As(gv) — Az(gu) + p2T'(u),
Ms(gou) = paWa(gv), then the problem (3.1) is equivalent to the following
problem studied in [12]:

Find u,v € X such that

0 € Ai(gu) — A1(gv) + p1(T(v) + Wa(gu)),
0 € Ay(gv) — A2(9U) + P2(T(U) + Wg(gv)),

where p; > 0 is a constant for ¢ € {1,2}. Some special cases of the problem
(3.3) were studied by Verma [17-19].

(3.3)
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Lemma 3.1. Let A; : X; — X; be (r;,m;)-strongly accretive and M; : X; — 22X be
(As, mi)-accretive for i € {1,2}. Then (u,v) € X3 x X5 is a solution of the problem
(3.1) if and only if

gru = Rf/fl’z,ll [A1(g1u) — p1N1(ar1u, azv) + p1 fi],

gav = Rlz?/fzg’,npz [A2(g2v) — p2Na(bru, bav) + p2 fo],

where R]‘?/Ill’zll and Rffz’z are the resolvent operators of My and My, respectively,
and r; > m; for i € {1,2}.
Proof. The fact directly follows from Definition 2.4. 1

Based on Lemma 3.1, we suggest the following Mann iterative algorithm with
errors for solving the problem (3.1).
Algorithm 3.1. For any given (ug,vg) € X1 x Xo, compute the sequences {uy }n>0
and {vp }n>0 by

Un41 = (1 — Cnp — dn)un + Cn{un — g1un + Rﬁ[ll’z)ll [Al(glun)

— p1N1(a1un, agvy,) + p1f1]} + duen,

Un41 = (1 — Cnp — dn)vn + Cn{vn — gaUn + R%{Z [A2(927)n)

— p2N2(a1un, agvy) + p2fal} + dnhn,
for all n > 0, where {e,}n>0 and {hy},>0 are bounded sequences in X; and Xo,

respectively, introduced to take into account possible in inexact computations and
the sequences {cy, }n>0, and {d, }n>0 are in [0, 1] satisfying

(3.4)

(3.5) cn+d, <1, VYn>0, ch:—i—oo and Zdn<+oo.
n=0 n=0

4. Existence of solutions and convergence of a Mann iterative algorithm
with errors

In this section, we prove the existence of solutions for the problem (3.1) and the
convergence of iterative sequences generated by Algorithm 3.1. For each i € {1,2},
let X; be an g-uniformly smooth Banach space and cfl be the constant in Lemma
2.3 with respect to X;.

Theorem 4.1. For i € {1,2}, let X; be an g-uniformly smooth Banach space,
1; » X x X; — X; be 1;-Lipschitz continuous, a;,b; and g; : X; — X; be A\;-Lipschitz
continuous, p;-Lipschitz continuous and s;-Lipschitz continuous, respectively, g; be
&-strongly accretive, N; : X1 X Xo — X; be o;-Lipschitz continuous in the first
argument, v;-Lipschitz continuous in the second argument, a; be a-strongly accretive
with respect to the first argument of Ny, by be §-strongly accretive with respect to
the second argument of Na, A; : X; — X; be (r;,n;)-strongly accretive and (3;-
Lipschitz continuous, respectively, A;g; be ti-strongly accretive, M; : X; — 2% be
(A;, mi)-accretive and (m;,n;)-relazed accretive with r; > m;. If there exist constants
pi € (0, 25), i € {1,2}, such that

?my

0 < 0 = max{0; + L1(02 + 03) + Lap2dop1,0s + La(05 + 0s) + Lip1viAa}
<1,

(4.1)
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where
1 1
01 = (1 —q&1 +cys?)a, 02 = (1—qty + cp Bis?)a,
1 1
05 = (1 —gpra+coproir])a, 04 = (1 —qéa + cisd)7,
1 1
05 = (1 — qta + 2 B4s3)7, 06 = (1 — qpad + copavipl) e,
i1 i1
Li=—+——, Ly=—"——,
L —pima T — P22

then the problem (3.1) admits a unique solution (u,v) € X1 X Xo and the sequences
{tun}n>0 and {v,}n>o defined by Algorithm 3.1 converge strongly to u and v, respec-
tively.

Proof. First, we prove that the problem (3.1) has a unique solution (u,v) € X7 X Xs.
For i € {1,2}, define T, : X1 x Xy — X; by

Ty (z,y) =2 — g1z + Rﬁ{;’; [A1(g12) — p1N1(a12, a2y) + p1f1l,

(4.2)
Tp,(2,y) =y — g2y + RyE" [Aa(g21) — p2Na(br, boy) + p2 fo]

for all (z,y) € X7 x Xo.
Put (x1,y1), (x2,y2) € X1 x Xa. It follows from Lemma 2.2 that

1Tp, (21, 91) — Tp, (2, y2) |

< lzr — 22 — (171 — grz2) ||
+ ||R}?jl7z,ll [A1(g121) — p1Ni(arz1, azy1) + p1fi1]

(4.3) - Rﬁfl’lll [A1(g172) — p1N1(a172, azy2) + p1fi]ll

<|lw1 =22 = (g171 — 122)[| + L[| A1(g121) — A1(g172)
— p1[N1(a1z1, agy1) — Ni(a1z2, agyz)]|l

<z — 22 — (121 — rx2) || + La[llz1 — 22 — (Ar(g121) — A1 (g122)) ||
+ ||lz1 — 22 — p1[N1(a121, agyr) — Ni(arz2, azy2)]||]-

Using Lemma 2.3 and the assumptions, we infer that

21 — 22 — (171 — g1z2)||?
(4.4) < lwr = 22|? = ¢{grz1 — grz2, Jy(w1 — 22)) + Cé||g19€1 — q172/?
< 0llzr — 22l

lz1 — 22 — (A1(g171) — A1(g12) ||
< lwr — 22|17 = ¢(Ai(g121) — A1(g172), Jy(21 — 22))
+ CéHAl(glIl) — A1(g122)[|?

< 03]y — 2|,

(4.5)
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lz1 — 22 — p1[N1(a121, a2y1) — Ni(arz2, a2y2)]||
(4.6) <|lz1 — z2 — p1[Ni(a121, asyr) — Ni(ai1z2, asyr)]|
+ p1l|N1(a1z2, azy1) — Ni(arzz, azys)|,

lz1 — x2 — p1[Ni(a121, agyr) — Ni(ar1 22, agyr)]||?

) <z — 227 — gp1(N1(a171, azy1) — Ni(a172, agyr), Jo(z1 — x2))
. + cpp1llN1(a1m1, azyr) — Ni(arza, azyn) ||

< 05wy — @2l
(4.8) [ N1(a1z2, asys) — Ni(arza, azye)|| < videllyr — y2|-
Combining (4.3)—(4.8), we have
(4.9) |Tp, (1, y1) —Tp, (x2,y2)|| < [01+L1(02+63)]||x1 — 22|| + Liprvide|lyr — y2l|-
Similarly, we can prove that
(4.10) [|Tp, (21, y1) = Tpy (22, y2)Il < [0a+ L2 (05 +06)]lly1 — y2ll+ Lap2dapr |21 — z2|.
Define a norm|| - ||« on X1 x X3 by ||(z, )|« = ||z||+ ||ly|| for all (z,y) € X1 x X5. It is
easy to see that (X7 x Xo, |- ||«) is a Banach space. Define @ : X; X Xo — X1 X X5
by

1Q(@, y)llx = (T, (x,9), Tpy (2,9)),  V(x,y) € X1 x Xo.

By (4.9) and (4.10), we have

1Q(z1, 1) — Q(z2,y2)]|«

= || T, (z1,91) = Ty, (z2, y2)ll + [Ty (21, 91) — Ty (22, y2) ||
< O([|z1 — 22|l + llyr — v2l)

= 0ll(z1,y1) — (z2,y2) |«

(4.11)

In light of (4.1) and (4.11), we know that @ : X7 x X3 — X7 x X5 is a contraction
mapping. Hence ) possesses a unique fixed point (u,v) € X; x X3. Consequently,
Lemma 3.1 ensures that (u,v) is the unique solution of the problem (3.1).

Now we show that lim w, = u and lim v, = v. Notice that

n—oo n—oo

u=(1—cyp—dp)u+co{u—giu+ Rf\ljl’zjll [A1(g1u)
= p1N1(aru, agv) + p1f1]} + dnu,

v=(1—¢p—dn)v+cy{v—gov+ Rfjg’ﬂi [A2(g2v)
— p2Na(aru, azv) + p2 fo]} + dyv.

(4.12)
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Put E; = sup{|le, —u| : » > 0} and Ey = sup{||h, — v| : n > 0}. Using (3.4) and
(4.12), we know that
[tn i1 — ul
< (1= —dn)lfun — ull + cnllun —u = (g1 (un) — g1 (u))]l
[

+ el Ry ™ [Ar(g1tn) — pr N1 (artin, azvn) + p1fi]

(4.13) RA
— Ry [Ai(giw) — piNi(arw, azv) + p1fi) + prfa]ll + dnllen — ull
< (1 =cn —dn)|lun — ull + cnlr + L1 (02 + 03)](|un — ul|
+ CnL1p11/1>\2||Un — ’UH + dnEl

and

[unt1 = ull + [|vopg1 — o]

<(1—--c,—dp) |ty —u|| +||v, —v
wiy S )l = ull + [ = o]

+ enl({lun — ull + [lvn = ol]) + dn(Er + Ez)
< (1= (1 =0)en)([[un = ull + lvn = v]]) + dn(Er + Ea)
for all n > 0. It follows from Lemma 2.1, (3.5), (4.11) and (4.14) that lim w, = u

n—oo

and lim v, = v. This completes the proof. 1

n—oo
Remark 4.1. Theorem 4.1 improves, extends and unifies the corresponding results
n[1, 3,7, 11, 17-20].
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