Chromaticity of Complete 6-Partite Graphs with Certain Star or Matching Deleted

${ }^{1}$ H. Roslan, ${ }^{2}$ A. Sh. Ameen, ${ }^{3}$ Y. H. Peng and ${ }^{4}$ H. X. Zhao
${ }^{1,2}$ School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
${ }^{3}$ Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, 43400 UPM Serdang, Malaysia
${ }^{4}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai, 810008, P. R. China
${ }^{1}$ hroslan@cs.usm.my, ${ }^{2}$ amensh66@yahoo.com, ${ }^{3}$ yhpeng88@yahoo.com,
${ }^{4}$ haixingzhao@yahoo.com.cn

Abstract

Let $P(G, \lambda)$ be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. We write $[G]=\{H \mid H \sim G\}$. If $[G]=\{G\}$, then G is said to be chromatically unique. In this paper, we first characterize certain complete 6 -partite graphs with $6 n$ vertices according to the number of 7 -independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6 -partite graphs with certain star or matching deleted are obtained.

2010 Mathematics Subject Classification: 05C15
Keywords and phrases: Chromatic polynomial, chromatically closed, chromatic uniqueness.

1. Introduction

All graphs considered here are simple and finite. For a graph G, let $P(G, \lambda)$ be the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent (or simply χ-equivalent), symbolically $G \sim H$, if $P(G, l)=P(H, l)$. The equivalence class determined by G under \sim is denoted by $[G]$. A graph G is chromatically unique (or simply χ-unique) if $H \cong G$ whenever $H \sim G$, i.e, $[G]=\{G\}$ up to isomorphism. For a set \mathcal{G} of graphs, if $[G] \subseteq \mathcal{G}$ for every $G \in \mathcal{G}$, then \mathcal{G} is said to be χ-closed. Many families of χ-unique graphs are known (see $[6,7,8]$).

For a graph G, let $V(G), E(G)$ and $t(G)$ be the vertex set, edge set and number of triangles in G, respectively. Let S be a set of s edges in G. Let $G-S$ (or $G-s$) be the graph obtained from G by deleting all edges in S, and by $\langle S\rangle$ the graph
induced by S. Let $K\left(n_{1}, n_{2}, \cdots, n_{t}\right)$ be a complete t-partite graph. We denote by $\mathcal{K}^{-s}\left(n_{1}, n_{2}, \cdots, n_{t}\right)$ the family of graphs which are obtained from $K\left(n_{1}, n_{2}, \cdots, n_{t}\right)$ by deleting a set S of some s edges.

In $[4,5,7-10,12-18]$, one can find many results on the chromatic uniqueness of certain families of complete t-partite graphs $(t=2,3,4,5)$. However, there are very few 6 -partite graphs known to be χ-unique, see [3].

In [3], Chen obtained many families of χ-unique graphs which are obtained by deleting the edges of a star or matching from a complete 6 -partite graph with $6 n+5$ vertices. A natural extension is to study the chromaticity of the graphs obtained by deleting the edges of a star or matching from a complete partite graph with $6 n+i$ vertices, where $0 \leq i \leq 4$. Thus, the aim of this paper is to study the chromaticity of the graphs which are obtained by deleting the edges of a star or matching from a complete 6 -partite graph with $6 n$ vertices.

Let G be a complete 6 -partite graph with $6 n$ vertices. In this paper, we characterize certain complete 6 -partite graphs with $6 n$ vertices according to the number of 7 -independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6 -partite graphs with certain star or matching deleted are obtained.

2. Some lemmas and notations

For a graph G and a positive integer r, a partition $\left\{A_{1}, A_{2}, \cdots, A_{r}\right\}$ of $V(G)$, where r is a positive integer, is called an r-independent partition of G if every A_{i} is an independent set of G. Let $\alpha(G, r)$ denote the number of r-independent partitions of G. Then, we have $P(G, \lambda)=\sum_{r=1}^{p} \alpha(G, r)(\lambda)_{r}$, where $(\lambda)_{r}=\lambda(\lambda-1)(\lambda-2) \cdots(\lambda-$ $r+1$) (see [11]). Therefore, $\alpha(G, r)=\alpha(H, r)$ for each $r=1,2, \cdots$, if $G \sim H$.

For a graph G with p vertices, the polynomial $\sigma(G, x)=\sum_{r=1}^{p} \alpha(G, r) x^{r}$ is called the σ-polynomial of G (see [2]). Clearly, $P(G, \lambda)=P(H, \lambda)$ implies that $\sigma(G, x)=$ $\sigma(H, x)$ for any graphs G and H.

For disjoint graphs G and $H, G \cup H$ denotes the disjoint union of G and H. The join of G and H denoted by $G \vee H$ is defined as follows: $V(G \vee H)=V(G) \cup V(H)$; $E(G \vee H)=E(G) \cup E(H) \cup\{x y \mid x \in V(G), y \in V(H)\}$. For notations and terminology not defined here, we refer [1].

Lemma 2.1. [2, 7] Let G and H be two disjoint graphs. Then
(1) $|V(G)|=|V(H)|,|E(G)|=|E(H)|, t(G)=t(H)$ and $\alpha(G, r)=\alpha(H, r)$ for $r=1,2,3, \cdots, p$ if $G \sim H$;
(2) $\sigma(G \vee H, x)=\sigma(G, x) \sigma(H, x)$.

Lemma 2.2. [2] Let $G=K\left(n_{1}, n_{2}, n_{3}, \cdots, n_{t}\right)$ and $\sigma(G, x)=\sum_{r \geq 1} \alpha(G, r) x^{r}$. Then $\alpha(G, r)=0$ for $1 \leq r \leq t-1, \alpha(G, t)=1$ and $\alpha(G, t+1)=\sum_{i=1}^{t} 2^{n_{i}-1}-t$.

Let $x_{1} \leq x_{2} \leq x_{3} \leq x_{4} \leq x_{5} \leq x_{6}$ be positive integers and $\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}, x_{i_{5}}, x_{i_{6}}\right\}$ $=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$. If there are two elements $x_{i_{1}}$ and $x_{i_{2}}$ in $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ such that $x_{i_{2}}-x_{i_{1}} \geq 2$, then $H^{\prime}=K\left(x_{i_{1}}+1, x_{i_{2}}-1, x_{i_{3}}, x_{i_{4}}, x_{i_{5}}, x_{i_{6}}\right\}$ is called an improvement of $H=K\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$.

Lemma 2.3. [3] Suppose $x_{1} \leq x_{2} \leq x_{3} \leq x_{4} \leq x_{5} \leq x_{6}$ and $H^{\prime}=K\left(x_{i_{1}}+1, x_{i_{2}}-\right.$ $\left.1, x_{i_{3}}, x_{i_{4}}, x_{i_{5}}, x_{i_{6}}\right\}$ is an improvement of $H=K\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$. Then

$$
\alpha(H, 7)-\alpha\left(H^{\prime}, 7\right)=2^{x_{i_{2}}-2}-2^{x_{i_{1}}-1} \geq 2^{x_{i_{1}}-1} .
$$

Let $G=K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$. For a graph $H=G-S$, where S is a set of some s edges of G, define $\alpha^{\prime}(H)=\alpha(H, 7)-\alpha(G, 7)$. Clearly, $\alpha^{\prime}(H) \geq 0$.
Lemma 2.4. [3] Let $G=K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$. Suppose that $\min \left\{n_{i} \mid i=1,2,3,4\right.$, $5,6\} \geq s+1 \geq 1$ and $H=G-S$, where S is a set of some s edges of G. Then

$$
s \leq \alpha^{\prime}(H)=\alpha(H, 7)-\alpha(G, 7) \leq 2^{s}-1,
$$

$\alpha^{\prime}(H)=s$ iff the set of end-vertices of any $r \geq 2$ edges in S is not independent in H, and $\alpha^{\prime}(H)=2^{s}-1$ iff S induces a star $K_{1, s}$ and all vertices of $K_{1, s}$ other than its center belong to a same A_{i}.

Let $K\left(A_{1}, A_{2}\right)$ be a complete bipartite graph with partite sets A_{1} and A_{2}. We denote by $K^{-K_{1, s}}\left(A_{i}, A_{j}\right)$ the graph obtained from $K\left(A_{i}, A_{j}\right)$ by deleting s edges that induce a star with its center in A_{i}. Note that $K^{-K_{1, s}}\left(A_{i}, A_{j}\right) \neq K^{-K_{1, s}}\left(A_{j}, A_{i}\right)$ if $\left|A_{i}\right| \neq\left|A_{j}\right|$ for $i \neq j$ (see [5]).
Lemma 2.5. [4] Let $K\left(n_{1}, n_{2}\right)$ be a complete bipartite graph with partite sets A_{1} and A_{2} such that $\left|A_{i}\right|=n_{i}$ for $i=1,2$. If $\min \left\{n_{1}, n_{2}\right\} \geq s+2$, then every $K^{-K_{1, s}}\left(A_{i}, A_{j}\right)$ is χ-unique, where $i \neq j$ and $i, j=1,2$.

Let $G=K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$ be a complete 6 -partite graph with partite sets $A_{i}(i=1,2, \cdots, 6)$ such that $\left|A_{i}\right|=n_{i}$. Let $\left\langle A_{i} \cup A_{j}\right\rangle$ be the subgraph of G induced by $A_{i} \cup A_{j}$, where $i \neq j$ and $i, j \in\{1,2,3,4,5,6\}$. $\operatorname{By} K_{i, j}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$, we denote the graph obtained from $K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$ by deleting a set of s edges that induce a $K_{1, s}$ with its center in A_{i} and all its end-vertices are in A_{j}. Note that

$$
K_{i, l}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)=K_{j, l}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)
$$

and

$$
K_{l, i}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)=K_{l, j}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)
$$

for $n_{i}=n_{j}$ and $l \neq i, j$.
Lemma 2.6. [3] If $i, j \in\{1,2,3, \cdots, t\}, i \neq j, n_{i} \neq n_{j}$, then

$$
P\left(K_{i, j}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, \cdots, n_{t}\right), \lambda\right) \neq P\left(K_{j, i}^{-K_{1, s}}\left(n_{1}, n_{2}, n_{3}, \cdots, n_{t}\right), \lambda\right)
$$

3. Classification

In this section, we shall characterize certain complete 6-partite graphs $G=K\left(n_{1}, n_{2}\right.$, $n_{3}, n_{4}, n_{5}, n_{6}$) according to the number of 7 -independent partitions of G where $n_{1}+$ $n_{2}+n_{3}+n_{4}+n_{5}+n_{6}=6 n, n \geq 1$.

Theorem 3.1. Let $G=K\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$ be a complete 6 -partite graph such that $n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}=6 n, n \geq 1$. Define

$$
\theta(G)=\left[\alpha(G, 7)-2^{n+1}-2^{n}+6\right] / 2^{n-2} .
$$

Then
(i) $\theta(G) \geq 0$;
(ii) $\theta(G)=0$ if and only if $G=K(n, n, n, n, n, n)$;
(iii) $\theta(G)=1$ if and only if $G=K(n-1, n, n, n, n, n+1)$;
(iv) $\theta(G)=2$ if and only if $G=K(n-1, n-1, n, n, n+1, n+1)$;
(v) $\theta(G)=5 / 2$ if and only if $G=K(n-2, n, n, n, n+1, n+1)$;
(vi) $\theta(G)=3$ if and only if $G=K(n-1, n-1, n-1, n+1, n+1, n+1)$;
(vii) $\theta(G)=7 / 2$ if and only if $G=K(n-2, n-1, n, n+1, n+1, n+1)$;
(viii) $\theta(G)=4$ if and only if $G=K(n-1, n-1, n, n, n, n+2)$;
(ix) $\theta(G)=17 / 4$ if and only if $G=K(n-3, n, n, n+1, n+1, n+1)$;
(x) $\theta(G) \geq 9 / 2$ if and only if G is not one of the graphs appeared in (ii)-(ix).

Proof. For a complete 6 -partite graph H_{1} with $6 n$ vertices, we can construct a sequence of complete 6 -partite graphs with $6 n$ vertices, say $H_{1}, H_{2}, \cdots, H_{t}$, such that H_{i} is an improvement of H_{i-1} for each $i=2,3, \cdots, t$, and $H_{t}=K(n, n, n, n, n, n)$. By Lemma 2.3, $\alpha\left(H_{i-1}, 7\right)-\alpha\left(H_{i}, 7\right)>0$. So $\theta\left(H_{i-1}\right)-\theta\left(H_{i}\right)>0$, which implies that $\theta(G) \geq \theta\left(H_{t}\right)=\theta(K(n, n, n, n, n, n))$. From Lemma 2.2 and by a simple calculation, $\theta(K(n, n, n, n, n, n))=0$. Thus, (ii) is true.

Since $H_{t}=K(n, n, n, n, n, n)$ and H_{t} is an improvement of H_{t-1}, it is not hard to see that H_{t-1} must be $K(n-1, n, n, n, n, n+1)$. The proof of (iii) is complete.

Note that $H_{t-1}=K(n-1, n, n, n, n, n+1)$ is an improvement of H_{t-2}. Similarly, it is not hard to see that $H_{t-2} \in\left\{R_{i} \mid i=1,2,3,4\right\}$, where R_{i} and $\theta\left(R_{i}\right)$ are shown in Table 1.

To complete the proof of the theorem, we need only determine all complete 6partite graphs G with $6 n$ vertices such that $\theta(G)<9 / 2$. By Lemma 2.3, $\theta\left(H_{t-3}\right)>$ $9 / 2$ for each H_{t-3} if $H_{t-2} \in R_{4}$. All graphs H_{t-3} and its θ-values are listed in Table 2 when $H_{t-2} \in\left\{R_{i} \mid i=1,2,3\right\}$.

Table 1. H_{t-2} and its θ-values

R_{i}	Graphs H_{t-2}	$\theta\left(R_{i}\right)$
R_{1}	$K(n-1, n-1, n, n, n+1, n+1)$	2
R_{2}	$K(n-2, n, n, n, n+1, n+1)$	$5 / 2$
R_{3}	$K(n-1, n-1, n, n, n, n+2)$	4
R_{4}	$K(n-2, n, n, n, n, n+2)$	$9 / 2$

By Lemma 2.3, $\theta\left(H_{t-4}\right)>9 / 2$ for every H_{t-4} if $H_{t-3} \in\left\{M_{i} \mid 4 \leq i \leq 8\right\}$. One can easily obtain the following: If $H_{t-3}=M_{1}$, then $H_{t-4} \in\left\{M_{2}, M_{4}, M_{12}\right\} ; H_{t-4} \in$ $\left\{M_{3}, M_{5}, M_{9}, M_{10}, M_{12}, M_{13}, M_{14}\right\}$ if $H_{t-3}=M_{2}$ and $H_{t-4} \in\left\{M_{6}, M_{10}, M_{11}, M_{14}\right.$, $\left.M_{15}\right\}$ if $H_{t-3}=M_{3}$, where $M_{9}=K(n-2, n-2, n+1, n+1, n+1, n+1), M_{10}=$ $K(n-3, n-1, n+1, n+1, n+1, n+1), M_{11}=K(n-4, n, n+1, n+1, n+1, n+1)$, $M_{12}=K(n-2, n-1, n-1, n+1, n+1, n+2), M_{13}=K(n-2, n-2, n, n+1, n+1, n+2)$, $M_{14}=K(n-3, n-1, n, n+1, n+1, n+2)$ and $M_{15}=K(n-4, n, n, n+1, n+1, n+2)$. From Lemma 2.2 and by a calculation, we have $\theta\left(M_{i}\right) \geq 9 / 2$ for $9 \leq i \leq 15$. Hence, from Lemma 2.3, Table 1, Table 2 and the above arguments, we conclude that the theorem holds.

Table 2. H_{t-3} and its θ-values

M_{i}	Graphs H_{t-3}	$\theta\left(M_{i}\right)$
M_{1}	$K(n-1, n-1, n-1, n+1, n+1, n+1)$	3
M_{2}	$K(n-2, n-1, n, n+1, n+1, n+1)$	$7 / 2$
M_{3}	$K(n-3, n, n, n+1, n+1, n+1)$	$17 / 4$
M_{4}	$K(n-1, n-1, n-1, n, n+1, n+2)$	5
M_{5}	$K(n-2, n-1, n, n, n+1, n+2)$	$11 / 2$
M_{6}	$K(n-3, n, n, n, n+1, n+2)$	$25 / 4$
M_{7}	$K(n-1, n-1, n-1, n, n, n+3)$	11
M_{8}	$K(n-2, n-1, n, n, n, n+3)$	$23 / 2$

4. Chromatically closed 6 -partite graphs

In this section, we obtain several χ-closed families of graphs $\mathcal{K}^{-s}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$.
Theorem 4.1. If $n \geq s+2$, then the family of graphs $\mathcal{K}^{-s}(n, n, n, n, n, n)$ is χ closed.

Proof. Let $G=K(n, n, n, n, n, n)$ and $Z \in \mathcal{K}^{-s}(n, n, n, n, n, n)$. The 6 -independent partition of G is a 6 -independent partition of Z. So $\alpha(Z, 6) \geq \alpha(G, 6)=1$. Let $H \sim Z$, then $\alpha(H, 6)=\alpha(Z, 6) \geq \alpha(G, 6)=1$. Let $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$ be a 6 independent partition of $H,\left|A_{i}\right|=t_{i}, i=1,2,3,4,5,6$ and $F=K\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)$. Then, there exists $S^{\prime} \in E(F)$ such that $H=F-S^{\prime}$. Let $q(G)$ be the number of edges in graph G. Since $q(H)=q(Z)$, therefore $s^{\prime}=\left|S^{\prime}\right|=q(F)-q(G)+s$.

From Lemma 2.4, we have

$$
\begin{aligned}
& \alpha(Z, 7)=\alpha(G, 7)+\alpha^{\prime}(Z), s \leq \alpha^{\prime}(Z) \leq 2^{s}-1, \quad \text { and } \\
& \alpha(H, 7)=\alpha(F, 7)+\alpha^{\prime}(H), s^{\prime} \leq \alpha^{\prime}(H)
\end{aligned}
$$

Thus $\alpha(H, 7)-\alpha(Z, 7)=\alpha(F, 7)-\alpha(G, 7)+\alpha^{\prime}(H)-\alpha^{\prime}(Z)$. Since $H \sim Z$, then $\alpha(Z, 7)=\alpha(H, 7)$. So $\alpha(H, 7)-\alpha(Z, 7)=0$.

Suppose $F \neq G$, we need to show that $\alpha(H, 7) \geq \alpha(Z, 7)$, this leads to a contradiction. Hence, the conclusion of the theorem.

Now, if $F \neq G$, from Theorem 3.1, we have $\theta(F)-\theta(G) \geq 1$. So

$$
\alpha(F, 7)-\alpha(G, 7)=(\theta(F)-\theta(G)) \cdot 2^{n-2} \geq 2^{n-2}
$$

Hence

$$
\alpha(H, 7)-\alpha(Z, 7) \geq 2^{n-2}+\alpha^{\prime}(H)-\alpha^{\prime}(Z) \geq 2^{n-2}+0-\left(2^{s}-1\right) \geq 1 .
$$

This is a contradiction. So $F=G, s=s^{\prime}$. Thus, $H \in \mathcal{K}^{-s}(n, n, n, n, n, n)$. Therefore, $\mathcal{K}^{-s}(n, n, n, n, n, n)$ is χ-closed if $n \geq s+2$. The proof is now completed.

By using proofs similar to that of Theorem 4.1, we can obtain the following results.
Theorem 4.2. If $n \geq s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n, n, n, n, n+1)$ is χ-closed.

Theorem 4.3. If $n \geq s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n-1, n, n, n+1, n+1)$ is χ-closed.

Theorem 4.4. If $n \geq s+4$, then the family of graphs $\mathcal{K}^{-s}(n-2, n, n, n, n+1, n+1)$ is χ-closed.
Theorem 4.5. If $n \geq s+4$, then the family of graphs $\mathcal{K}^{-s}(n-1, n-1, n-1, n+$ $1, n+1, n+1$) is χ-closed.
Theorem 4.6. If $n \geq s+5$, then the family of graphs $\mathcal{K}^{-s}(n-2, n-1, n, n+1, n+$ $1, n+1$) is χ-closed.

Theorem 4.7. If $n \geq s+4$, then the family of graphs $\mathcal{K}^{-s}(n-1, n-1, n, n, n, n+2)$ is χ-closed.
Theorem 4.8. If $n \geq s+7$, then the family of graphs $\mathcal{K}^{-s}(n-3, n, n, n+1, n+1, n+1)$ is χ-closed.

5. Chromatically unique 6-partite graphs

In this section, we first study the chromatically unique 6 -partite graphs with $6 n$ vertices and a set S of s edges deleted where the deleted edges induce a star $K_{1, s}$.
Theorem 5.1. If $n \geq s+2$, then the graphs $K_{i, j}^{-K_{1, s}}(n, n, n, n, n, n)$ are χ-unique for $(i, j)=(1,2)$.
Proof. Suppose that $H \sim K_{1,2}^{-K_{1, s}}(n, n, n, n, n, n)$. From Theorem 4.1, $H \in K^{-s}(n, n$, $n, n, n, n, n)$. Note that $\alpha(H, 7)=\alpha\left(K_{1,2}^{-K_{1, s}}(n, n, n, n, n, n), 7\right)=\alpha(K(n, n, n, n, n, n)$, 7) $+2^{s}-1$. By Lemma 2.4, we have
$H \in\left\{K_{i, j}^{-K_{1, s}}(n, n, n, n, n, n) \mid i \neq j, i, j=1,2,3,4,5,6\right\}=\left\{K_{1,2}^{-K_{1, s}}(n, n, n, n, n, n)\right\}$. This completes the proof.
Theorem 5.2. If $n \geq s+3$, then the graphs $K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(2,1),(2,6),(6,2)\}$.

Proof. Let $F \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1) \mid(i, j)=\{(1,2),(2,1),(2,6),(6,2)\}\right\}$ and $H \sim F$. By Theorem 4.2, $H \in \mathcal{K}^{-s}(n-1, n, n, n, n, n+1)$. Since

$$
\alpha(H, 7)=\alpha(F, 7)=\alpha(K(n-1, n, n, n, n, n+1), 7)+2^{s}-1,
$$

from Lemma 2.4, we know that $H \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1) \mid i \neq j, i, j=\right.$ $1,2,3,4,5,6\}$. It is easy to see that $H \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1) \mid i \neq j, i, j=\right.$ $1,2,3,4,5,6\}=\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1) \mid(i, j) \in\{(1,2),(2,1),(1,6),(6,1)\right.$, $(2,3),(2,6),(6,2)\}\}$.

Now let's determine the number of triangles in H and F. Let $t(G)$ be the number of triangles in the graphs G. Then we obtain that $t\left(K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1)\right)=$ $t(K(n-1, n, n, n, n, n+1))-s(4 n+1)$ for $(i, j) \in\{(1,2),(2,1)\}, t\left(K_{i, j}^{-K_{1, s}}(n-\right.$ $1, n, n, n, n, n+1))=t(K(n-1, n, n, n, n, n+1))-4 s n$ for $(i, j) \in\{(1,6),(6,1),(2,3)\}$, $t\left(K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1)\right)=t(K(n-1, n, n, n, n, n+1))-s(4 n-1)$ for $(i, j) \in\{(2,6),(6,2)\}$.

Recalling

$$
F \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1) \mid(i, j) \in\{(1,2),(2,1),(2,6),(6,2)\}\right\}
$$

and $t(H)=t(F)$, thus we have

$$
H, F \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1) \mid(i, j) \in\{(1,2),(2,1)\}\right\}
$$

or

$$
H, F \in\left\{K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1) \mid(i, j) \in\{(2,6),(6,2)\}\right\} .
$$

It follows from Lemma 2.6 that

$$
\begin{aligned}
& P\left(K_{1,2}^{-K_{1, s}}(n-1, n, n, n, n, n+1), \lambda\right) \neq P\left(K_{2,1}^{-K_{1, s}}(n-1, n, n, n, n, n+1), \lambda\right) \\
& P\left(K_{2,6}^{-K_{1, s}}(n-1, n, n, n, n, n+1), \lambda\right) \neq P\left(K_{6,2}^{-K_{1, s}}(n-1, n, n, n, n, n+1), \lambda\right) .
\end{aligned}
$$

Hence, by Lemma 2.1, we conclude that the graphs $K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1)$ are χ-unique where $n \geq s+3$ for each $(i, j) \in\{(1,2),(2,1),(2,6),(6,2)\}$.

Similar to the proof of Theorem 5.2, we can prove Theorems 5.3 and 5.4.
Theorem 5.3. If $n \geq s+3$, then the graphs $K_{i, j}^{-K_{1, s}}(n-1, n-1, n, n, n+1, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(1,3),(3,1),(3,5),(5,3),(5,6)\}$.
Theorem 5.4. If $n \geq s+5$, then the graphs $K_{i, j}^{-K_{1, s}}(n-2, n-1, n, n+1, n+1, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(2,1),(1,3),(3,1),(2,4),(4,2),(3,4),(4,3),(4,5)\}$.
Theorem 5.5. If $n \geq s+4$, then the graphs $K_{i, j}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(2,1),(1,5),(5,1),(2,3),(2,5),(5,2),(5,6)\}$.
Proof. From Theorem 4.4, we know that $K^{-s}(n-2, n, n, n, n+1, n+1)$ is χ closed if $n \geq s+4$. Comparing the number of 7 -independent partitions of the graphs in $K^{-s}(n-2, n, n, n, n+1, n+1)$ and by using Lemma 2.4, we have that $K_{i, j}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1)=\left\{K_{i, j}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1) \mid(i, j) \in\right.$ $\{(1,2),(2,1),(1,5),(5,1),(2,3),(2,5),(5,2),(5,6)\}$ is χ-closed.

Note that $t\left(K_{i, j}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1)\right)=t(K(n-2, n, n, n, n+1, n+1))-$ $s(4 n+2)$ for $(i, j) \in\{(1,2),(2,1)\}, t\left(K_{i, j}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1)\right)=t(K(n-$ $2, n, n, n, n+1, n+1))-s(4 n+1)$ for $(i, j) \in\{(1,5),(5,1)\}, t\left(K_{i, j}^{-K_{1, s}}(n-2, n, n, n, n+\right.$ $1, n+1))=t(K(n-2, n, n, n, n+1, n+1))-s(4 n-1)$ for $(i, j) \in\{(2,5),(5,2)\}$, $t\left(K_{2,3}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1)\right)=t(K(n-2, n, n, n, n+1, n+1))-4 s n$, $t\left(K_{5,6}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1)\right)=t(K(n-2, n, n, n, n+1, n+1))-s(4 n-2)$.

It follows from Lemma 2.6 that
$P\left(K_{1,2}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1), \lambda\right) \neq P\left(K_{2,1}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1), \lambda\right)$; $P\left(K_{1,5}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1), \lambda\right) \neq P\left(K_{5,1}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1), \lambda\right)$; $P\left(K_{2,5}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1), \lambda\right) \neq P\left(K_{5,2}^{-K_{1, s}}(n-2, n, n, n, n+1, n+1), \lambda\right)$.

Hence, by Lemma 2.1, we can conclude that the graphs $K_{i, j}^{-K_{1, s}}(n-2, n, n, n, n+$ $1, n+1)$ are χ-unique where $n \geq s+4$ for each $(i, j) \in\{(1,2),(2,1),(1,5),(5,1),(2,3)$, $(2,5),(5,2),(5,6)\}$.

Similar to the proof of Theorem 5.5, we can prove Theorems 5.6, 5.7 and 5.8.
Theorem 5.6. If $n \geq s+4$, then the graphs $K_{i, j}^{-K_{1, s}}(n-1, n-1, n-1, n+1, n+1, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(1,4),(4,1),(4,5)\}$.
Theorem 5.7. If $n \geq s+4$, then the graphs $K_{i, j}^{-K_{1, s}}(n-1, n-1, n, n, n, n+2)$ are χ-unique for each $(i, j) \in\{(1,2),(1,3),(3,1),(1,6),(6,1),(3,4),(3,6),(6,3)\}$.
Theorem 5.8. If $n \geq s+7$, then the graphs $K_{i, j}^{-K_{1, s}}(n-3, n, n, n+1, n+1, n+1)$ are χ-unique for each $(i, j) \in\{(1,2),(2,1),(1,4),(4,1),(2,3),(2,4),(4,2),(4,5)\}$.

Let $K_{i, j}^{-s K_{2}}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$ denote the graph obtained from $K\left(n_{1}, n_{2}, n_{3}, n_{4}\right.$, $\left.n_{5}, n_{6}\right)$ by deleting a set of s edges that forms a matching in $\left\langle A_{i} \cup A_{j}\right\rangle$. We now investigate the chromatically unique 6 -partite graphs with $6 n$ vertices and a set S of s edges deleted where the deleted edges induce a matching $s K_{2}$.
Theorem 5.9. If $n \geq s+3$, then the graphs $K_{1,2}^{-s K_{2}}(n-1, n-1, n, n, n+1, n+1)$ are χ-unique.
Proof. Let $F \sim K_{1,2}^{-s K_{2}}(n-1, n-1, n, n, n+1, n+1)$. It is sufficient to prove that $F=K_{1,2}^{-s K_{2}}(n-1, n-1, n, n, n+1, n+1)$. By Theorem 4.3 and Lemma 2.4, we have $F \in \mathcal{K}^{-s}(n-1, n-1, n, n, n+1, n+1)$ and $\alpha^{\prime}(F)=s$. Let $F=G-S$ where $G=K(n-1, n-1, n, n, n+1, n+1)$. Next we consider the number of triangles in F. Let $e_{i} \in S$ and $t\left(e_{i}\right)$ be the number of triangles in G containing the edge e_{i}. It is easy to see that $t\left(e_{i}\right) \leq 4 n+2$. As $n-1 \leq n-1<n \leq n \leq n+1 \leq n+1$, we know that $t\left(e_{i}\right)=4 n+2$ if and only if e_{i} is an edge in the subgraph $\left\langle A_{1} \cup A_{2}\right\rangle$ in G. So we have

$$
t(F) \geq t(G)-\sum_{i=1}^{s} t\left(e_{i}\right) \geq t(G)-s(4 n+2)
$$

and the equality holds if and only if each edge e_{i} in S is an edge of the subgraph $\left\langle A_{1} \cup A_{2}\right\rangle$ in G.

Note that $t(F)=t(G)-s(4 n+2)$ and $\alpha^{\prime}(F)=s$. By Lemma 2.4, we know that $F=K_{1,2}^{-s K_{2}}(n-1, n-1, n, n, n+1, n+1)$. This completes the proof.

Similar to the proof of Theorem 5.9, we can prove Theorems 5.10 and 5.11.
Theorem 5.10. If $n \geq s+5$, then the graphs $K_{1,2}^{-s K_{2}}(n-2, n-1, n, n+1, n+1, n+1)$ are χ-unique.
Theorem 5.11. If $n \geq s+4$, then the graphs $K_{1,2}^{-s K_{2}}(n-1, n-1, n, n, n, n+2)$ are χ-unique.

We end this paper with the following open problems:
(1) Study the chromaticity of the following graphs:
(i) $K_{i, j}^{-K_{1, s}}(n-1, n, n, n, n, n+1)$ where $n \geq s+3$ for each $(i, j) \in\{(1,6),(6,1)$, $(2,3)\}$,
(ii) $K_{i, j}^{-K_{1, s}}(n-1, n-1, n, n, n+1, n+1)$ where $n \geq s+3$ for each $(i, j) \in$ $\{(1,5),(5,1),(3,4)\}$ and
(iii) $K_{i, j}^{-K_{1, s}}(n-2, n-1, n, n+1, n+1, n+1)$ where $n \geq s+5$ for each $(i, j) \in\{(1,4),(4,1),(2,3),(3,2)\}$.
(2) Study the chromaticity of the following graphs:
(i) $K_{1,2}^{-s K_{2}}(n, n, n, n, n, n)$ where $n \geq s+2$,
(ii) $K_{1,2}^{-s K_{2}}(n-1, n, n, n, n, n+1)$ where $n \geq s+3$,
(iii) $K_{1,2}^{-s K_{2}}(n-2, n, n, n, n+1, n+1)$ where $n \geq s+4$,
(iv) $K_{1,2}^{-s K_{2}}(n-1, n-1, n-1, n+1, n+1, n+1)$ where $n \geq s+4$ and
(v) $K_{1,2}^{-s K_{2}}(n-3, n, n, n+1, n+1, n+1)$ where $n \geq s+7$.

Remark 5.1. For the detail proofs of Theorems 4.2-4.8, 5.3, 5.4, 5.6-5.8, the reader may refer to [15].

Acknowledgement. The authors would like to extend their sincere thanks to the referees for their constructive and valuable comments.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[2] F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332 (1992), no. 2, 729-756.
[3] X. Chen, Chromaticity on 6-partite graphs with $6 n+5$ vertices, Pure Appl. Math. (Xi'an) 21 (2005), no. 2, 134-141.
[4] G.-L. Chia, B.-H. Goh and K.-M. Koh, The chromaticity of some families of complete tripartite graphs, Sci. Ser. A Math. Sci. (N.S.) 2 (1988), 27-37.
[5] F. M. Dong, K. M. Koh, K. L. Teo, C. H. C. Little and M. D. Hendy, Sharp bounds for the number of 3-independent partitions and the chromaticity of bipartite graphs, J. Graph Theory 37 (2001), no. 1, 48-77.
[6] F. M. Dong, K. M. Koh and K. L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
[7] K. M. Koh and K. L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990), no. 3, 259-285.
[8] K. M. Koh and K. L. Teo, The search for chromatically unique graphs. II, Discrete Math. 172 (1997), no. 1-3, 59-78.
[9] G. C. Lau and Y. H. Peng, Chromaticity of complete 3-partite graphs with certain star and matching deleted, Ars Comb., accepted.
[10] G. C. Lau and Y. H. Peng, Chromaticity of complete 4-partite graphs with certain star or matching deleted, Appl. Anal. Discrete Math. 4 (2010), no. 2, 253-268.
[11] R. C. Read and W. T. Tutte, Chromatic polynomials, in Selected Topics in Graph Theory, 3, 15-42, Academic Press, San Diego, CA, 1988.
[12] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, Chromaticity of complete 5-partite graphs with certain star and matching deleted, Thai J. Math., accepted.
[13] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, Classification of complete 5-partite graphs and chromaticity of 5 -partite graphs with $5 n+2$ vertices, Far East J. Math. Sci. (FJMS) 43 (2010), no. 1, 59-72.
[14] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, On chromatic uniqueness of certain 5-partite graphs, J. Appl. Math. Comput. 35 (2011), no. 1-2, 507-516.
[15] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, Chromaticity of complete 6-partite graphs with certain star and matching deleted, Technical Report, Universiti Sains Malaysia, 2010.
[16] H. Zhao, R. Liu and S. Zhang, Classification of complete 5-partite graphs and chromaticity of 5-partite graphs with $5 n$ vertices, Appl. Math. J. Chinese Univ. Ser. B 19 (2004), no. 1, 116-124.
[17] H. X. Zhao, Chromaticity of 5-partite graphs with $5 n+4$ vertices, J. Lanzhou Univ. Nat. Sci. 40 (2004), no. 3, 12-16.
[18] H. X. Zhao, Chromaticity and adjoint polynomials of graphs, Ph.D. Thesis, University of Twente, Netherland, 2005.

