Chromaticity of Complete 6-Partite Graphs with Certain Star or Matching Deleted

¹H. ROSLAN, ²A. SH. AMEEN, ³Y. H. PENG AND ⁴H. X. ZHAO ^{1,2}School of Mathematical Sciences, Universiti Sains Malaysia, ¹¹⁸⁰⁰ USM Penang, Malaysia ³Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, 43400 UPM Serdang, Malaysia ⁴Department of Mathematics, Qinghai Normal University, Xining, Qinghai, 810008, P. R. China ¹hroslan@cs.usm.my, ²amensh66@yahoo.com, ³yhpeng88@yahoo.com, ⁴haixingzhao@yahoo.com.cn

Abstract. Let $P(G, \lambda)$ be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. We write $[G] = \{H|H \sim G\}$. If $[G] = \{G\}$, then Gis said to be chromatically unique. In this paper, we first characterize certain complete 6-partite graphs with 6n vertices according to the number of 7-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6-partite graphs with certain star or matching deleted are obtained.

2010 Mathematics Subject Classification: 05C15

Keywords and phrases: Chromatic polynomial, chromatically closed, chromatic uniqueness.

1. Introduction

All graphs considered here are simple and finite. For a graph G, let $P(G, \lambda)$ be the chromatic polynomial of G. Two graphs G and H are said to be *chromatically* equivalent (or simply χ -equivalent), symbolically $G \sim H$, if P(G, l) = P(H, l). The equivalence class determined by G under \sim is denoted by [G]. A graph G is *chromatically unique* (or simply χ -unique) if $H \cong G$ whenever $H \sim G$, i.e, $[G] = \{G\}$ up to isomorphism. For a set \mathcal{G} of graphs, if $[G] \subseteq \mathcal{G}$ for every $G \in \mathcal{G}$, then \mathcal{G} is said to be χ -closed. Many families of χ -unique graphs are known (see [6, 7, 8]).

For a graph G, let V(G), E(G) and t(G) be the vertex set, edge set and number of triangles in G, respectively. Let S be a set of s edges in G. Let G - S (or G - s) be the graph obtained from G by deleting all edges in S, and by $\langle S \rangle$ the graph

Communicated by Sanming Zhou.

Received: January 6, 2010; Revised: July 27, 2010.

induced by S. Let $K(n_1, n_2, \dots, n_t)$ be a complete t-partite graph. We denote by $\mathcal{K}^{-s}(n_1, n_2, \dots, n_t)$ the family of graphs which are obtained from $K(n_1, n_2, \dots, n_t)$ by deleting a set S of some s edges.

In [4, 5, 7–10, 12–18], one can find many results on the chromatic uniqueness of certain families of complete *t*-partite graphs (t = 2, 3, 4, 5). However, there are very few 6-partite graphs known to be χ -unique, see [3].

In [3], Chen obtained many families of χ -unique graphs which are obtained by deleting the edges of a star or matching from a complete 6-partite graph with 6n + 5 vertices. A natural extension is to study the chromaticity of the graphs obtained by deleting the edges of a star or matching from a complete partite graph with 6n + i vertices, where $0 \le i \le 4$. Thus, the aim of this paper is to study the chromaticity of the graphs which are obtained by deleting the edges of a star or matching from a complete 6-partite graph with 6n + i vertices.

Let G be a complete 6-partite graph with 6n vertices. In this paper, we characterize certain complete 6-partite graphs with 6n vertices according to the number of 7-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6-partite graphs with certain star or matching deleted are obtained.

2. Some lemmas and notations

For a graph G and a positive integer r, a partition $\{A_1, A_2, \dots, A_r\}$ of V(G), where r is a positive integer, is called an *r*-independent partition of G if every A_i is an independent set of G. Let $\alpha(G, r)$ denote the number of r-independent partitions of G. Then, we have $P(G, \lambda) = \sum_{r=1}^{p} \alpha(G, r)(\lambda)_r$, where $(\lambda)_r = \lambda(\lambda - 1)(\lambda - 2)\cdots(\lambda - r + 1)$ (see [11]). Therefore, $\alpha(G, r) = \alpha(H, r)$ for each $r = 1, 2, \cdots$, if $G \sim H$.

For a graph G with p vertices, the polynomial $\sigma(G, x) = \sum_{r=1}^{p} \alpha(G, r) x^{r}$ is called the σ -polynomial of G (see [2]). Clearly, $P(G, \lambda) = P(H, \lambda)$ implies that $\sigma(G, x) = \sigma(H, x)$ for any graphs G and H.

For disjoint graphs G and H, $G \cup H$ denotes the disjoint union of G and H. The join of G and H denoted by $G \vee H$ is defined as follows: $V(G \vee H) = V(G) \cup V(H)$; $E(G \vee H) = E(G) \cup E(H) \cup \{xy \mid x \in V(G), y \in V(H)\}$. For notations and terminology not defined here, we refer [1].

Lemma 2.1. [2, 7] Let G and H be two disjoint graphs. Then

- (1) |V(G)| = |V(H)|, |E(G)| = |E(H)|, t(G) = t(H) and $\alpha(G, r) = \alpha(H, r)$ for $r = 1, 2, 3, \dots, p$ if $G \sim H$;
- (2) $\sigma(G \lor H, x) = \sigma(G, x)\sigma(H, x).$

Lemma 2.2. [2] Let $G = K(n_1, n_2, n_3, \dots, n_t)$ and $\sigma(G, x) = \sum_{r \ge 1} \alpha(G, r) x^r$. Then $\alpha(G, r) = 0$ for $1 \le r \le t - 1$, $\alpha(G, t) = 1$ and $\alpha(G, t + 1) = \sum_{i=1}^{t} 2^{n_i - 1} - t$.

Let $x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_5 \leq x_6$ be positive integers and $\{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}\}$ = $\{x_1, x_2, x_3, x_4, x_5, x_6\}$. If there are two elements x_{i_1} and x_{i_2} in $\{x_1, x_2, x_3, x_4, x_5, x_6\}$ such that $x_{i_2} - x_{i_1} \geq 2$, then $H' = K(x_{i_1} + 1, x_{i_2} - 1, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}\}$ is called an *improvement* of $H = K(x_1, x_2, x_3, x_4, x_5, x_6)$. **Lemma 2.3.** [3] Suppose $x_1 \le x_2 \le x_3 \le x_4 \le x_5 \le x_6$ and $H' = K(x_{i_1} + 1, x_{i_2} - 1, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6})$ is an improvement of $H = K(x_1, x_2, x_3, x_4, x_5, x_6)$. Then

$$\alpha(H,7) - \alpha(H',7) = 2^{x_{i_2}-2} - 2^{x_{i_1}-1} \ge 2^{x_{i_1}-1}$$

Let $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$. For a graph H = G - S, where S is a set of some s edges of G, define $\alpha'(H) = \alpha(H, 7) - \alpha(G, 7)$. Clearly, $\alpha'(H) \ge 0$.

Lemma 2.4. [3] Let $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$. Suppose that $\min\{n_i | i = 1, 2, 3, 4, 5, 6\} \ge s + 1 \ge 1$ and H = G - S, where S is a set of some s edges of G. Then

$$s \le \alpha'(H) = \alpha(H,7) - \alpha(G,7) \le 2^s - 1,$$

 $\alpha'(H) = s$ iff the set of end-vertices of any $r \ge 2$ edges in S is not independent in H, and $\alpha'(H) = 2^s - 1$ iff S induces a star $K_{1,s}$ and all vertices of $K_{1,s}$ other than its center belong to a same A_i .

Let $K(A_1, A_2)$ be a complete bipartite graph with partite sets A_1 and A_2 . We denote by $K^{-K_{1,s}}(A_i, A_j)$ the graph obtained from $K(A_i, A_j)$ by deleting s edges that induce a star with its center in A_i . Note that $K^{-K_{1,s}}(A_i, A_j) \neq K^{-K_{1,s}}(A_j, A_i)$ if $|A_i| \neq |A_j|$ for $i \neq j$ (see [5]).

Lemma 2.5. [4] Let $K(n_1, n_2)$ be a complete bipartite graph with partite sets A_1 and A_2 such that $|A_i| = n_i$ for i = 1, 2. If $\min\{n_1, n_2\} \ge s+2$, then every $K^{-K_{1,s}}(A_i, A_j)$ is χ -unique, where $i \ne j$ and i, j = 1, 2.

Let $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$ be a complete 6-partite graph with partite sets $A_i(i = 1, 2, \dots, 6)$ such that $|A_i| = n_i$. Let $\langle A_i \cup A_j \rangle$ be the subgraph of G induced by $A_i \cup A_j$, where $i \neq j$ and $i, j \in \{1, 2, 3, 4, 5, 6\}$. By $K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$, we denote the graph obtained from $K(n_1, n_2, n_3, n_4, n_5, n_6)$ by deleting a set of s edges that induce a $K_{1,s}$ with its center in A_i and all its end-vertices are in A_j . Note that

$$K_{i,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6) = K_{j,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$$

and

$$K_{l,i}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6) = K_{l,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$$

for $n_i = n_j$ and $l \neq i, j$.

Lemma 2.6. [3] If $i, j \in \{1, 2, 3, \dots, t\}, i \neq j, n_i \neq n_j$, then $P(K_{i,i}^{-K_{1,s}}(n_1, n_2, n_3, \dots, n_t), \lambda) \neq P(K_{i,i}^{-K_{1,s}}(n_1, n_2, n_3, \dots, n_t), \lambda).$

3. Classification

In this section, we shall characterize certain complete 6-partite graphs $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$ according to the number of 7-independent partitions of G where $n_1 + n_2 + n_3 + n_4 + n_5 + n_6 = 6n, n \ge 1$.

Theorem 3.1. Let $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$ be a complete 6-partite graph such that $n_1 + n_2 + n_3 + n_4 + n_5 + n_6 = 6n, n \ge 1$. Define

$$\theta(G) = \left[\alpha(G,7) - 2^{n+1} - 2^n + 6\right]/2^{n-2}.$$

Then

- (i) $\theta(G) \ge 0$;
- (ii) $\theta(G) = 0$ if and only if G = K(n, n, n, n, n, n);
- (iii) $\theta(G) = 1$ if and only if G = K(n 1, n, n, n, n, n + 1);
- (iv) $\theta(G) = 2$ if and only if G = K(n-1, n-1, n, n, n+1, n+1);
- (v) $\theta(G) = 5/2$ if and only if G = K(n-2, n, n, n+1, n+1);
- (vi) $\theta(G) = 3$ if and only if G = K(n-1, n-1, n-1, n+1, n+1, n+1);
- (vii) $\theta(G) = 7/2$ if and only if G = K(n-2, n-1, n, n+1, n+1, n+1);
- (viii) $\theta(G) = 4$ if and only if G = K(n-1, n-1, n, n, n, n+2);
 - (ix) $\theta(G) = 17/4$ if and only if G = K(n-3, n, n, n+1, n+1, n+1);
 - (x) $\theta(G) \ge 9/2$ if and only if G is not one of the graphs appeared in (ii)–(ix).

Proof. For a complete 6-partite graph H_1 with 6n vertices, we can construct a sequence of complete 6-partite graphs with 6n vertices, say H_1, H_2, \dots, H_t , such that H_i is an improvement of H_{i-1} for each $i = 2, 3, \dots, t$, and $H_t = K(n, n, n, n, n, n)$. By Lemma 2.3, $\alpha(H_{i-1}, 7) - \alpha(H_i, 7) > 0$. So $\theta(H_{i-1}) - \theta(H_i) > 0$, which implies that $\theta(G) \ge \theta(H_t) = \theta(K(n, n, n, n, n, n))$. From Lemma 2.2 and by a simple calculation, $\theta(K(n, n, n, n, n, n)) = 0$. Thus, (ii) is true.

Since $H_t = K(n, n, n, n, n, n)$ and H_t is an improvement of H_{t-1} , it is not hard to see that H_{t-1} must be K(n-1, n, n, n, n, n+1). The proof of (iii) is complete.

Note that $H_{t-1} = K(n-1, n, n, n, n, n+1)$ is an improvement of H_{t-2} . Similarly, it is not hard to see that $H_{t-2} \in \{R_i | i = 1, 2, 3, 4\}$, where R_i and $\theta(R_i)$ are shown in Table 1.

To complete the proof of the theorem, we need only determine all complete 6partite graphs G with 6n vertices such that $\theta(G) < 9/2$. By Lemma 2.3, $\theta(H_{t-3}) > 9/2$ for each H_{t-3} if $H_{t-2} \in R_4$. All graphs H_{t-3} and its θ -values are listed in Table 2 when $H_{t-2} \in \{R_i | i = 1, 2, 3\}$.

R_i	Graphs H_{t-2}	$\theta(R_i)$
R_1	K(n-1, n-1, n, n, n+1, n+1)	2
R_2	K(n-2, n, n, n, n+1, n+1)	5/2
R_3	K(n-1, n-1, n, n, n, n+2)	4
R_4	K(n-2, n, n, n, n, n+2)	9/2

Table 1. H_{t-2} and its θ -values

By Lemma 2.3, $\theta(H_{t-4}) > 9/2$ for every H_{t-4} if $H_{t-3} \in \{M_i | 4 \le i \le 8\}$. One can easily obtain the following: If $H_{t-3} = M_1$, then $H_{t-4} \in \{M_2, M_4, M_{12}\}$; $H_{t-4} \in \{M_3, M_5, M_9, M_{10}, M_{12}, M_{13}, M_{14}\}$ if $H_{t-3} = M_2$ and $H_{t-4} \in \{M_6, M_{10}, M_{11}, M_{14}, M_{15}\}$ if $H_{t-3} = M_3$, where $M_9 = K(n-2, n-2, n+1, n+1, n+1, n+1), M_{10} = K(n-3, n-1, n+1, n+1, n+1), M_{11} = K(n-4, n, n+1, n+1, n+1, n+1), M_{12} = K(n-2, n-1, n-1, n+1, n+1, n+2), M_{13} = K(n-2, n-2, n, n+1, n+1, n+2), M_{14} = K(n-3, n-1, n, n+1, n+1, n+2)$ and $M_{15} = K(n-4, n, n, n+1, n+1, n+2)$. From Lemma 2.2 and by a calculation, we have $\theta(M_i) \ge 9/2$ for $9 \le i \le 15$. Hence, from Lemma 2.3, Table 1, Table 2 and the above arguments, we conclude that the theorem holds.

M_i	Graphs H_{t-3}	$\theta(M_i)$
M_1	K(n-1, n-1, n-1, n+1, n+1, n+1)	3
M_2	K(n-2, n-1, n, n+1, n+1, n+1)	7/2
M_3	K(n-3, n, n, n+1, n+1, n+1)	17/4
M_4	K(n-1, n-1, n-1, n, n+1, n+2)	5
M_5	K(n-2, n-1, n, n, n+1, n+2)	11/2
M_6	K(n-3,n,n,n,n+1,n+2)	25/4
M_7	K(n-1, n-1, n-1, n, n, n+3)	11
M_8	K(n-2, n-1, n, n, n+3)	23/2

Table 2. H_{t-3} and its θ -values

4. Chromatically closed 6-partite graphs

In this section, we obtain several χ -closed families of graphs $\mathcal{K}^{-s}(n_1, n_2, n_3, n_4, n_5, n_6)$.

Theorem 4.1. If $n \ge s+2$, then the family of graphs $\mathcal{K}^{-s}(n, n, n, n, n, n)$ is χ -closed.

Proof. Let G = K(n, n, n, n, n, n) and $Z \in \mathcal{K}^{-s}(n, n, n, n, n, n)$. The 6-independent partition of G is a 6-independent partition of Z. So $\alpha(Z, 6) \ge \alpha(G, 6) = 1$. Let $H \sim Z$, then $\alpha(H, 6) = \alpha(Z, 6) \ge \alpha(G, 6) = 1$. Let $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ be a 6-independent partition of H, $|A_i| = t_i, i = 1, 2, 3, 4, 5, 6$ and $F = K(t_1, t_2, t_3, t_4, t_5, t_6)$. Then, there exists $S' \in E(F)$ such that H = F - S'. Let q(G) be the number of edges in graph G. Since q(H) = q(Z), therefore s' = |S'| = q(F) - q(G) + s.

From Lemma 2.4, we have

$$\begin{aligned} \alpha(Z,7) &= \alpha(G,7) + \alpha'(Z), s \le \alpha'(Z) \le 2^s - 1, \quad \text{and} \\ \alpha(H,7) &= \alpha(F,7) + \alpha'(H), s' \le \alpha'(H). \end{aligned}$$

Thus $\alpha(H,7) - \alpha(Z,7) = \alpha(F,7) - \alpha(G,7) + \alpha'(H) - \alpha'(Z)$. Since $H \sim Z$, then $\alpha(Z,7) = \alpha(H,7)$. So $\alpha(H,7) - \alpha(Z,7) = 0$.

Suppose $F \neq G$, we need to show that $\alpha(H,7) \geq \alpha(Z,7)$, this leads to a contradiction. Hence, the conclusion of the theorem.

Now, if $F \neq G$, from Theorem 3.1, we have $\theta(F) - \theta(G) \geq 1$. So

$$\alpha(F,7) - \alpha(G,7) = (\theta(F) - \theta(G)) \cdot 2^{n-2} \ge 2^{n-2}.$$

Hence

$$\alpha(H,7) - \alpha(Z,7) \ge 2^{n-2} + \alpha'(H) - \alpha'(Z) \ge 2^{n-2} + 0 - (2^s - 1) \ge 1.$$

This is a contradiction. So F = G, s = s'. Thus, $H \in \mathcal{K}^{-s}(n, n, n, n, n, n)$. Therefore, $\mathcal{K}^{-s}(n, n, n, n, n, n)$ is χ -closed if $n \ge s + 2$. The proof is now completed.

By using proofs similar to that of Theorem 4.1, we can obtain the following results.

Theorem 4.2. If $n \ge s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n, n, n, n+1)$ is χ -closed.

Theorem 4.3. If $n \ge s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n-1, n, n, n+1, n+1)$ is χ -closed.

Theorem 4.4. If $n \ge s+4$, then the family of graphs $\mathcal{K}^{-s}(n-2, n, n, n, n+1, n+1)$ is χ -closed.

Theorem 4.5. If $n \ge s+4$, then the family of graphs $\mathcal{K}^{-s}(n-1, n-1, n-1, n+1, n+1, n+1)$ is χ -closed.

Theorem 4.6. If $n \ge s+5$, then the family of graphs $\mathcal{K}^{-s}(n-2, n-1, n, n+1, n+1, n+1)$ is χ -closed.

Theorem 4.7. If $n \ge s+4$, then the family of graphs $\mathcal{K}^{-s}(n-1, n-1, n, n, n, n+2)$ is χ -closed.

Theorem 4.8. If $n \ge s+7$, then the family of graphs $\mathcal{K}^{-s}(n-3, n, n, n+1, n+1, n+1)$ is χ -closed.

5. Chromatically unique 6-partite graphs

In this section, we first study the chromatically unique 6-partite graphs with 6n vertices and a set S of s edges deleted where the deleted edges induce a star $K_{1,s}$.

Theorem 5.1. If $n \ge s + 2$, then the graphs $K_{i,j}^{-K_{1,s}}(n, n, n, n, n, n)$ are χ -unique for (i, j) = (1, 2).

Proof. Suppose that $H \sim K_{1,2}^{-K_{1,s}}(n, n, n, n, n, n)$. From Theorem 4.1, $H \in K^{-s}(n, n, n, n, n, n, n, n)$. Note that $\alpha(H, 7) = \alpha(K_{1,2}^{-K_{1,s}}(n, n, n, n, n, n), 7) = \alpha(K(n, n, n, n, n, n), 7) + 2^s - 1$. By Lemma 2.4, we have

 $H \in \{K_{i,j}^{-K_{1,s}}(n,n,n,n,n,n) | i \neq j, \ i,j = 1,2,3,4,5,6\} = \{K_{1,2}^{-K_{1,s}}(n,n,n,n,n,n)\}.$ This completes the proof.

Theorem 5.2. If $n \ge s+3$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)$ are χ -unique for each $(i,j) \in \{(1,2), (2,1), (2,6), (6,2)\}$.

Proof. Let $F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n, n+1) | (i, j) = \{(1, 2), (2, 1), (2, 6), (6, 2)\}\}$ and $H \sim F$. By Theorem 4.2, $H \in \mathcal{K}^{-s}(n-1, n, n, n, n+1)$. Since

$$\alpha(H,7) = \alpha(F,7) = \alpha(K(n-1,n,n,n,n+1),7) + 2^s - 1,$$

from Lemma 2.4, we know that $H \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n,n+1) | i \neq j, i, j = 1, 2, 3, 4, 5, 6\}$. It is easy to see that $H \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n,n+1) | i \neq j, i, j = 1, 2, 3, 4, 5, 6\} = \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1) | (i,j) \in \{(1,2), (2,1), (1,6), (6,1), (2,3), (2,6), (6,2)\}\}.$

Now let's determine the number of triangles in H and F. Let t(G) be the number of triangles in the graphs G. Then we obtain that $t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n,n+1)) = t(K(n-1,n,n,n,n,n+1)) - s(4n+1)$ for $(i,j) \in \{(1,2),(2,1)\}, t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n,n+1)) = t(K(n-1,n,n,n,n+1)) - 4sn$ for $(i,j) \in \{(1,6),(6,1),(2,3)\}, t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n,n+1)) = t(K(n-1,n,n,n,n,n+1)) - s(4n-1)$ for $(i,j) \in \{(2,6),(6,2)\}.$

Recalling

$$F \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1) | (i,j) \in \{(1,2), (2,1), (2,6), (6,2)\}\}$$

and t(H) = t(F), thus we have

$$H, F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n, n+1) | (i,j) \in \{(1,2), (2,1)\}\}$$

or

$$H, F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n, n+1) | (i,j) \in \{(2,6), (6,2)\}\}.$$

It follows from Lemma 2.6 that

$$\begin{split} &P(K_{1,2}^{-K_{1,s}}(n-1,n,n,n,n+1),\lambda) \neq P(K_{2,1}^{-K_{1,s}}(n-1,n,n,n,n+1),\lambda); \\ &P(K_{2,6}^{-K_{1,s}}(n-1,n,n,n,n,n+1),\lambda) \neq P(K_{6,2}^{-K_{1,s}}(n-1,n,n,n,n+1),\lambda). \end{split}$$

Hence, by Lemma 2.1, we conclude that the graphs $K_{i,j}^{-K_{1,s}}(n-1, n, n, n, n, n+1)$ are χ -unique where $n \ge s+3$ for each $(i, j) \in \{(1, 2), (2, 1), (2, 6), (6, 2)\}$.

Similar to the proof of Theorem 5.2, we can prove Theorems 5.3 and 5.4.

Theorem 5.3. If $n \ge s+3$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1, n-1, n, n, n+1, n+1)$ are χ -unique for each $(i, j) \in \{(1, 2), (1, 3), (3, 1), (3, 5), (5, 3), (5, 6)\}.$

Theorem 5.4. If $n \ge s+5$, then the graphs $K_{i,j}^{-K_{1,s}}(n-2, n-1, n, n+1, n+1, n+1)$ are χ -unique for each $(i, j) \in \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2), (3, 4), (4, 3), (4, 5)\}.$

Theorem 5.5. If $n \ge s + 4$, then the graphs $K_{i,j}^{-K_{1,s}}(n-2, n, n, n, n+1, n+1)$ are χ -unique for each $(i, j) \in \{(1, 2), (2, 1), (1, 5), (5, 1), (2, 3), (2, 5), (5, 2), (5, 6)\}$.

Proof. From Theorem 4.4, we know that $K^{-s}(n-2, n, n, n, n+1, n+1)$ is χ -closed if $n \geq s+4$. Comparing the number of 7-independent partitions of the graphs in $K^{-s}(n-2, n, n, n, n+1, n+1)$ and by using Lemma 2.4, we have that $K_{i,j}^{-K_{1,s}}(n-2, n, n, n, n+1, n+1) = \{K_{i,j}^{-K_{1,s}}(n-2, n, n, n+1, n+1)|(i, j) \in \{(1, 2), (2, 1), (1, 5), (5, 1), (2, 3), (2, 5), (5, 2), (5, 6)\}$ is χ -closed.

Note that $t(K_{i,j}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1)) = t(K(n-2,n,n,n,n+1,n+1)) - s(4n+2)$ for $(i,j) \in \{(1,2), (2,1)\}, t(K_{i,j}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1)) = t(K(n-2,n,n,n,n+1,n+1)) - s(4n+1)$ for $(i,j) \in \{(1,5), (5,1)\}, t(K_{i,j}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1)) = t(K(n-2,n,n,n,n+1,n+1)) - s(4n-1)$ for $(i,j) \in \{(2,5), (5,2)\}, t(K_{2,3}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1)) = t(K(n-2,n,n,n,n+1,n+1)) - 4sn, t(K_{5,6}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1)) = t(K(n-2,n,n,n+1,n+1)) - s(4n-2).$ It follows from Lemma 2.6 that

$$\begin{split} &P(K_{1,2}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1),\lambda) \neq P(K_{2,1}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1),\lambda);\\ &P(K_{1,5}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1),\lambda) \neq P(K_{5,1}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1),\lambda);\\ &P(K_{2,5}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1),\lambda) \neq P(K_{5,2}^{-K_{1,s}}(n-2,n,n,n,n+1,n+1),\lambda). \end{split}$$

Hence, by Lemma 2.1, we can conclude that the graphs $K_{i,j}^{-K_{1,s}}(n-2, n, n, n, n+1, n+1)$ are χ -unique where $n \ge s+4$ for each $(i, j) \in \{(1, 2), (2, 1), (1, 5), (5, 1), (2, 3), (2, 5), (5, 2), (5, 6)\}$.

Similar to the proof of Theorem 5.5, we can prove Theorems 5.6, 5.7 and 5.8.

Theorem 5.6. If $n \ge s+4$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1, n-1, n-1, n+1, n+1, n+1)$ are χ -unique for each $(i, j) \in \{(1, 2), (1, 4), (4, 1), (4, 5)\}.$

Theorem 5.7. If $n \ge s + 4$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1, n-1, n, n, n, n+2)$ are χ -unique for each $(i, j) \in \{(1, 2), (1, 3), (3, 1), (1, 6), (6, 1), (3, 4), (3, 6), (6, 3)\}.$

Theorem 5.8. If $n \ge s+7$, then the graphs $K_{i,j}^{-K_{1,s}}(n-3,n,n,n+1,n+1,n+1)$ are χ -unique for each $(i,j) \in \{(1,2), (2,1), (1,4), (4,1), (2,3), (2,4), (4,2), (4,5)\}.$

Let $K_{i,j}^{-sK_2}(n_1, n_2, n_3, n_4, n_5, n_6)$ denote the graph obtained from $K(n_1, n_2, n_3, n_4, n_5, n_6)$ by deleting a set of s edges that forms a matching in $\langle A_i \cup A_j \rangle$. We now investigate the chromatically unique 6-partite graphs with 6n vertices and a set S of s edges deleted where the deleted edges induce a matching sK_2 .

Theorem 5.9. If $n \ge s+3$, then the graphs $K_{1,2}^{-sK_2}(n-1, n-1, n, n, n+1, n+1)$ are χ -unique.

Proof. Let $F \sim K_{1,2}^{-sK_2}(n-1, n-1, n, n, n+1, n+1)$. It is sufficient to prove that $F = K_{1,2}^{-sK_2}(n-1, n-1, n, n, n+1, n+1)$. By Theorem 4.3 and Lemma 2.4, we have $F \in \mathcal{K}^{-s}(n-1, n-1, n, n, n+1, n+1)$ and $\alpha'(F) = s$. Let F = G - S where G = K(n-1, n-1, n, n, n+1, n+1). Next we consider the number of triangles in F. Let $e_i \in S$ and $t(e_i)$ be the number of triangles in G containing the edge e_i . It is easy to see that $t(e_i) \leq 4n+2$. As $n-1 \leq n-1 < n \leq n \leq n+1 \leq n+1$, we know that $t(e_i) = 4n+2$ if and only if e_i is an edge in the subgraph $\langle A_1 \cup A_2 \rangle$ in G. So we have

$$t(F) \ge t(G) - \sum_{i=1}^{s} t(e_i) \ge t(G) - s(4n+2);$$

and the equality holds if and only if each edge e_i in S is an edge of the subgraph $\langle A_1 \cup A_2 \rangle$ in G.

Note that t(F) = t(G) - s(4n+2) and $\alpha'(F) = s$. By Lemma 2.4, we know that $F = K_{1,2}^{-sK_2}(n-1, n-1, n, n, n+1, n+1)$. This completes the proof.

Similar to the proof of Theorem 5.9, we can prove Theorems 5.10 and 5.11.

Theorem 5.10. If $n \ge s+5$, then the graphs $K_{1,2}^{-sK_2}(n-2, n-1, n, n+1, n+1, n+1)$ are χ -unique.

Theorem 5.11. If $n \ge s + 4$, then the graphs $K_{1,2}^{-sK_2}(n-1, n-1, n, n, n, n+2)$ are χ -unique.

We end this paper with the following open problems:

- (1) Study the chromaticity of the following graphs:
 - (i) $K_{i,j}^{-K_{1,s}}(n-1, n, n, n, n+1)$ where $n \ge s+3$ for each $(i, j) \in \{(1, 6), (6, 1), (2, 3)\},\$
 - (ii) $K_{i,j}^{-K_{1,s}}(n-1, n-1, n, n, n+1, n+1)$ where $n \ge s+3$ for each $(i, j) \in \{(1, 5), (5, 1), (3, 4)\}$ and
 - (iii) $K_{i,j}^{-K_{1,s}}(n-2,n-1,n,n+1,n+1,n+1)$ where $n \ge s+5$ for each $(i,j) \in \{(1,4),(4,1),(2,3),(3,2)\}.$

- (2) Study the chromaticity of the following graphs:

 - (i) $K_{1,2}^{-sK_2}(n, n, n, n, n, n)$ where $n \ge s+2$, (ii) $K_{1,2}^{-sK_2}(n-1, n, n, n, n, n+1)$ where $n \ge s+3$,
 - (iii) $K_{1,2}^{-sK_2}(n-2, n, n, n, n+1, n+1)$ where $n \ge s+4$,
 - (iv) $K_{1,2}^{-sK_2}(n-1, n-1, n-1, n+1, n+1, n+1)$ where $n \ge s+4$ and
 - (v) $K_{1,2}^{-sK_2}(n-3,n,n,n+1,n+1,n+1)$ where $n \ge s+7$.

Remark 5.1. For the detail proofs of Theorems 4.2–4.8, 5.3, 5.4, 5.6–5.8, the reader may refer to [15].

Acknowledgement. The authors would like to extend their sincere thanks to the referees for their constructive and valuable comments.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
- [2] F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. **332** (1992), no. 2, 729–756.
- [3] X. Chen, Chromaticity on 6-partite graphs with 6n + 5 vertices, Pure Appl. Math. (Xi'an) 21 (2005), no. 2, 134-141.
- [4] G.-L. Chia, B.-H. Goh and K.-M. Koh, The chromaticity of some families of complete tripartite graphs, Sci. Ser. A Math. Sci. (N.S.) 2 (1988), 27-37.
- [5] F. M. Dong, K. M. Koh, K. L. Teo, C. H. C. Little and M. D. Hendy, Sharp bounds for the number of 3-independent partitions and the chromaticity of bipartite graphs, J. Graph Theory 37 (2001), no. 1, 48–77.
- [6] F. M. Dong, K. M. Koh and K. L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
- [7] K. M. Koh and K. L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990), no. 3, 259-285.
- [8] K. M. Koh and K. L. Teo, The search for chromatically unique graphs. II, Discrete Math. 172 (1997), no. 1-3, 59-78.
- [9] G. C. Lau and Y. H. Peng, Chromaticity of complete 3-partite graphs with certain star and matching deleted, Ars Comb., accepted.
- [10] G. C. Lau and Y. H. Peng, Chromaticity of complete 4-partite graphs with certain star or matching deleted, Appl. Anal. Discrete Math. 4 (2010), no. 2, 253-268.
- [11] R. C. Read and W. T. Tutte, Chromatic polynomials, in Selected Topics in Graph Theory, 3, 15–42, Academic Press, San Diego, CA, 1988.
- [12] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, Chromaticity of complete 5-partite graphs with certain star and matching deleted, Thai J. Math., accepted.
- [13] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, Classification of complete 5-partite graphs and chromaticity of 5-partite graphs with 5n + 2 vertices, Far East J. Math. Sci. (FJMS) 43 (2010), no. 1, 59-72.
- [14] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, On chromatic uniqueness of certain 5-partite graphs, J. Appl. Math. Comput. 35 (2011), no. 1-2, 507-516.
- [15] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, Chromaticity of complete 6-partite graphs with certain star and matching deleted, Technical Report, Universiti Sains Malaysia, 2010.
- [16] H. Zhao, R. Liu and S. Zhang, Classification of complete 5-partite graphs and chromaticity of 5-partite graphs with 5n vertices, Appl. Math. J. Chinese Univ. Ser. B 19 (2004), no. 1, 116 - 124.
- [17] H. X. Zhao, Chromaticity of 5-partite graphs with 5n + 4 vertices, J. Lanzhou Univ. Nat. Sci. 40 (2004), no. 3, 12-16.

[18] H. X. Zhao, Chromaticity and adjoint polynomials of graphs, Ph.D. Thesis, University of Twente, Netherland, 2005.