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Abstract. Let P (G,λ) be the chromatic polynomial of a graph G. Two
graphs G and H are said to be chromatically equivalent, denoted G ∼ H,

if P (G,λ) = P (H,λ). We write [G] = {H|H ∼ G}. If [G] = {G}, then G
is said to be chromatically unique. In this paper, we first characterize cer-

tain complete 6-partite graphs with 6n vertices according to the number of

7-independent partitions of G. Using these results, we investigate the chro-
maticity of G with certain star or matching deleted. As a by-product, many

new families of chromatically unique complete 6-partite graphs with certain star

or matching deleted are obtained.
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1. Introduction

All graphs considered here are simple and finite. For a graph G, let P (G,λ) be
the chromatic polynomial of G. Two graphs G and H are said to be chromatically
equivalent (or simply χ-equivalent), symbolically G ∼ H, if P (G, l) = P (H, l). The
equivalence class determined by G under ∼ is denoted by [G]. A graph G is chro-
matically unique (or simply χ-unique) if H ∼= G whenever H ∼ G, i.e, [G] = {G} up
to isomorphism. For a set G of graphs, if [G] ⊆ G for every G ∈ G, then G is said to
be χ-closed. Many families of χ-unique graphs are known (see [6, 7, 8]).

For a graph G, let V (G), E(G) and t(G) be the vertex set, edge set and number
of triangles in G, respectively. Let S be a set of s edges in G. Let G− S (or G− s)
be the graph obtained from G by deleting all edges in S, and by 〈S〉 the graph
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induced by S. Let K(n1, n2, · · · , nt) be a complete t-partite graph. We denote by
K−s(n1, n2, · · · , nt) the family of graphs which are obtained from K(n1, n2, · · · , nt)
by deleting a set S of some s edges.

In [4, 5, 7–10, 12–18], one can find many results on the chromatic uniqueness of
certain families of complete t-partite graphs (t = 2, 3, 4, 5). However, there are very
few 6-partite graphs known to be χ-unique, see [3].

In [3], Chen obtained many families of χ-unique graphs which are obtained by
deleting the edges of a star or matching from a complete 6-partite graph with 6n+5
vertices. A natural extension is to study the chromaticity of the graphs obtained by
deleting the edges of a star or matching from a complete partite graph with 6n+ i
vertices, where 0 ≤ i ≤ 4. Thus, the aim of this paper is to study the chromaticity
of the graphs which are obtained by deleting the edges of a star or matching from a
complete 6-partite graph with 6n vertices.

Let G be a complete 6-partite graph with 6n vertices. In this paper, we charac-
terize certain complete 6-partite graphs with 6n vertices according to the number of
7-independent partitions of G. Using these results, we investigate the chromaticity
of G with certain star or matching deleted. As a by-product, many new families
of chromatically unique complete 6-partite graphs with certain star or matching
deleted are obtained.

2. Some lemmas and notations

For a graph G and a positive integer r, a partition {A1, A2, · · · , Ar} of V (G), where
r is a positive integer, is called an r-independent partition of G if every Ai is an
independent set of G. Let α(G, r) denote the number of r-independent partitions of
G. Then, we have P (G,λ) =

∑p
r=1 α(G, r)(λ)r, where (λ)r = λ(λ−1)(λ−2) · · · (λ−

r + 1) (see [11]). Therefore, α(G, r) = α(H, r) for each r = 1, 2, · · · , if G ∼ H.
For a graph G with p vertices, the polynomial σ(G, x) =

∑p
r=1 α(G, r)xr is called

the σ-polynomial of G (see [2]). Clearly, P (G,λ) = P (H,λ) implies that σ(G, x) =
σ(H,x) for any graphs G and H.

For disjoint graphs G and H, G∪H denotes the disjoint union of G and H. The
join of G and H denoted by G∨H is defined as follows: V (G∨H) = V (G)∪V (H);
E(G ∨ H) = E(G) ∪ E(H) ∪ {xy | x ∈ V (G), y ∈ V (H)}. For notations and
terminology not defined here, we refer [1].

Lemma 2.1. [2, 7] Let G and H be two disjoint graphs. Then

(1) |V (G)| = |V (H)|, |E(G)| = |E(H)|, t(G) = t(H) and α(G, r) = α(H, r) for
r = 1, 2, 3, · · · , p if G ∼ H;

(2) σ(G ∨H,x) = σ(G, x)σ(H,x).

Lemma 2.2. [2] Let G = K(n1, n2, n3, · · · , nt) and σ(G, x) =
∑

r≥1 α(G, r)xr.
Then α(G, r) = 0 for 1 ≤ r ≤ t− 1, α(G, t) = 1 and α(G, t+ 1) =

∑t
i=1 2ni−1 − t.

Let x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6 be positive integers and {xi1 , xi2 , xi3 , xi4 , xi5 , xi6}
= {x1, x2, x3, x4, x5, x6}. If there are two elements xi1 and xi2 in {x1, x2, x3, x4, x5, x6}
such that xi2 − xi1 ≥ 2, then H ′ = K(xi1 + 1, xi2 − 1, xi3 , xi4 , xi5 , xi6} is called an
improvement of H = K(x1, x2, x3, x4, x5, x6).
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Lemma 2.3. [3] Suppose x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6 and H ′ = K(xi1 + 1, xi2 −
1, xi3 , xi4 , xi5 , xi6} is an improvement of H = K(x1, x2, x3, x4, x5, x6). Then

α(H, 7)− α(H ′, 7) = 2xi2−2 − 2xi1−1 ≥ 2xi1−1.

Let G = K(n1, n2, n3, n4, n5, n6). For a graph H = G − S, where S is a set of
some s edges of G, define α′(H) = α(H, 7)− α(G, 7). Clearly, α′(H) ≥ 0.

Lemma 2.4. [3] Let G = K(n1, n2, n3, n4, n5, n6). Suppose that min{ni|i = 1, 2, 3, 4,
5, 6} ≥ s+ 1 ≥ 1 and H = G− S, where S is a set of some s edges of G. Then

s ≤ α′(H) = α(H, 7)− α(G, 7) ≤ 2s − 1,

α′(H) = s iff the set of end-vertices of any r ≥ 2 edges in S is not independent in
H, and α′(H) = 2s − 1 iff S induces a star K1,s and all vertices of K1,s other than
its center belong to a same Ai.

Let K(A1, A2) be a complete bipartite graph with partite sets A1 and A2. We
denote by K−K1,s(Ai, Aj) the graph obtained from K(Ai, Aj) by deleting s edges
that induce a star with its center in Ai. Note that K−K1,s(Ai, Aj) 6= K−K1,s(Aj , Ai)
if |Ai| 6= |Aj | for i 6= j (see [5]).

Lemma 2.5. [4] Let K(n1, n2) be a complete bipartite graph with partite sets A1 and
A2 such that |Ai| = ni for i = 1, 2. If min{n1, n2} ≥ s+2, then every K−K1,s(Ai, Aj)
is χ-unique, where i 6= j and i, j = 1, 2.

Let G = K(n1, n2, n3, n4, n5, n6) be a complete 6-partite graph with partite sets
Ai(i = 1, 2, · · · , 6) such that |Ai| = ni. Let 〈Ai ∪Aj〉 be the subgraph of G induced
by Ai ∪Aj , where i 6= j and i, j ∈ {1, 2, 3, 4, 5, 6}. By K−K1,s

i,j (n1, n2, n3, n4, n5, n6),
we denote the graph obtained from K(n1, n2, n3, n4, n5, n6) by deleting a set of s
edges that induce a K1,s with its center in Ai and all its end-vertices are in Aj . Note
that

K
−K1,s

i,l (n1, n2, n3, n4, n5, n6) = K
−K1,s

j,l (n1, n2, n3, n4, n5, n6)
and

K
−K1,s

l,i (n1, n2, n3, n4, n5, n6) = K
−K1,s

l,j (n1, n2, n3, n4, n5, n6)
for ni = nj and l 6= i, j.

Lemma 2.6. [3] If i, j ∈ {1, 2, 3, · · · , t}, i 6= j, ni 6= nj, then

P (K−K1,s

i,j (n1, n2, n3, · · · , nt), λ) 6= P (K−K1,s

j,i (n1, n2, n3, · · · , nt), λ).

3. Classification

In this section, we shall characterize certain complete 6-partite graphs G = K(n1, n2,
n3, n4, n5, n6) according to the number of 7-independent partitions of G where n1 +
n2 + n3 + n4 + n5 + n6 = 6n, n ≥ 1.

Theorem 3.1. Let G = K(n1, n2, n3, n4, n5, n6) be a complete 6-partite graph such
that n1 + n2 + n3 + n4 + n5 + n6 = 6n, n ≥ 1. Define

θ(G) = [α(G, 7)− 2n+1 − 2n + 6]/2n−2.

Then
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(i) θ(G) ≥ 0;
(ii) θ(G) = 0 if and only if G = K(n, n, n, n, n, n);
(iii) θ(G) = 1 if and only if G = K(n− 1, n, n, n, n, n+ 1);
(iv) θ(G) = 2 if and only if G = K(n− 1, n− 1, n, n, n+ 1, n+ 1);
(v) θ(G) = 5/2 if and only if G = K(n− 2, n, n, n, n+ 1, n+ 1);
(vi) θ(G) = 3 if and only if G = K(n− 1, n− 1, n− 1, n+ 1, n+ 1, n+ 1);

(vii) θ(G) = 7/2 if and only if G = K(n− 2, n− 1, n, n+ 1, n+ 1, n+ 1);
(viii) θ(G) = 4 if and only if G = K(n− 1, n− 1, n, n, n, n+ 2);

(ix) θ(G) = 17/4 if and only if G = K(n− 3, n, n, n+ 1, n+ 1, n+ 1);
(x) θ(G) ≥ 9/2 if and only if G is not one of the graphs appeared in (ii)–(ix).

Proof. For a complete 6-partite graph H1 with 6n vertices, we can construct a se-
quence of complete 6-partite graphs with 6n vertices, say H1, H2, · · · , Ht, such that
Hi is an improvement of Hi−1 for each i = 2, 3, · · · , t, and Ht = K(n, n, n, n, n, n).
By Lemma 2.3, α(Hi−1, 7) − α(Hi, 7) > 0. So θ(Hi−1) − θ(Hi) > 0, which im-
plies that θ(G) ≥ θ(Ht) = θ(K(n, n, n, n, n, n)). From Lemma 2.2 and by a simple
calculation, θ(K(n, n, n, n, n, n)) = 0. Thus, (ii) is true.

Since Ht = K(n, n, n, n, n, n) and Ht is an improvement of Ht−1, it is not hard
to see that Ht−1 must be K(n− 1, n, n, n, n, n+ 1). The proof of (iii) is complete.

Note that Ht−1 = K(n−1, n, n, n, n, n+1) is an improvement of Ht−2. Similarly,
it is not hard to see that Ht−2 ∈ {Ri|i = 1, 2, 3, 4}, where Ri and θ(Ri) are shown
in Table 1.

To complete the proof of the theorem, we need only determine all complete 6-
partite graphs G with 6n vertices such that θ(G) < 9/2. By Lemma 2.3, θ(Ht−3) >
9/2 for each Ht−3 if Ht−2 ∈ R4. All graphs Ht−3 and its θ-values are listed in Table
2 when Ht−2 ∈ {Ri|i = 1, 2, 3}.

Table 1. Ht−2 and its θ-values

Ri Graphs Ht−2 θ(Ri)

R1 K(n− 1, n− 1, n, n, n+ 1, n+ 1) 2
R2 K(n− 2, n, n, n, n+ 1, n+ 1) 5/2
R3 K(n− 1, n− 1, n, n, n, n+ 2) 4
R4 K(n− 2, n, n, n, n, n+ 2) 9/2

By Lemma 2.3, θ(Ht−4) > 9/2 for every Ht−4 if Ht−3 ∈ {Mi|4 ≤ i ≤ 8}. One
can easily obtain the following: If Ht−3 = M1, then Ht−4 ∈ {M2,M4,M12}; Ht−4 ∈
{M3,M5,M9,M10,M12,M13,M14} if Ht−3 = M2 and Ht−4 ∈ {M6,M10,M11,M14,
M15} if Ht−3 = M3, where M9 = K(n − 2, n − 2, n + 1, n + 1, n + 1, n + 1),M10 =
K(n− 3, n− 1, n+ 1, n+ 1, n+ 1, n+ 1), M11 = K(n− 4, n, n+ 1, n+ 1, n+ 1, n+ 1),
M12 = K(n−2, n−1, n−1, n+1, n+1, n+2), M13 = K(n−2, n−2, n, n+1, n+1, n+2),
M14 = K(n−3, n−1, n, n+1, n+1, n+2) and M15 = K(n−4, n, n, n+1, n+1, n+2).
From Lemma 2.2 and by a calculation, we have θ(Mi) ≥ 9/2 for 9 ≤ i ≤ 15. Hence,
from Lemma 2.3, Table 1, Table 2 and the above arguments, we conclude that the
theorem holds.
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Table 2. Ht−3 and its θ-values

Mi Graphs Ht−3 θ(Mi)

M1 K(n− 1, n− 1, n− 1, n+ 1, n+ 1, n+ 1) 3
M2 K(n− 2, n− 1, n, n+ 1, n+ 1, n+ 1) 7/2
M3 K(n− 3, n, n, n+ 1, n+ 1, n+ 1) 17/4
M4 K(n− 1, n− 1, n− 1, n, n+ 1, n+ 2) 5
M5 K(n− 2, n− 1, n, n, n+ 1, n+ 2) 11/2
M6 K(n− 3, n, n, n, n+ 1, n+ 2) 25/4
M7 K(n− 1, n− 1, n− 1, n, n, n+ 3) 11
M8 K(n− 2, n− 1, n, n, n, n+ 3) 23/2

4. Chromatically closed 6-partite graphs

In this section, we obtain several χ-closed families of graphsK−s(n1, n2, n3, n4, n5, n6).

Theorem 4.1. If n ≥ s + 2, then the family of graphs K−s(n, n, n, n, n, n) is χ-
closed.

Proof. Let G = K(n, n, n, n, n, n) and Z ∈ K−s(n, n, n, n, n, n). The 6-independent
partition of G is a 6-independent partition of Z. So α(Z, 6) ≥ α(G, 6) = 1. Let
H ∼ Z, then α(H, 6) = α(Z, 6) ≥ α(G, 6) = 1. Let {A1, A2, A3, A4, A5, A6} be a 6-
independent partition ofH, |Ai| = ti, i = 1, 2, 3, 4, 5, 6 and F = K(t1, t2, t3, t4, t5, t6).
Then, there exists S′ ∈ E(F ) such that H = F − S′. Let q(G) be the number of
edges in graph G. Since q(H) = q(Z), therefore s′ = |S′| = q(F )− q(G) + s.

From Lemma 2.4, we have

α(Z, 7) = α(G, 7) + α′(Z), s ≤ α′(Z) ≤ 2s − 1, and

α(H, 7) = α(F, 7) + α′(H), s′ ≤ α′(H).

Thus α(H, 7) − α(Z, 7) = α(F, 7) − α(G, 7) + α′(H) − α′(Z). Since H ∼ Z, then
α(Z, 7) = α(H, 7). So α(H, 7)− α(Z, 7) = 0.

Suppose F 6= G, we need to show that α(H, 7) ≥ α(Z, 7), this leads to a contra-
diction. Hence, the conclusion of the theorem.

Now, if F 6= G, from Theorem 3.1, we have θ(F )− θ(G) ≥ 1. So

α(F, 7)− α(G, 7) = (θ(F )− θ(G)) · 2n−2 ≥ 2n−2.

Hence

α(H, 7)− α(Z, 7) ≥ 2n−2 + α′(H)− α′(Z) ≥ 2n−2 + 0− (2s − 1) ≥ 1.

This is a contradiction. So F = G, s = s′. Thus, H ∈ K−s(n, n, n, n, n, n). There-
fore, K−s(n, n, n, n, n, n) is χ-closed if n ≥ s+ 2. The proof is now completed.

By using proofs similar to that of Theorem 4.1, we can obtain the following results.

Theorem 4.2. If n ≥ s + 3, then the family of graphs K−s(n − 1, n, n, n, n, n + 1)
is χ-closed.
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Theorem 4.3. If n ≥ s+3, then the family of graphs K−s(n−1, n−1, n, n, n+1, n+1)
is χ-closed.

Theorem 4.4. If n ≥ s+4, then the family of graphs K−s(n−2, n, n, n, n+1, n+1)
is χ-closed.

Theorem 4.5. If n ≥ s+ 4, then the family of graphs K−s(n− 1, n− 1, n− 1, n+
1, n+ 1, n+ 1) is χ-closed.

Theorem 4.6. If n ≥ s+ 5, then the family of graphs K−s(n−2, n−1, n, n+ 1, n+
1, n+ 1) is χ-closed.

Theorem 4.7. If n ≥ s+4, then the family of graphs K−s(n−1, n−1, n, n, n, n+2)
is χ-closed.

Theorem 4.8. If n ≥ s+7, then the family of graphs K−s(n−3, n, n, n+1, n+1, n+1)
is χ-closed.

5. Chromatically unique 6-partite graphs

In this section, we first study the chromatically unique 6-partite graphs with 6n
vertices and a set S of s edges deleted where the deleted edges induce a star K1,s.

Theorem 5.1. If n ≥ s + 2, then the graphs K−K1,s

i,j (n, n, n, n, n, n) are χ-unique
for (i, j) = (1, 2).

Proof. Suppose thatH ∼ K−K1,s

1,2 (n, n, n, n, n, n). From Theorem 4.1, H ∈ K−s(n, n,
n, n, n, n, n). Note that α(H, 7) = α(K−K1,s

1,2 (n, n, n, n, n, n), 7) = α(K(n, n, n, n, n, n),
7) + 2s − 1. By Lemma 2.4, we have

H ∈ {K−K1,s

i,j (n, n, n, n, n, n)|i 6= j, i, j = 1, 2, 3, 4, 5, 6} = {K−K1,s

1,2 (n, n, n, n, n, n)}.
This completes the proof.

Theorem 5.2. If n ≥ s + 3, then the graphs K−K1,s

i,j (n − 1, n, n, n, n, n + 1) are
χ-unique for each (i, j) ∈ {(1, 2), (2, 1), (2, 6), (6, 2)}.

Proof. Let F ∈ {K−K1,s

i,j (n − 1, n, n, n, n, n + 1)|(i, j) = {(1, 2), (2, 1), (2, 6), (6, 2)}}
and H ∼ F . By Theorem 4.2, H ∈ K−s(n− 1, n, n, n, n, n+ 1). Since

α(H, 7) = α(F, 7) = α(K(n− 1, n, n, n, n, n+ 1), 7) + 2s − 1,

from Lemma 2.4, we know that H ∈ {K−K1,s

i,j (n − 1, n, n, n, n, n + 1)|i 6= j, i, j =

1, 2, 3, 4, 5, 6}. It is easy to see that H ∈ {K−K1,s

i,j (n−1, n, n, n, n, n+1)|i 6= j, i, j =

1, 2, 3, 4, 5, 6} = {K−K1,s

i,j (n − 1, n, n, n, n, n + 1)|(i, j) ∈ {(1, 2), (2, 1), (1, 6), (6, 1),
(2, 3), (2, 6), (6, 2)}}.

Now let’s determine the number of triangles in H and F . Let t(G) be the number
of triangles in the graphs G. Then we obtain that t(K−K1,s

i,j (n−1, n, n, n, n, n+1)) =

t(K(n − 1, n, n, n, n, n + 1)) − s(4n + 1) for (i, j) ∈ {(1, 2), (2, 1)}, t(K−K1,s

i,j (n −
1, n, n, n, n, n+1)) = t(K(n−1, n, n, n, n, n+1))−4sn for (i, j) ∈ {(1, 6), (6, 1), (2, 3)},
t(K−K1,s

i,j (n − 1, n, n, n, n, n + 1)) = t(K(n − 1, n, n, n, n, n + 1)) − s(4n − 1) for
(i, j) ∈ {(2, 6), (6, 2)}.
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Recalling

F ∈ {K−K1,s

i,j (n− 1, n, n, n, n, n+ 1)|(i, j) ∈ {(1, 2), (2, 1), (2, 6), (6, 2)}}

and t(H) = t(F ), thus we have

H,F ∈ {K−K1,s

i,j (n− 1, n, n, n, n, n+ 1)|(i, j) ∈ {(1, 2), (2, 1)}}
or

H,F ∈ {K−K1,s

i,j (n− 1, n, n, n, n, n+ 1)|(i, j) ∈ {(2, 6), (6, 2)}}.
It follows from Lemma 2.6 that

P (K−K1,s

1,2 (n− 1, n, n, n, n, n+ 1), λ) 6= P (K−K1,s

2,1 (n− 1, n, n, n, n, n+ 1), λ);

P (K−K1,s

2,6 (n− 1, n, n, n, n, n+ 1), λ) 6= P (K−K1,s

6,2 (n− 1, n, n, n, n, n+ 1), λ).

Hence, by Lemma 2.1, we conclude that the graphs K−K1,s

i,j (n−1, n, n, n, n, n+1)
are χ-unique where n ≥ s+ 3 for each (i, j) ∈ {(1, 2), (2, 1), (2, 6), (6, 2)}.

Similar to the proof of Theorem 5.2, we can prove Theorems 5.3 and 5.4.

Theorem 5.3. If n ≥ s+ 3, then the graphs K−K1,s

i,j (n− 1, n− 1, n, n, n+ 1, n+ 1)
are χ-unique for each (i, j) ∈ {(1, 2), (1, 3), (3, 1), (3, 5), (5, 3), (5, 6)}.

Theorem 5.4. If n ≥ s+5, then the graphs K−K1,s

i,j (n−2, n−1, n, n+1, n+1, n+1)
are χ-unique for each (i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2), (3, 4), (4, 3), (4, 5)}.

Theorem 5.5. If n ≥ s+ 4, then the graphs K−K1,s

i,j (n− 2, n, n, n, n+ 1, n+ 1) are
χ-unique for each (i, j) ∈ {(1, 2), (2, 1), (1, 5), (5, 1), (2, 3), (2, 5), (5, 2), (5, 6)}.

Proof. From Theorem 4.4, we know that K−s(n − 2, n, n, n, n + 1, n + 1) is χ-
closed if n ≥ s + 4. Comparing the number of 7-independent partitions of the
graphs in K−s(n − 2, n, n, n, n + 1, n + 1) and by using Lemma 2.4, we have that
K
−K1,s

i,j (n − 2, n, n, n, n + 1, n + 1) = {K−K1,s

i,j (n − 2, n, n, n, n + 1, n + 1)|(i, j) ∈
{(1, 2), (2, 1), (1, 5), (5, 1), (2, 3), (2, 5), (5, 2), (5, 6)} is χ-closed.

Note that t(K−K1,s

i,j (n−2, n, n, n, n+1, n+1)) = t(K(n−2, n, n, n, n+1, n+1))−
s(4n+ 2) for (i, j) ∈ {(1, 2), (2, 1)}, t(K−K1,s

i,j (n− 2, n, n, n, n+ 1, n+ 1)) = t(K(n−
2, n, n, n, n+1, n+1))−s(4n+1) for (i, j) ∈ {(1, 5), (5, 1)}, t(K−K1,s

i,j (n−2, n, n, n, n+
1, n + 1)) = t(K(n − 2, n, n, n, n + 1, n + 1)) − s(4n − 1) for (i, j) ∈ {(2, 5), (5, 2)},
t(K−K1,s

2,3 (n − 2, n, n, n, n + 1, n + 1)) = t(K(n − 2, n, n, n, n + 1, n + 1)) − 4sn,
t(K−K1,s

5,6 (n− 2, n, n, n, n+ 1, n+ 1)) = t(K(n− 2, n, n, n, n+ 1, n+ 1))− s(4n− 2).
It follows from Lemma 2.6 that

P (K−K1,s

1,2 (n− 2, n, n, n, n+ 1, n+ 1), λ) 6= P (K−K1,s

2,1 (n− 2, n, n, n, n+ 1, n+ 1), λ);

P (K−K1,s

1,5 (n− 2, n, n, n, n+ 1, n+ 1), λ) 6= P (K−K1,s

5,1 (n− 2, n, n, n, n+ 1, n+ 1), λ);

P (K−K1,s

2,5 (n− 2, n, n, n, n+ 1, n+ 1), λ) 6= P (K−K1,s

5,2 (n− 2, n, n, n, n+ 1, n+ 1), λ).

Hence, by Lemma 2.1, we can conclude that the graphs K−K1,s

i,j (n− 2, n, n, n, n+
1, n+1) are χ-unique where n ≥ s+4 for each (i, j) ∈ {(1, 2), (2, 1), (1, 5), (5, 1), (2, 3),
(2, 5), (5, 2), (5, 6)}.
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Similar to the proof of Theorem 5.5, we can prove Theorems 5.6, 5.7 and 5.8.

Theorem 5.6. If n ≥ s+4, then the graphs K−K1,s

i,j (n−1, n−1, n−1, n+1, n+1, n+1)
are χ-unique for each (i, j) ∈ {(1, 2), (1, 4), (4, 1), (4, 5)}.

Theorem 5.7. If n ≥ s+ 4, then the graphs K−K1,s

i,j (n− 1, n− 1, n, n, n, n+ 2) are
χ-unique for each (i, j) ∈ {(1, 2), (1, 3), (3, 1), (1, 6), (6, 1), (3, 4), (3, 6), (6, 3)}.

Theorem 5.8. If n ≥ s+ 7, then the graphs K−K1,s

i,j (n− 3, n, n, n+ 1, n+ 1, n+ 1)
are χ-unique for each (i, j) ∈ {(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (2, 4), (4, 2), (4, 5)}.

Let K−sK2
i,j (n1, n2, n3, n4, n5, n6) denote the graph obtained from K(n1, n2, n3, n4,

n5, n6) by deleting a set of s edges that forms a matching in 〈Ai ∪ Aj〉. We now
investigate the chromatically unique 6-partite graphs with 6n vertices and a set S
of s edges deleted where the deleted edges induce a matching sK2.

Theorem 5.9. If n ≥ s+ 3, then the graphs K−sK2
1,2 (n− 1, n− 1, n, n, n+ 1, n+ 1)

are χ-unique.

Proof. Let F ∼ K−sK2
1,2 (n− 1, n− 1, n, n, n+ 1, n+ 1). It is sufficient to prove that

F = K−sK2
1,2 (n − 1, n − 1, n, n, n + 1, n + 1). By Theorem 4.3 and Lemma 2.4, we

have F ∈ K−s(n− 1, n− 1, n, n, n+ 1, n+ 1) and α′(F ) = s. Let F = G− S where
G = K(n− 1, n− 1, n, n, n+ 1, n+ 1). Next we consider the number of triangles in
F . Let ei ∈ S and t(ei) be the number of triangles in G containing the edge ei. It
is easy to see that t(ei) ≤ 4n + 2. As n − 1 ≤ n − 1 < n ≤ n ≤ n + 1 ≤ n + 1, we
know that t(ei) = 4n+ 2 if and only if ei is an edge in the subgraph 〈A1 ∪A2〉 in G.
So we have

t(F ) ≥ t(G)−
s∑

i=1

t(ei) ≥ t(G)− s(4n+ 2);

and the equality holds if and only if each edge ei in S is an edge of the subgraph
〈A1 ∪A2〉 in G.

Note that t(F ) = t(G)− s(4n+ 2) and α′(F ) = s. By Lemma 2.4, we know that
F = K−sK2

1,2 (n− 1, n− 1, n, n, n+ 1, n+ 1). This completes the proof.
Similar to the proof of Theorem 5.9, we can prove Theorems 5.10 and 5.11.

Theorem 5.10. If n ≥ s+5, then the graphs K−sK2
1,2 (n−2, n−1, n, n+1, n+1, n+1)

are χ-unique.

Theorem 5.11. If n ≥ s+ 4, then the graphs K−sK2
1,2 (n− 1, n− 1, n, n, n, n+ 2) are

χ-unique.

We end this paper with the following open problems:
(1) Study the chromaticity of the following graphs:

(i) K
−K1,s

i,j (n−1, n, n, n, n, n+1) where n ≥ s+3 for each (i, j) ∈ {(1, 6), (6, 1),
(2, 3)},

(ii) K
−K1,s

i,j (n− 1, n− 1, n, n, n+ 1, n+ 1) where n ≥ s+ 3 for each (i, j) ∈
{(1, 5), (5, 1), (3, 4)} and

(iii) K
−K1,s

i,j (n − 2, n − 1, n, n + 1, n + 1, n + 1) where n ≥ s + 5 for each
(i, j) ∈ {(1, 4), (4, 1), (2, 3), (3, 2)}.
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(2) Study the chromaticity of the following graphs:
(i) K−sK2

1,2 (n, n, n, n, n, n) where n ≥ s+ 2,
(ii) K−sK2

1,2 (n− 1, n, n, n, n, n+ 1) where n ≥ s+ 3,
(iii) K−sK2

1,2 (n− 2, n, n, n, n+ 1, n+ 1) where n ≥ s+ 4,
(iv) K−sK2

1,2 (n− 1, n− 1, n− 1, n+ 1, n+ 1, n+ 1) where n ≥ s+ 4 and
(v) K−sK2

1,2 (n− 3, n, n, n+ 1, n+ 1, n+ 1) where n ≥ s+ 7.

Remark 5.1. For the detail proofs of Theorems 4.2–4.8, 5.3, 5.4, 5.6–5.8, the reader
may refer to [15].
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