On Joint Distributions of Order Statistics from innid Variables

M. GÜNGÖR
Department of Econometrics, University of Inonu, 44280 Malatya, Turkey
mgungor44@gmail.com

Abstract

In this study, the joint distributions of order statistics of innid random variables are expressed. Then, some results connecting distributions of order statistics of innid random variables to that of order statistics of iid random variables are given.

2010 Mathematics Subject Classification: 62G30, 62E15
Keywords and phrases: Order statistics, permanent, joint distribution, iid random variable, innid random variable.

1. Introduction

Several identities and recurrence relations for probability density function ($p d f$) and distribution function $(d f)$ of order statistics of independent and identically distributed (iid) random variables were established by numerous authors including Arnold et al. [1], Balasubramanian and Beg [3], David [13], and Reiss [18]. Furthermore, Arnold et al. [1], David [13], Gan and Bain [14], and Khatri [17] obtained the probability function and $d f$ of order statistics of iid random variables from a discrete parent. Corley [11] defined a multivariate generalization of classical order statistics for random samples from a continuous multivariate distribution. Expressions for generalized joint densities of order statistics of iid random variables in terms of Radon-Nikodym derivatives with respect to product measures based on $d f$ were derived by Goldie and Maller [15]. Guilbaud [16] expressed the probability of the functions of independent but not necessarily identically distributed (innid) random vectors as a linear combination of probabilities of the functions of iid random vectors and thus also for order statistics of random variables.

Recurrence relationships among the distribution functions of order statistics arising from innid random variables were obtained by Cao and West [9]. In addition, Vaughan and Venables [19] derived the joint $p d f$ and marginal $p d f$ of order statistics of innid random variables by means of permanents. Balakrishnan [2], and

[^0]Bapat and Beg [7] obtained the joint pdf and $d f$ of order statistics of innid random variables by means of permanents. Using multinomial arguments, the pdf of $X_{r: n+1}(1 \leq r \leq n+1)$ was obtained by Childs and Balakrishnan [10] by adding another independent random variable to the original n variables $X_{1}, X_{2}, \ldots, X_{n}$. Also, Balasubramanian et al. [6] established the identities satisfied by distributions of order statistics from non-independent non-identical variables through operator methods based on the difference and differential operators. In a paper published in 1991, Beg [8] obtained several recurrence relations and identities for product moments of order statistics of innid random variables using permanents. Recently, Cramer et al. [12] derived the expressions for the distribution and density functions by Ryser's method and the distribution of maxima and minima based on permanents. In the first of two papers, Balasubramanian et al. [4] obtained the distribution of single order statistic in terms of distribution functions of the minimum and maximum order statistics of some subsets of $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ where X_{i} 's are innid random variables. Later, Balasubramanian et al. [5] generalized their previous results [4] to the case of the joint distribution function of several order statistics.

In general, the distribution theory for order statistics is complicated when the random variables are innid. In this study, the explicit expressions for the joint $d f$ and $p d f$ of order statistics of innid random variables are obtained.

From now on, the subscripts and superscripts are defined in the first place in which they are used and these definitions will be valid unless they are redefined.

If $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$ are defined as column vectors, then the matrix obtained by taking m_{1} copies of a_{1}, m_{2} copies of a_{2}, \ldots can be denoted as

$$
\left[\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{2} \ldots
\end{array}\right]
$$

and per A denotes the permanent of a square matrix A, which is defined as similar to determinants except that all terms in the expansion have a positive sign.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be innid continuous random variables and $X_{1: n} \leq X_{2: n} \leq \ldots \leq$ $X_{n: n}$ be the order statistics obtained by arranging the $n X_{i}$'s in increasing order of magnitude.

Let F_{i} and f_{i} be $d f$ and $p d f$ of $X_{i}(i=1,2, \ldots, n)$, respectively. Moreover, $X_{1: n}^{s}, X_{2: n}^{s}, \ldots, X_{n: n}^{s}$ are order statistics of iid random variables with $d f F^{s}$ and $p d f f^{s}$, respectively, defined by

$$
\begin{equation*}
F^{s}=\frac{1}{n_{s}} \sum_{i \in s} F_{i} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{s}=\frac{1}{n_{s}} \sum_{i \in s} f_{i} \tag{1.2}
\end{equation*}
$$

Here, s is a non-empty subset of the integers $\{1,2, \ldots, n\}$ with $n_{s} \geq 1$ elements. $\mathrm{A}[s /$.$) is the matrix obtained from A by taking rows whose indices are in s$.

The $d f$ and $p d f$ of $X_{r_{1}: n}, X_{r_{2}: n}, \ldots, X_{r_{d}: n}\left(1 \leq r_{1}<r_{2}<\ldots<r_{d} \leq n, d=\right.$ $1,2, \ldots, n)$ will then be given. For notational convenience we write

$$
\sum \sum, \sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n, \ldots, m_{3}, m_{2}}, \sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots, m_{3}, m_{2}} \text { and } \sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots, r_{3}-1, r_{2}-1}
$$

instead of
$\sum_{\kappa=1}^{n}(-1)^{n-\kappa} \frac{\kappa^{n}}{n!} \sum_{n_{s}=\kappa}, \sum_{m_{d}=r_{d}}^{n} \ldots \sum_{m_{2}=r_{2}}^{m_{3}} \sum_{m_{1}=r_{1}}^{m_{2}}, \sum_{t_{d}=m_{d}}^{n} \ldots \sum_{t_{2}=m_{2}}^{m_{3}} \sum_{t_{1}=m_{1}}^{m_{2}}$ and $\sum_{t_{d}=r_{d}}^{n} \ldots \sum_{t_{2}=r_{2}}^{r_{3}-1} \sum_{t_{1}=r_{1}}^{r_{2}-1}$ in the expressions below, respectively.

2. Theorems for distribution and probability density function

In this section, the theorems related to $d f$ and $p d f$ of $X_{r_{1}: n}, X_{r_{2}: n}, \ldots, X_{r_{d}: n}$ are given. The theorems connect the $d f$ and pdf of order statistics of innid random variables to that of order statistics of iid random variables using (1.1) and (1.2).

Theorem 2.1.

$$
\begin{align*}
& F_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
& =\sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n_{1}, \ldots, m_{3}, m_{2}} C \sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots, m_{3}, m_{2}}(-1)^{\sum_{w=1}^{d}\left(m_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}-m_{w}}\right) \\
& \left.\quad \cdot \sum_{n_{s}=n-t_{d}+m_{d}}\left(t_{d}-m_{d}\right)!\sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}} \prod_{w=1}^{d} \operatorname{per} \sum_{m_{w+1}-m_{w-1}-t_{w}+t_{w-1}}^{\mathrm{F}\left(x_{w}\right)}\right]\left[s_{w} / .\right), \tag{2.1}\\
& x_{1}<x_{2}<\ldots<x_{d},
\end{align*}
$$

where $\mathrm{F}\left(x_{w}\right)=\left(F_{1}\left(x_{w}\right), F_{2}\left(x_{w}\right), \ldots, F_{n}\left(x_{w}\right)\right)^{\prime}$ is column vector, $x_{w} \in R, C=\left[\prod_{w=1}^{d+1}\right.$ $\left.\left(m_{w}-m_{w-1}\right)!\right]^{-1}, m_{0}=0, m_{d+1}=n, \sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}}$ denotes the sum over $\bigcup_{w=1}^{d-1} s_{w}$ for which $s_{v} \bigcap s_{\nu}=\phi$ for $v \neq \nu, s=\bigcup_{w=1}^{d} s_{w}, n_{s_{w}}=m_{w+1}-m_{w-1}-$ $t_{w}+t_{w-1}$ and $t_{0}=m_{1}$.

Proof. It can be written

$$
\begin{equation*}
F_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=P\left\{X_{r_{1}: n} \leq x_{1}, X_{r_{2}: n} \leq x_{2}, \ldots, X_{r_{d}: n} \leq x_{d}\right\} \tag{2.2}
\end{equation*}
$$

(2.2) can be expressed as

$$
\begin{equation*}
F_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n, \ldots, m_{3}, m_{2}} C \text { per A } \tag{2.3}
\end{equation*}
$$

where

$$
\mathrm{A}=\left[\begin{array}{cccc}
\mathrm{F}\left(x_{1}\right) & \mathrm{F}\left(x_{2}\right)-\mathrm{F}\left(x_{1}\right) & \ldots & 1-\mathrm{F}\left(x_{d}\right) \\
m_{1}-m_{1} & \\
n-m_{d}
\end{array}\right]
$$

is matrix.
$\mathrm{F}\left(x_{w}\right)-\mathrm{F}\left(x_{w-1}\right)=\left(F_{1}\left(x_{w}\right)-F_{1}\left(x_{w-1}\right), F_{2}\left(x_{w}\right)-F_{2}\left(x_{w-1}\right), \ldots, F_{n}\left(x_{w}\right)-F_{n}\left(x_{w-1}\right)\right)^{\prime}$
$(w=1,2, \ldots, d+1), F_{i}\left(x_{0}\right)=0$ and $F_{i}\left(x_{d+1}\right)=1$.

Using properties of permanent, we can write

$$
\begin{align*}
& \operatorname{per} \mathrm{A}=\underset{m_{1}}{\operatorname{per}\left[\mathrm{~F}\left(x_{1}\right)\right.} \underset{m_{2}-m_{1}}{\mathrm{~F}\left(x_{2}\right)-\mathrm{F}\left(x_{1}\right)} \underset{m_{3}-m_{2}}{\mathrm{~F}\left(x_{3}\right)-\mathrm{F}\left(x_{2}\right)} \ldots \underset{m_{d}-m_{d-1}}{\mathrm{~F}\left(x_{d}\right)-\mathrm{F}\left(x_{d-1}\right)} \underset{n-m_{d}}{\left.1-\mathrm{F}\left(x_{d}\right)\right]} \\
& =\sum_{t_{d}=0}^{n-m_{d}}(-1)^{n-m_{d}-t_{d}}\binom{n-m_{d}}{t_{d}} \ldots \sum_{t_{2}=0}^{m_{3}-m_{2}}(-1)^{m_{3}-m_{2}-t_{2}}\binom{m_{3}-m_{2}}{t_{2}} \\
& \cdot \sum_{t_{1}=0}^{m_{2}-m_{1}}(-1)^{m_{2}-m_{1}-t_{1}}\binom{m_{2}-m_{1}}{t_{1}} \\
& \cdot \operatorname{per}\left[\begin{array}{llll}
\mathrm{F}\left(x_{1}\right) & \mathrm{F}\left(x_{2}\right) & \cdots & \underset{m_{2}-t_{1}}{ } \\
m_{3}-m_{2}-t_{2}+t_{1}
\end{array} \quad \underset{t_{d}}{\mathrm{~F}} \quad \underset{n-m_{d}-t_{d}+t_{d-1}}{\left.\mathrm{~F}\left(x_{d}\right)\right]}\right. \\
& =\sum_{t_{d}=0}^{n-m_{d}} \cdots \sum_{t_{2}=0}^{m_{3}-m_{2}} \sum_{t_{1}=0}^{m_{2}-m_{1}}(-1)^{n-m_{1}-\sum_{w=1}^{d} t_{w}}\left(\prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}}\right) \sum_{n_{s}=n-t_{d}} t_{d}! \\
& \cdot \operatorname{per}\left[\begin{array}{lll}
\mathrm{F}\left(x_{1}\right) & \underset{m_{2}-t_{1}}{ } & \mathrm{~m}\left(x_{3}-m_{2}-t_{2}+t_{1}\right.
\end{array} \cdots \underset{n-m_{d}-t_{d}+t_{d-1}}{\mathrm{~F}\left(x_{d}\right)}\right][s / .) \\
& =\sum_{t_{d}=m_{d}}^{n} \ldots \sum_{t_{2}=m_{2}}^{m_{3}} \sum_{t_{1}=m_{1}}^{m_{2}}(-1)^{\sum_{w=1}^{d}\left(m_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}-m_{w}}\right) \\
& \cdot \sum_{n_{s}=n-t_{d}+m_{d}}\left(t_{d}-m_{d}\right)!\operatorname{per}\left[\underset{m_{2}-t_{1}+m_{1}}{\mathrm{~F}\left(x_{1}\right)} \underset{m_{3}-m_{1}-t_{2}+t_{1}}{\mathrm{~F}\left(x_{2}\right)} \quad \cdots{\underset{n-m_{d}-t_{d}+t_{d-1}}{\mathrm{~F}\left(x_{d}\right)}}^{\mathrm{F}}[\mathrm{~s} / .)\right. \\
& =\sum_{t_{d}=m_{d}}^{n} \ldots \sum_{t_{2}=m_{2}}^{m_{3}} \sum_{t_{1}=m_{1}}^{m_{2}}(-1)^{\sum_{w=1}^{d}\left(m_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}-m_{w}}\right) \\
& \text { • } \sum_{n_{s}=n-t_{d}+m_{d}}\left(t_{d}-m_{d}\right)!\sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}} \\
& \cdot \operatorname{per}\left[\underset{m_{2}-t_{1}+m_{1}}{\mathrm{~F}\left(x_{1}\right)}\right]\left[s_{1} / .\right) \operatorname{per}\left[\underset{m_{3}-m_{1}-t_{2}+t_{1}}{\mathrm{~F}\left(x_{2}\right)}\right]\left[s_{2} / .\right) \ldots \operatorname{per}\left[\underset{n-m_{d-1}-t_{d}+t_{d-1}}{\mathrm{~F}\left(x_{d}\right)}\right]\left[s_{d} / .\right) \\
& =\sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots, m_{3}, m_{2}}(-1)^{\sum_{w=1}^{d}\left(m_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}-m_{w}}\right) \sum_{n_{s}=n-t_{d}+m_{d}}\left(t_{d}-m_{d}\right)! \\
& \cdot \sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}} \prod_{w=1}^{d} \operatorname{per}[\underbrace{\mathrm{~F}\left(x_{w}\right)}_{m_{w+1}-m_{w-1}-t_{w}+t_{w-1}}]\left[s_{w} / .\right), \tag{2.4}
\end{align*}
$$

where $1=(1,1, \ldots, 1)^{\prime}$. Using (2.4) in (2.3), (2.1) is obtained.

Theorem 2.2.

$$
\begin{align*}
& F_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
& =\sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n, \ldots, m_{3}, m_{2}} C \sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots, m_{3}, m_{2}}(-1)^{\sum_{w=1}^{d}\left(m_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}-m_{w}}\right) \\
& \quad \cdot \sum_{n_{s}=n-t_{d}+m_{d}}\left(t_{d}-m_{d}\right)!\sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}} \prod_{w=1}^{d} n_{s_{w}}!\prod_{l=1}^{n_{s}} F_{s_{w}^{l}}\left(x_{w}\right), \tag{2.5}
\end{align*}
$$

where $s_{w}=\left\{s_{w}^{1}, s_{w}^{2}, \ldots, s_{w}^{n_{s w}}\right\}$.
Proof. Omitted.

Theorem 2.3.

$$
\begin{aligned}
& F_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
& =\sum \sum \sum_{m_{d}, \ldots, m_{2}, m_{1}}^{n, \ldots, m_{3}, m_{2}} n!C
\end{aligned}
$$

$$
\begin{equation*}
\sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots, m_{3}, m_{2}}(-1)^{\sum_{w=1}^{d}\left(m_{w+1}-t_{w}\right)} \prod_{w=1}^{d}\binom{m_{w+1}-m_{w}}{t_{w}-m_{w}}\left[F^{s}\left(x_{w}\right)\right]^{m_{w+1}-m_{w-1}-t_{w}+t_{w-1}} \tag{2.6}
\end{equation*}
$$

Proof. (2.2) can be expressed as

$$
\begin{align*}
& F_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
& =\sum \sum P\left\{X_{r_{1}: n}^{s} \leq x_{1}, X_{r_{2}: n}^{s} \leq x_{2}, \ldots, X_{r_{d}: n}^{s} \leq x_{d}\right\} \tag{2.7}
\end{align*}
$$

is immediate from (2.1) and (2.7). Thus, (2.6) is obtained.
Theorem 2.4.

$$
\begin{align*}
& f_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
& \left.=D \sum_{n_{s}, \ldots, r_{3}-1, r_{2}-1}^{n+1)^{-d+\sum_{w=1}^{d}\left(r_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}-r_{w}}\right)} \begin{array}{l}
\sum_{n_{d}, \ldots, t_{2}, r_{1}}^{n}\left(-t_{d}\right.
\end{array} t_{d}-r_{d}\right)!\sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}}
\end{align*}
$$

where $\mathrm{f}\left(x_{w}\right)=\left(f_{1}\left(x_{w}\right), f_{2}\left(x_{w}\right), \ldots, f_{n}\left(x_{w}\right)\right)^{\prime}, D=\left[\prod_{w=1}^{d+1}\left(r_{w}-r_{w-1}-1\right)!\right]^{-1}, r_{0}=$ $0, r_{d+1}=n+1, s=\bigcup_{w=1}^{d} s_{w}, s_{v} \bigcap s_{\nu}=\phi$ for $v \neq \nu, s_{w}=\varsigma_{w} \bigcup \varsigma_{w}^{\prime}, \varsigma_{w} \bigcap \varsigma_{w}^{\prime}=\phi$, $n_{s_{w}}=r_{w+1}-r_{w-1}-t_{w}+t_{w-1}, t_{0}=r_{1}-1, n_{\varsigma w}=r_{w+1}-r_{w-1}-1-t_{w}+t_{w-1}$ and $n_{\varsigma_{w}^{\prime}}=1$.

Proof. Consider

$$
\begin{equation*}
P\left\{x_{1}<X_{r_{1}: n} \leq x_{1}+\delta x_{1}, x_{2}<X_{r_{2}: n} \leq x_{2}+\delta x_{2}, \ldots, x_{d}<X_{r_{d}: n} \leq x_{d}+\delta x_{d}\right\} . \tag{2.9}
\end{equation*}
$$

Dividing (2.9) by $\prod_{w=1}^{d} \delta x_{w}$ and then letting $\delta x_{1}, \delta x_{2}, \ldots, \delta x_{d}$ tend to zero, we obtain

$$
\begin{equation*}
f_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=D \text { per } \mathrm{B} \tag{2.10}
\end{equation*}
$$

where

$$
\left.\left.\mathrm{B}=\underset{r_{1}-1}{\mathrm{~F}\left(x_{1}\right)} \underset{1}{\mathrm{f}} \underset{1}{x_{1}}\right) \underset{r_{2}-r_{1}-1}{\mathrm{~F}\left(x_{2}\right)-\mathrm{F}\left(x_{1}\right)} \underset{1}{\mathrm{f}\left(x_{2}\right)} \ldots \underset{1}{\mathrm{f}}\left(x_{d}\right) \underset{n-r_{d}}{1-\mathrm{F}\left(x_{d}\right)}\right]
$$

is matrix. Using properties of permanent, we can write

$$
\operatorname{per} \mathrm{B}=\underset{r_{1}-1}{\operatorname{per}}\left[\underset{1}{\mathrm{~F}\left(x_{1}\right)} \underset{r_{2}-r_{1}-1}{\mathrm{f}}\left(x_{1}\right) \underset{1}{\mathrm{~F}\left(x_{2}\right)-\mathrm{F}\left(x_{1}\right)} \underset{r_{1}}{\mathrm{f}\left(x_{2}\right)} \ldots \underset{n-r_{d}}{\mathrm{f}\left(x_{d}\right)} \underset{\substack{1-\mathrm{F}\left(x_{d}\right)}}{1}\right]
$$

$$
\begin{aligned}
& =\sum_{t_{d}=0}^{n-r_{d}}(-1)^{n-r_{d}-t_{d}}\binom{n-r_{d}}{t_{d}} \ldots \sum_{t_{2}=0}^{r_{3}-r_{2}-1}(-1)^{r_{3}-r_{2}-1-t_{2}}\binom{r_{3}-r_{2}-1}{t_{2}} \\
& \cdot \sum_{t_{1}=0}^{r_{2}-r_{1}-1}(-1)^{r_{2}-r_{1}-1-t_{1}}\binom{r_{2}-r_{1}-1}{t_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{t_{d}=0}^{n-r_{d}} \cdots \sum_{t_{2}=0}^{r_{3}-r_{2}-1} \sum_{t_{1}=0}^{r_{2}-r_{1}-1}(-1)^{n+1-r_{1}-d-\sum_{w=1}^{d} t_{w}}\left(\prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}}\right) \\
& \cdot \sum_{n_{s}=n-t_{d}} t_{d}!\operatorname{per}\left[\underset{r_{2}-2-t_{1}}{\mathrm{~F}\left(x_{1}\right)} \underset{r_{3}-r_{2}-1-t_{2}+t_{1}}{\mathrm{~F}\left(x_{2}\right)} \quad \cdots \underset{n-r_{d}-t_{d}+t_{d-1}}{\mathrm{~F}\left(x_{d}\right)} \quad \underset{1}{\mathrm{f}}\left(x_{1}\right) \mathrm{f}\left(x_{1}\right)\right. \\
& \text {... } \left.\mathrm{f}\left(x_{d}\right)\right][s / .) \\
& =\sum_{t_{d}=r_{d}}^{n} \ldots \sum_{t_{2}=r_{2}}^{r_{3}-1} \sum_{t_{1}=r_{1}}^{r_{2}-1}(-1)^{-d+\sum_{w=1}^{d}\left(r_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}-r_{w}}\right) \\
& \cdot \sum_{n_{s}=n+r_{d}-t_{d}}\left(t_{d}-r_{d}\right)!\operatorname{per}\left[\underset{r_{2}+r_{1}-2-t_{1}}{\mathrm{~F}\left(x_{1}\right)} \underset{r_{3}-r_{1}-1-t_{2}+t_{1}}{\mathrm{~F}\left(x_{2}\right)} \quad \cdots{\left.\underset{n-r_{d-1}-t_{d}+t_{d-1}}{\mathrm{~F}} x_{d}\right)}^{\text {m }}\right. \\
& \left.\mathrm{f}\left(x_{1}\right) \mathrm{f}\left(x_{2}\right) \quad \ldots \mathrm{f}\left(x_{d}\right)\right][s / .) \\
& =\sum_{t_{d}=r_{d}}^{n} \ldots \sum_{t_{2}=r_{2}}^{r_{3}-1} \sum_{t_{1}=r_{1}}^{r_{2}-1}(-1)^{-d+\sum_{w=1}^{d}\left(r_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}-r_{w}}\right) \\
& \text {. } \sum_{n_{s}=n+r_{d}-t_{d}}\left(t_{d}-r_{d}\right)! \\
& \cdot \sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}} \operatorname{per}\left[\underset{r_{2}+r_{1}-2-t_{1}}{\mathrm{~F}\left(x_{1}\right)} \underset{1}{\mathrm{f}}\left(x_{1}\right)\right]\left[s_{1} / .\right) \operatorname{per}\left[{\underset{r}{3}-r_{1}-1-t_{2}+t_{1}}_{\mathrm{F}\left(x_{2}\right)}^{\mathrm{f}}\left(x_{1}\right)\right]\left[s_{2} / .\right) \ldots \\
& \cdot \operatorname{per}\left[\underset{n-r_{d-1}-t_{d}+t_{d-1}}{\mathrm{~F}\left(x_{d}\right)} \mathrm{f}\left(x_{d}\right)\right]\left[s_{d} / .\right) \\
& =\sum_{t_{d}=r_{d}}^{n} \ldots \sum_{t_{2}=r_{2}}^{r_{3}-1} \sum_{t_{1}=r_{1}}^{r_{2}-1}(-1)^{-d+\sum_{w=1}^{d}\left(r_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}-r_{w}}\right) \\
& \text { - } \sum_{n_{s}=n+r_{d}-t_{d}}\left(t_{d}-r_{d}\right)! \\
& \cdot \sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}} \prod_{w=1}^{d} \operatorname{per}\left[{\underset{r}{r_{w+1}-r_{w-1}-1-t_{w}+t_{w-1}}}_{\mathrm{F}\left(x_{w}\right)}^{\left.\mathrm{f}\left(x_{w}\right)\right]\left[s_{w} / .\right)} 1\right. \\
& =\sum_{t_{d}=r_{d}}^{n} \ldots \sum_{t_{2}=r_{2}}^{r_{3}-1} \sum_{t_{1}=r_{1}}^{r_{2}-1}(-1)^{-d+\sum_{w=1}^{d}\left(r_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}-r_{w}}\right) \\
& \text {. } \sum_{n_{s}=n+r_{d}-t_{d}}\left(t_{d}-r_{d}\right)!
\end{aligned}
$$

$$
\begin{equation*}
\sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}} \prod_{w=1}^{d} \sum_{n_{\varsigma w}} \operatorname{per}\left[{ }_{r_{w+1}-r_{w-1}-1-t_{w}+t_{w-1}} \mathrm{~F}\left(x_{w}\right)\left[\varsigma_{w} / .\right) \operatorname{per}\left[\mathrm{f}\left(x_{w}\right)\right]\left[\varsigma_{w}^{\prime} / .\right) .\right. \tag{2.11}
\end{equation*}
$$

Using (2.11) in (2.10), (2.8) is obtained.

Theorem 2.5.

$$
\begin{aligned}
& f_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
& =D \sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots, r_{3}-1, r_{2}-1}(-1)^{-d+\sum_{w=1}^{d}\left(r_{w+1}-t_{w}\right)}\left(\prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}-r_{w}}\right)
\end{aligned}
$$

$$
\begin{equation*}
\cdot \sum_{n_{s}=n+r_{d}-t_{d}}\left(t_{d}-r_{d}\right)!\sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{d-1}}} \prod_{w=1}^{d} \sum_{n_{\varsigma_{w}}} n_{\varsigma_{w}}!\left(\prod_{l=1}^{n_{\varsigma_{w}}} F_{\varsigma_{w}^{l}}\left(x_{w}\right)\right) f_{\varsigma^{\prime} w}\left(x_{w}\right), \tag{2.12}
\end{equation*}
$$

where $\varsigma_{w}=\left\{\varsigma_{w}^{1}, \varsigma_{w}^{2}, \ldots, \varsigma_{w}^{n_{\varsigma w}}\right\}$ and $\varsigma^{\prime}{ }_{w}=\left\{\varsigma^{\prime}{ }_{w}^{w}\right\}$.
Proof. Omitted.
Theorem 2.6.

$$
\begin{align*}
& f_{r_{1}, r_{2}, \ldots, r_{d}: n}\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
& =\sum \sum n!D \sum_{t_{d}, \ldots, t_{2}, t_{1}}^{n, \ldots, r_{3}-1, r_{2}-1}(-1)^{-d+\sum_{w=1}^{d}\left(r_{w+1}-t_{w}\right)} \prod_{w=1}^{d}\binom{r_{w+1}-r_{w}-1}{t_{w}-r_{w}} \tag{2.13}
\end{align*}
$$

$$
\cdot\left[F^{s}\left(x_{w}\right)\right]^{r_{w+1}-r_{w-1}-1-t_{w}+t_{w-1}} f^{s}\left(x_{w}\right) .
$$

Proof. (2.9) can be expressed as

$$
\begin{align*}
& \sum \sum P\left\{x_{1}<X_{r_{1}: n}^{s} \leq x_{1}+\delta x_{1}, x_{2}<X_{r_{2}: n}^{s} \leq x_{2}+\delta x_{2}, \ldots, x_{d}\right. \\
& \left.<X_{r_{d}: n}^{s} \leq x_{d}+\delta x_{d}\right\} . \tag{2.14}
\end{align*}
$$

Dividing (2.14) by $\prod_{w=1}^{d} \delta x_{w}$ and then letting $\delta x_{1}, \delta x_{2}, \ldots, \delta x_{d}$ tend to zero, (2.13) is obtained.

3. Results for distribution and probability density function

In this section, the results related to $d f$ and $p d f$ of $X_{r_{1}: n}, X_{r_{2}: n}, \ldots, X_{r_{d}: n}$ are given. The results connect the $d f$ and $p d f$ of order statistics of innid random variables to that of order statistics of iid random variables.

Result 3.1.

$$
\begin{aligned}
F_{r: n}(x) & =\sum_{m=r}^{n} \frac{1}{m!(n-m)!} \sum_{t=m}^{n}(-1)^{n-t}\binom{n-m}{t-m} \sum_{n_{s}=n-t+m}(t-m)!\underset{n-t+m}{\operatorname{per}[\mathrm{~F}(x)][s / \cdot)} \\
& =\sum_{m=r}^{n} \frac{1}{m!(n-m)!} \sum_{t=m}^{n}(-1)^{n-t}\binom{n-m}{t-m} \sum_{n_{s}=n-t+m}(t-m)!(n-t+m)!
\end{aligned}
$$

$$
\begin{align*}
& \cdot \prod_{l=1}^{n-t+m} F_{s^{l}}(x) \\
= & \sum \sum \sum_{m=r}^{n}\binom{n}{m} \sum_{t=m}^{n}(-1)^{n-t}\binom{n-m}{t-m}\left[F^{s}(x)\right]^{n-t+m} . \tag{3.1}
\end{align*}
$$

Proof. If $d=1$ in (2.1), (2.5) and (2.6), (3.1) is obtained.

Result 3.2.

$$
\begin{align*}
F_{1: n}(x) & =1-\frac{1}{n!} \sum_{t=0}^{n}(-1)^{n-t}\binom{n}{t} \sum_{n_{s}=n-t} t!\operatorname{per}[\mathrm{F}(x)][s / \cdot) \\
& =1-\frac{1}{n!} \sum_{t=0}^{n}(-1)^{n-t}\binom{n}{t} \sum_{n_{s}=n-t} t!(n-t)!\prod_{l=1}^{n-t} F_{s^{l}}(x) \\
& =\sum \sum\left\{1-\sum_{t=0}^{n}(-1)^{n-t}\binom{n}{t}\left[F^{s}(x)\right]^{n-t}\right\} . \tag{3.2}
\end{align*}
$$

Proof. If $r=1$ in (3.1), (3.2) is obtained.

Result 3.3.

$$
\begin{equation*}
F_{n: n}(x)=\frac{1}{n!} \operatorname{per}[\mathrm{F}(x)]=\prod_{n}^{n} F_{l}(x)=\sum \sum\left[F^{s}(x)\right]^{n} \tag{3.3}
\end{equation*}
$$

Proof. In (3.1), if $r=n$, (3.3) is obtained.

Result 3.4.

$$
\begin{aligned}
& f_{r: n}(x) \\
& \left.=\frac{1}{(r-1)!(n-r)!} \underset{r-1}{\operatorname{per}[\mathrm{~F}(x)} \underset{1}{\mathrm{f}}(x) \underset{n-r}{1-\mathrm{F}(x)}\right] \\
& =\frac{1}{(r-1)!(n-r)!} \sum_{t=r}^{n}(-1)^{n-t}\binom{n-r}{t-r} \sum_{n_{s}=n+r-t}(t-r)!\operatorname{per}[\underset{n+r-1-t}{\mathrm{~F}(x)} \underset{1}{\mathrm{f}}(x)][s / .) \\
& =\frac{1}{(r-1)!(n-r)!} \sum_{t=r}^{n}(-1)^{n-t}\binom{n-r}{t-r} \\
& \text {. } \sum_{n_{s}=n+r-t}(t-r)!\sum_{n_{\varsigma}=n+r-1-t} \operatorname{per}[\underset{n+r-1-t}{\mathrm{~F}}(x)][\varsigma / .) \operatorname{per}[\mathrm{f}(x)]\left[\varsigma_{1}^{\prime} / .\right) \\
& =\frac{1}{(r-1)!(n-r)!} \sum_{t=r}^{n}(-1)^{n-t}\binom{n-r}{t-r} \sum_{n_{s}=n+r-t}(t-r)! \\
& \text { • } \sum_{n_{\varsigma}=n+r-1-t}(n+r-1-t)!\left(\prod_{l=1}^{n+r-1-t} F_{\varsigma^{l}}(x)\right) f_{\varsigma^{\prime}}(x)
\end{aligned}
$$

$$
\begin{equation*}
=\sum \sum r\binom{n}{r} \sum_{t=r}^{n}(-1)^{n-t}\binom{n-r}{t-r}\left[F^{s}(x)\right]^{n+r-1-t} f^{s}(x) \tag{3.4}
\end{equation*}
$$

Proof. If $d=1$ in (2.8), (2.12) and (2.13), (3.4) is obtained.

Result 3.5.

$$
\begin{align*}
& f_{1: n}(x) \\
& =\frac{1}{(n-1)!} \underset{1}{\operatorname{per}[\mathrm{f}(x)} \underset{n-1}{\mathrm{~F}(x)]} \\
& \left.=\frac{1}{(n-1)!} \sum_{t=1}^{n}(-1)^{n-t}\binom{n-1}{t-1} \sum_{n_{s}=n+1-t}(t-1)!\underset{n-t}{\operatorname{per}[\mathrm{~F}(x)} \underset{1}{\mathrm{f}}(x)\right][s / .) \\
& =\frac{1}{(n-1)!} \sum_{t=1}^{n}(-1)^{n-t}\binom{n-1}{t-1} \sum_{n_{s}=n+1-t}(t-1)! \\
& \cdot \sum_{n_{\varsigma}=n-t} \operatorname{per}[\underset{n-t}{ } \mathrm{~F}(x)][\varsigma / .) \underset{1}{\operatorname{per}} \underset{(\mathrm{f}(x)]}{ }\left[\varsigma^{\prime} / .\right) \\
& =\frac{1}{(n-1)!} \sum_{t=1}^{n}(-1)^{n-t}\binom{n-1}{t-1} \sum_{n_{s}=n-t+1}(t-1)! \\
& \cdot \sum_{n_{\varsigma}=n-t}(n-t)!\left(\prod_{l=1}^{n-t} F_{\varsigma^{l}}(x)\right) f_{\varsigma^{\prime}}(x) \\
& =\sum \sum n \sum_{t=1}^{n}(-1)^{n-t}\binom{n-1}{t-1}\left[F^{s}(x)\right]^{n-t} f^{s}(x) \text {. } \tag{3.5}
\end{align*}
$$

Proof. If $r=1$ in (3.4), (3.5) is obtained.

Result 3.6.

$$
\begin{align*}
f_{n: n}(x) & =\frac{1}{(n-1)!} \operatorname{per}[\underset{n-1}{\mathrm{~F}(x)} \underset{1}{\mathrm{f}(x)]} \\
& =\frac{1}{(n-1)!} \sum_{n_{\varsigma}=n-1}^{\operatorname{per}[\mathrm{F}(x)][\varsigma / .)} \underset{n-1}{\operatorname{per}[\mathrm{f}(x)]\left[\varsigma^{\prime} / .\right)} \\
& =\sum_{n_{\varsigma}=n-1}\left(\prod_{l=1}^{n-1} F_{\varsigma^{l}}(x)\right) f_{\varsigma^{\prime}}(x) \\
& =\sum \sum n\left[F^{s}(x)\right]^{n-1} f^{s}(x) . \tag{3.6}
\end{align*}
$$

Proof. If $r=n$ in (3.4), (3.6) is obtained.

Result 3.7.

$$
\begin{aligned}
& f_{1, n: n}\left(x_{1}, x_{2}\right) \\
& =\frac{1}{(n-2)!} \operatorname{per}\left[\begin{array}{c}
\mathrm{f}\left(x_{1}\right) \\
\mathrm{F}\left(x_{2}\right)-\mathrm{F}\left(x_{1}\right) \\
\mathrm{f}\left(x_{2}\right)
\end{array}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{(n-2)!} \sum_{t=1}^{n-1}(-1)^{n-1-t}\binom{n-2}{t-1} \sum_{n_{s_{1}=n-t}} \operatorname{per}\left[\mathrm{~F}\left(x_{1}\right) \underset{n-1-t}{ } \mathrm{f}\left(x_{1}\right)\right]\left[s_{1} / .\right) \\
& \cdot \operatorname{per}\left[\begin{array}{cc}
\mathrm{F}\left(x_{2}\right) & \mathrm{f}\left(x_{2}\right)
\end{array}\right]\left[s_{2} / .\right) \\
& =\frac{1}{(n-2)!} \sum_{t=1}^{n-1}(-1)^{n-1-t}\binom{n-2}{t-1} \sum_{n_{s_{1}}=n-t} \prod_{w=1}^{2} \\
& \cdot \sum_{n_{\varsigma_{w}}} \operatorname{per}\left[\underset{r_{w+1}-r_{w-1}-1-t_{w}+t_{w-1}}{\mathrm{~F}\left(x_{w}\right)}\right]\left[\varsigma_{w} / .\right) \operatorname{per}\left[\mathrm{f}\left(x_{w}\right)\right]\left[\varsigma^{\prime}{ }_{w} / .\right) \\
& =\frac{1}{(n-2)!} \sum_{t=1}^{n-1}(-1)^{n-1-t}\binom{n-2}{t-1} \sum_{n_{s_{1}}=n-t} \prod_{w=1}^{2} \sum_{n_{\varsigma_{w}}} n_{\varsigma_{w}} \text { ! } \\
& \cdot\left(\prod_{l=1}^{n_{\varsigma w}} F_{\varsigma_{w}^{l}}\left(x_{w}\right)\right) f_{\varsigma^{\prime} w}\left(x_{w}\right) \\
& =\sum \sum n(n-1) \sum_{t=1}^{n-1}(-1)^{n-1-t}\binom{n-2}{t-1}\left[F^{s}\left(x_{1}\right)\right]^{n-1-t}\left[F^{s}\left(x_{2}\right)\right]^{t-1} \\
& \text { - } f^{s}\left(x_{1}\right) f^{s}\left(x_{2}\right), x_{1}<x_{2} \text {. } \tag{3.7}
\end{align*}
$$

Proof. In (2.8), (2.12) and (2.13), if $d=2$ and $r_{1}=1, r_{2}=n,(3.7)$ is obtained.

Result 3.8.

$$
\begin{aligned}
& f_{1,2, \ldots, k: n}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{1}{(n-k)!} \operatorname{per}\left[\underset{1}{\mathrm{f}\left(x_{1}\right)} \quad \underset{1}{\mathrm{f}}\left(x_{2}\right) \quad \ldots \quad \underset{1}{\mathrm{f}}\left(x_{k}\right) \underset{n-k}{\left.1-\mathrm{F}\left(x_{k}\right)\right]}\right. \\
& =\frac{1}{(n-k)!} \sum_{t=k}^{n}(-1)^{n-t}\binom{n-k}{t-k} \sum_{n_{s}=n-t+k}(t-k)! \\
& \cdot \operatorname{per}\left[\begin{array}{ccccc}
\mathrm{F}\left(x_{k}\right) & \mathrm{f}\left(x_{1}\right) & \mathrm{f}\left(x_{2}\right) & \ldots & \mathrm{f}\left(x_{k}\right) \\
n-t & 1 & 1
\end{array}\right][s / .) \\
& =\frac{1}{(n-k)!} \sum_{t=k}^{n}(-1)^{n-t}\binom{n-k}{t-k} \sum_{n_{s}=n-t+k}(t-k)!\sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{k-1}}} \\
& \cdot \prod_{w=1}^{k-1} \operatorname{per}\left[\underset{1}{\mathrm{f}}\left(x_{w}\right)\right]\left[s_{w} / \cdot\right) \operatorname{per}\left[\underset{n-t}{\mathrm{~F}\left(x_{k}\right)} \underset{\substack{\mathrm{f} \\
1}}{\mathrm{f}}\left(x_{k}\right)\right]\left[s_{k} / .\right) \\
& =\frac{1}{(n-k)!} \sum_{t=k}^{n}(-1)^{n-t}\binom{n-k}{t-k} \sum_{n_{s}=n-t+k}(t-k)!\sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{k-1}}} \\
& \cdot \prod_{w=1}^{k} \sum_{n_{\varsigma w}} \operatorname{per}\left[\begin{array}{r}
r_{w+1}-r_{w-1}-1-t_{w}+t_{w-1} \\
\mathrm{~F}\left(x_{w}\right)
\end{array}\right]\left[\varsigma_{w} / .\right) \operatorname{per}\left[\mathrm{f}\left(x_{w}\right)\right]\left[\varsigma_{w}^{\prime} / .\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{(n-k)!} \sum_{t=k}^{n}(-1)^{n-t}\binom{n-k}{t-k} \\
& \cdot \sum_{n_{s}=n-t+k}(t-k)!\sum_{n_{s_{1}}, n_{s_{2}}, \ldots, n_{s_{k-1}}} \prod_{w=1}^{k} \sum_{n_{\varsigma_{w}}} n_{\varsigma_{w}}!\left(\prod_{l=1}^{n_{\varsigma_{w}}} F_{\varsigma_{w}^{l}}\left(x_{w}\right)\right) f_{\varsigma_{w}^{\prime}}\left(x_{w}\right) \\
= & \sum \sum \frac{n!}{(n-k)!} \sum_{t=k}^{n}(-1)^{n-t}\binom{n-k}{t-k}\left[F^{s}\left(x_{k}\right)\right]^{n-t} \prod_{w=1}^{k} f^{s}\left(x_{w}\right) .
\end{aligned}
$$

Proof. If $d=k$ and $r_{1}=1, r_{2}=2, \ldots, r_{k}=k$ in (2.8), (2.12) and (2.13), (3.8) is obtained.

References

[1] B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, Wiley, New York, 1992.
[2] N. Balakrishnan, Permanents, order statistics, outliers, and robustness, Rev. Mat. Complut. 20 (2007), no. 1, 7-107.
[3] K. Balasubramanian and M. I. Beg, On special linear identities for order statistics, Statistics 37 (2003), no. 4, 335-339.
[4] K. Balasubramanian, M. I. Beg and R. B. Bapat, On families of distributions closed under extrema, Sankhyā Ser. A 53 (1991), no. 3, 375-388.
[5] K. Balasubramanian, M. I. Beg and R. B. Bapat, An identity for the joint distribution of order statistics and its applications, J. Statist. Plann. Inference 55 (1996), no. 1, 13-21.
[6] K. Balasubramanian, N. Balakrishnan and H. J. Malik, Identities for order statistics from non-independent non-identical variables, Sankhyā Ser. B 56 (1994), no. 1, 67-75.
[7] R. B. Bapat and M. I. Beg, Order statistics for nonidentically distributed variables and permanents, Sankhyā Ser. A 51 (1989), no. 1, 79-93.
[8] M. I. Beg, Recurrence relations and identities for product moments of order statistics corresponding to non-identically distributed variables, Sankhy \bar{a} Ser. A 53 (1991), no. 3, 365-374.
[9] G. Cao and M. West, Computing distributions of order statistics, Comm. Statist. Theory Methods 26 (1997), no. 3, 755-764.
[10] A. Childs and N. Balakrishnan, Relations for order statistics from non-identical logistic random variables and assessment of the effect of multiple outliers on the bias of linear estimators, J. Statist. Plann. Inference 136 (2006), no. 7, 2227-2253.
[11] H. W. Corley, Multivariate order statistics, Comm. Statist. A-Theory Methods 13 (1984), no. 10, 1299-1304.
[12] E. Cramer, K. Herle and N. Balakrishnan, Permanent expansions and distributions of order statistics in the INID case, Comm. Statist. Theory Methods 38 (2009), no. 11-12, 2078-2088.
[13] H. A. David, Order Statistics, second edition, Wiley, New York, 1981.
[14] G. Gan and L. J. Bain, Distribution of order statistics for discrete parents with applications to censored sampling, J. Statist. Plann. Inference 44 (1995), no. 1, 37-46.
[15] C. M. Goldie and R. A. Maller, Generalized densities of order statistics, Statist. Neerlandica 53 (1999), no. 2, 222-246.
[16] O. Guilbaud, Functions of non-iid random vectors expressed as functions of iid random vectors, Scand. J. Statist. 9 (1982), no. 4, 229-233.
[17] C. G. Khatri, Distributions of order statistics for discrete case, Ann. Inst. Statist. Math. 14 (1962), 167-171.
[18] R.-D. Reiss, Approximate Distributions of Order Statistics, Springer Series in Statistics, Springer, New York, 1989.
[19] R. J. Vaughan and W. N. Venables, Permanent expressions for order statistic densities, J. Roy. Statist. Soc. Ser. B 34 (1972), 308-310.

[^0]: Communicated by M. Ataharul Islam.
 Received: October 20, 2009; Revised: April 7, 2010.

