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1. Introduction

Several identities and recurrence relations for probability density function (pdf )
and distribution function (df ) of order statistics of independent and identically dis-
tributed (iid) random variables were established by numerous authors including
Arnold et al. [1], Balasubramanian and Beg [3], David [13], and Reiss [18]. Further-
more, Arnold et al. [1], David [13], Gan and Bain [14], and Khatri [17] obtained
the probability function and df of order statistics of iid random variables from a
discrete parent. Corley [11] defined a multivariate generalization of classical order
statistics for random samples from a continuous multivariate distribution. Expres-
sions for generalized joint densities of order statistics of iid random variables in
terms of Radon-Nikodym derivatives with respect to product measures based on df
were derived by Goldie and Maller [15]. Guilbaud [16] expressed the probability of
the functions of independent but not necessarily identically distributed (innid) ran-
dom vectors as a linear combination of probabilities of the functions of iid random
vectors and thus also for order statistics of random variables.

Recurrence relationships among the distribution functions of order statistics aris-
ing from innid random variables were obtained by Cao and West [9]. In addition,
Vaughan and Venables [19] derived the joint pdf and marginal pdf of order sta-
tistics of innid random variables by means of permanents. Balakrishnan [2], and
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Bapat and Beg [7] obtained the joint pdf and df of order statistics of innid ran-
dom variables by means of permanents. Using multinomial arguments, the pdf of
Xr:n+1(1 ≤ r ≤ n+ 1) was obtained by Childs and Balakrishnan [10] by adding an-
other independent random variable to the original n variables X1, X2, ..., Xn. Also,
Balasubramanian et al. [6] established the identities satisfied by distributions of or-
der statistics from non-independent non-identical variables through operator meth-
ods based on the difference and differential operators. In a paper published in 1991,
Beg [8] obtained several recurrence relations and identities for product moments of
order statistics of innid random variables using permanents. Recently, Cramer et
al. [12] derived the expressions for the distribution and density functions by Ryser’s
method and the distribution of maxima and minima based on permanents. In the
first of two papers, Balasubramanian et al. [4] obtained the distribution of single or-
der statistic in terms of distribution functions of the minimum and maximum order
statistics of some subsets of {X1, X2, ..., Xn} where Xi’s are innid random variables.
Later, Balasubramanian et al. [5] generalized their previous results [4] to the case
of the joint distribution function of several order statistics.

In general, the distribution theory for order statistics is complicated when the
random variables are innid. In this study, the explicit expressions for the joint df
and pdf of order statistics of innid random variables are obtained.

From now on, the subscripts and superscripts are defined in the first place in
which they are used and these definitions will be valid unless they are redefined.

If a1, a2, ... are defined as column vectors, then the matrix obtained by taking m1

copies of a1, m2 copies of a2,. . . can be denoted as

[a1
m1

a2
m2

. . .]

and per A denotes the permanent of a square matrix A, which is defined as similar
to determinants except that all terms in the expansion have a positive sign.

Let X1, X2, ..., Xn be innid continuous random variables and X1:n ≤ X2:n ≤ ... ≤
Xn:n be the order statistics obtained by arranging the n Xi ’s in increasing order of
magnitude.

Let Fi and fi be df and pdf of Xi (i = 1, 2, . . ., n), respectively. Moreover,
Xs

1:n, X
s
2:n, ... , Xs

n:n are order statistics of iid random variables with df F s and
pdf fs, respectively, defined by

(1.1) F s =
1
ns

∑
i∈s

Fi

and

(1.2) fs =
1
ns

∑
i∈s

fi

Here, s is a non-empty subset of the integers {1, 2, . . ., n} with ns ≥ 1 elements.
A[s/.) is the matrix obtained from A by taking rows whose indices are in s.
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The df and pdf of Xr1:n, Xr2:n, ..., Xrd:n (1 ≤ r1 < r2 < ... < rd ≤ n, d =
1, 2, . . ., n) will then be given. For notational convenience we write∑∑

,

n,...,m3,m2∑
md,...,m2,m1

,

n,...,m3,m2∑
td,...,t2,t1

and
n,...,r3−1,r2−1∑
td,...,t2,t1

instead of
n∑
κ=1

(−1)n−κ
κn

n!

∑
ns=κ

,

n∑
md=rd

...

m3∑
m2=r2

m2∑
m1=r1

,

n∑
td=md

...

m3∑
t2=m2

m2∑
t1=m1

and
n∑

td=rd

...

r3−1∑
t2=r2

r2−1∑
t1=r1

in the expressions below, respectively.

2. Theorems for distribution and probability density function

In this section, the theorems related to df and pdf of Xr1:n, Xr2:n, ..., Xrd:n are
given. The theorems connect the df and pdf of order statistics of innid random
variables to that of order statistics of iid random variables using (1.1) and (1.2).

Theorem 2.1.

Fr1,r2,...,rd:n(x1, x2, ..., xd)

=
n,...,m3,m2∑
md,...,m2,m1

C

n,...,m3,m2∑
td,...,t2,t1

(−1)
∑d

w=1 (mw+1−tw)

(
d∏

w=1

(
mw+1 −mw

tw −mw

))

·
∑

ns=n−td+md

(td −md)!
∑

ns1 ,ns2 ,...,nsd−1

d∏
w=1

per[ F(xw)
mw+1−mw−1−tw+tw−1

][sw/.) ,

(2.1)

x1 < x2 < ... < xd,

where F(xw) = (F1(xw), F2(xw), ..., Fn(xw))′ is column vector, xw ∈ R, C = [
∏d+1
w=1

(mw −mw−1)!]−1, m0 = 0, md+1 = n,
∑
ns1 ,ns2 ,...,nsd−1

denotes the sum over⋃d−1
w=1 sw for which sυ

⋂
sν = φ for υ 6= ν, s =

⋃d
w=1 sw, nsw

= mw+1 −mw−1 −
tw + tw−1 and t0 = m1.

Proof. It can be written

(2.2) Fr1,r2,...,rd:n(x1, x2, ..., xd) = P{Xr1:n ≤ x1, Xr2:n ≤ x2, ..., Xrd:n ≤ xd} .

(2.2) can be expressed as

(2.3) Fr1,r2,...,rd:n(x1, x2, ..., xd) =
n,...,m3,m2∑
md,...,m2,m1

C per A ,

where

A =
[
F(x1)
m1

F(x2)− F(x1)
m2−m1

... 1− F(xd)
n−md

]
is matrix.

F(xw)−F(xw−1) = (F1(xw)−F1(xw−1), F2(xw)−F2(xw−1), ..., Fn(xw)−Fn(xw−1))′

(w = 1, 2, . . ., d+ 1), Fi(x0) = 0 and Fi(xd+1) = 1.
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Using properties of permanent, we can write

per A = per[F(x1)
m1

F(x2)− F(x1)
m2−m1

F(x3)− F(x2)
m3−m2

... F(xd)− F(xd−1)
md−md−1

1− F(xd)
n−md

]

=
n−md∑
td=0

(−1)n−md−td
(
n−md

td

)
...

m3−m2∑
t2=0

(−1)m3−m2−t2
(
m3 −m2

t2

)

·
m2−m1∑
t1=0

(−1)m2−m1−t1
(
m2 −m1

t1

)
· per[F(x1)

m2−t1
F(x2)

m3−m2−t2+t1
... 1

td
F(xd)]

n−md−td+td−1

=
n−md∑
td=0

...

m3−m2∑
t2=0

m2−m1∑
t1=0

(−1)n−m1−
∑d

w=1 tw

(
d∏

w=1

(
mw+1 −mw

tw

)) ∑
ns=n−td

td!

· per[F(x1)
m2−t1

F(x2)
m3−m2−t2+t1

... F(xd)
n−md−td+td−1

][s/.)

=
n∑

td=md

...

m3∑
t2=m2

m2∑
t1=m1

(−1)
∑d

w=1 (mw+1−tw)

(
d∏

w=1

(
mw+1 −mw

tw −mw

))
·

∑
ns=n−td+md

(td −md)! per[ F(x1)
m2−t1+m1

F(x2)
m3−m1−t2+t1

... F(xd)
n−md−td+td−1

][s/.)

=
n∑

td=md

...

m3∑
t2=m2

m2∑
t1=m1

(−1)
∑d

w=1 (mw+1−tw)

(
d∏

w=1

(
mw+1 −mw

tw −mw

))
·

∑
ns=n−td+md

(td −md)!
∑

ns1 ,ns2 ,...,nsd−1

· per[ F(x1)
m2−t1+m1

][s1/.) per[ F(x2)
m3−m1−t2+t1

][s2/.) ... per[ F(xd)
n−md−1−td+td−1

][sd/.)

=
n,...,m3,m2∑
td,...,t2,t1

(−1)
∑d

w=1 (mw+1−tw)

(
d∏

w=1

(
mw+1 −mw

tw −mw

)) ∑
ns=n−td+md

(td −md)!

·
∑

ns1 ,ns2 ,...,nsd−1

d∏
w=1

per [ F(xw)
mw+1−mw−1−tw+tw−1

][sw/.),

(2.4)

where 1 = (1,1,...,1)′. Using (2.4) in (2.3), (2.1) is obtained.

Theorem 2.2.

Fr1,r2,...,rd:n(x1, x2, ..., xd)

=
n,...,m3,m2∑
md,...,m2,m1

C

n,...,m3,m2∑
td,...,t2,t1

(−1)
∑d

w=1 (mw+1−tw)

(
d∏

w=1

(
mw+1 −mw

tw −mw

))

·
∑

ns=n−td+md

(td −md)!
∑

ns1 ,ns2 ,...,nsd−1

d∏
w=1

nsw
!
nsw∏
l=1

Fsl
w

(xw),(2.5)
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where sw = {s1w, s2w, ..., s
nsw
w }.

Proof. Omitted.

Theorem 2.3.

Fr1,r2,...,rd:n(x1, x2, ..., xd)

=
∑∑ n,...,m3,m2∑

md,...,m2,m1

n ! C

·
n,...,m3,m2∑
td,...,t2,t1

(−1)
∑d

w=1 (mw+1−tw)
d∏

w=1

(
mw+1 −mw

tw −mw

)
[F s(xw)]mw+1−mw−1−tw+tw−1 .

(2.6)

Proof. (2.2) can be expressed as

Fr1,r2,...,rd:n(x1, x2, ..., xd)

=
∑∑

P{Xs
r1:n ≤ x1, X

s
r2:n ≤ x2, ... , X

s
rd:n ≤ xd}(2.7)

is immediate from (2.1) and (2.7). Thus, (2.6) is obtained.

Theorem 2.4.

fr1,r2,...,rd:n(x1, x2, ..., xd)

= D

n,...,r3−1,r2−1∑
td,...,t2,t1

(−1)−d+
∑d

w=1 (rw+1−tw)

(
d∏

w=1

(
rw+1 − rw − 1

tw − rw

))
·

∑
ns=n+rd−td

(td − rd)!
∑

ns1 ,ns2 ,...,nsd−1

·
d∏

w=1

∑
nςw

per[ F(xw)
rw+1−rw−1−1−tw+tw−1

] [ςw/.) per[f(xw)
1

][ς ′w/.),(2.8)

where f(xw) = (f1(xw), f2(xw), ..., fn(xw))′, D = [
∏d+1
w=1 (rw − rw−1 − 1)!]−1, r0 =

0, rd+1 = n + 1, s =
⋃d
w=1 sw, sυ

⋂
sν = φ for υ 6= ν, sw = ςw

⋃
ς ′w, ςw

⋂
ς ′w = φ,

nsw = rw+1 − rw−1 − tw + tw−1 , t0 = r1 − 1, nςw = rw+1 − rw−1 − 1 − tw + tw−1

and nς′w = 1.

Proof. Consider
(2.9)
P{x1 < Xr1:n ≤ x1 + δx1, x2 < Xr2:n ≤ x2 + δx2, ..., xd < Xrd:n ≤ xd + δxd}.

Dividing (2.9) by
∏d
w=1 δxw and then letting δx1, δx2, ..., δxd tend to zero, we obtain

(2.10) fr1,r2,...,rd:n(x1, x2, ..., xd) = D per B,

where
B = [F(x1)

r1−1
f(x1)

1
F(x2)− F(x1)

r2−r1−1
f(x2)

1
... f(xd)

1
1− F(xd)

n−rd

]

is matrix. Using properties of permanent, we can write

per B = per[F(x1)
r1−1

f(x1)
1

F(x2)− F(x1)
r2−r1−1

f(x2)
1

... f(xd)
1

1− F(xd)
n−rd

]
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=
n−rd∑
td=0

(−1)n−rd−td
(
n− rd
td

)
...

r3−r2−1∑
t2=0

(−1)r3−r2−1−t2
(
r3 − r2 − 1

t2

)

·
r2−r1−1∑
t1=0

(−1)r2−r1−1−t1
(
r2 − r1 − 1

t1

)
· per[ F(x1)

r2−2−t1
f(x1)

1
F(x2)

r3−r2−1−t2+t1
f(x2)

1
... f(xd)

1
1
td

F(xd)
n−rd−td+td−1

]

=
n−rd∑
td=0

...

r3−r2−1∑
t2=0

r2−r1−1∑
t1=0

(−1)n+1−r1−d−
∑d

w=1 tw

(
d∏

w=1

(
rw+1 − rw − 1

tw

))
·
∑

ns=n−td

td! per[ F(x1)
r2−2−t1

F(x2)
r3−r2−1−t2+t1

... F(xd)
n−rd−td+td−1

f(x1)
1

f(x2)
1

... f(xd)
1

][s/.)

=
n∑

td=rd

...

r3−1∑
t2=r2

r2−1∑
t1=r1

(−1)−d+
∑d

w=1 (rw+1−tw)

(
d∏

w=1

(
rw+1 − rw − 1

tw − rw

))
·

∑
ns=n+rd−td

(td − rd)! per[ F(x1)
r2+r1−2−t1

F(x2)
r3−r1−1−t2+t1

... F(xd)
n−rd−1−td+td−1

f(x1)
1

f(x2)
1

... f(xd)
1

][s/.)

=
n∑

td=rd

...

r3−1∑
t2=r2

r2−1∑
t1=r1

(−1)−d+
∑d

w=1 (rw+1−tw)

(
d∏

w=1

(
rw+1 − rw − 1

tw − rw

))
·

∑
ns=n+rd−td

(td − rd)!

·
∑

ns1 ,ns2 ,...,nsd−1

per[ F(x1)
r2+r1−2−t1

f(x1)
1

][s1/.) per[ F(x2)
r3−r1−1−t2+t1

f(x2)
1

][s2/.) ...

· per[ F(xd)
n−rd−1−td+td−1

f(xd)
1

][sd/.)

=
n∑

td=rd

...

r3−1∑
t2=r2

r2−1∑
t1=r1

(−1)−d+
∑d

w=1 (rw+1−tw)

(
d∏

w=1

(
rw+1 − rw − 1

tw − rw

))
·

∑
ns=n+rd−td

(td − rd)!

·
∑

ns1 ,ns2 ,...,nsd−1

d∏
w=1

per[ F(xw)
rw+1−rw−1−1−tw+tw−1

f(xw)
1

][sw/.)

=
n∑

td=rd

...

r3−1∑
t2=r2

r2−1∑
t1=r1

(−1)−d+
∑d

w=1 (rw+1−tw)

(
d∏

w=1

(
rw+1 − rw − 1

tw − rw

))
·

∑
ns=n+rd−td

(td − rd)!
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·
∑

ns1 ,ns2 ,...,nsd−1

d∏
w=1

∑
nςw

per[ F(xw)
rw+1−rw−1−1−tw+tw−1

] [ςw/.) per[f(xw)
1

][ς ′w/.).

(2.11)

Using (2.11) in (2.10), (2.8) is obtained.

Theorem 2.5.

fr1,r2,...,rd:n(x1, x2, ..., xd)

= D

n,...,r3−1,r2−1∑
td,...,t2,t1

(−1)−d+
∑d

w=1 (rw+1−tw)

(
d∏

w=1

(
rw+1 − rw − 1

tw − rw

))

·
∑

ns=n+rd−td

(td − rd)!
∑

ns1 ,ns2 ,...,nsd−1

d∏
w=1

∑
nςw

nςw !

(nςw∏
l=1

Fςl
w

(xw)

)
fς′ww (xw),

(2.12)

where ςw = {ς1w, ς2w, ..., ς
nςw
w } and ς ′w = {ς ′ww}.

Proof. Omitted.

Theorem 2.6.

fr1,r2,...,rd:n(x1, x2, ..., xd)

=
∑∑

n! D
n,...,r3−1,r2−1∑
td,...,t2,t1

(−1)−d+
∑d

w=1 (rw+1−tw)
d∏

w=1

(
rw+1 − rw − 1

tw − rw

)

· [F s(xw)]rw+1−rw−1−1−tw+tw−1fs(xw).
(2.13)

Proof. (2.9) can be expressed as∑∑
P{x1 < Xs

r1:n ≤ x1 + δx1, x2 < Xs
r2:n ≤ x2 + δx2, . . . , xd

< Xs
rd:n ≤ xd + δxd}.(2.14)

Dividing (2.14) by
∏d
w=1 δxw and then letting δx1, δx2, ..., δxd tend to zero, (2.13)

is obtained.

3. Results for distribution and probability density function

In this section, the results related to df and pdf of Xr1:n, Xr2:n, ..., Xrd:n are given.
The results connect the df and pdf of order statistics of innid random variables to
that of order statistics of iid random variables.

Result 3.1.

Fr:n(x) =
n∑

m=r

1
m!(n−m)!

n∑
t=m

(−1)n−t
(
n−m
t−m

) ∑
ns=n−t+m

(t−m)! per[ F(x)
n−t+m

][s/.)

=
n∑

m=r

1
m!(n−m)!

n∑
t=m

(−1)n−t
(
n−m
t−m

) ∑
ns=n−t+m

(t−m)! (n− t+m)!
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·
n−t+m∏
l=1

Fsl(x)

=
∑∑ n∑

m=r

(
n
m

) n∑
t=m

(−1)n−t
(
n−m
t−m

)
[F s(x)]n−t+m.

(3.1)

Proof. If d = 1 in (2.1), (2.5) and (2.6), (3.1) is obtained.

Result 3.2.

F1:n(x) = 1− 1
n!

n∑
t=0

(−1)n−t
(
n
t

) ∑
ns=n−t

t! per[F(x)
n−t

][s/.)

= 1− 1
n!

n∑
t=0

(−1)n−t
(
n
t

) ∑
ns=n−t

t! (n− t)!
n−t∏
l=1

Fsl(x)

=
∑∑

{1−
n∑
t=0

(−1)n−t
(
n
t

)
[F s(x)]n−t}.(3.2)

Proof. If r = 1 in (3.1), (3.2) is obtained.

Result 3.3.

(3.3) Fn:n(x) =
1
n!

per[F(x)
n

] =
n∏
l=1

Fl(x) =
∑∑

[F s(x)]n.

Proof. In (3.1), if r = n, (3.3) is obtained.

Result 3.4.

fr:n(x)

=
1

(r − 1)!(n− r)!
per[F(x)

r−1
f(x)

1
1− F(x)

n−r
]

=
1

(r − 1)!(n− r)!

n∑
t=r

(−1)n−t
(
n− r
t− r

) ∑
ns=n+r−t

(t− r)! per[ F(x)
n+r−1−t

f(x)
1

][s/.)

=
1

(r − 1)!(n− r)!

n∑
t=r

(−1)n−t
(
n− r
t− r

)
·

∑
ns=n+r−t

(t− r)!
∑

nς=n+r−1−t
per[ F(x)

n+r−1−t
] [ς /.) per[f(x)

1
] [ς ′/.)

=
1

(r − 1)!(n− r)!

n∑
t=r

(−1)n−t
(
n− r
t− r

) ∑
ns=n+r−t

(t− r)!

·
∑

nς=n+r−1−t
(n+ r − 1− t)!

(
n+r−1−t∏

l=1

Fςl(x)

)
fς′(x)
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=
∑∑

r

(
n
r

) n∑
t=r

(−1)n−t
(
n− r
t− r

)
[F s(x)]n+r−1−tfs(x).

(3.4)

Proof. If d = 1 in (2.8), (2.12) and (2.13), (3.4) is obtained.

Result 3.5.

f1:n(x)

=
1

(n− 1)!
per[f(x)

1
1− F(x)

n−1
]

=
1

(n− 1)!

n∑
t=1

(−1)n−t
(
n− 1
t− 1

) ∑
ns=n+1−t

(t− 1)! per[F(x)
n−t

f(x)
1

][s/.)

=
1

(n− 1)!

n∑
t=1

(−1)n−t
(
n− 1
t− 1

) ∑
ns=n+1−t

(t− 1)!

·
∑

nς=n−t
per[F(x)

n−t
] [ς/.) per[f(x)

1
] [ς ′/.)

=
1

(n− 1)!

n∑
t=1

(−1)n−t
(
n− 1
t− 1

) ∑
ns=n−t+1

(t− 1)!

·
∑

nς=n−t
(n− t)!

(
n−t∏
l=1

Fςl(x)

)
fς′(x)

=
∑∑

n

n∑
t=1

(−1)n−t
(
n− 1
t− 1

)
[F s(x)]n−tfs(x) .(3.5)

Proof. If r = 1 in (3.4), (3.5) is obtained.

Result 3.6.

fn:n(x) =
1

(n− 1)!
per[F(x)

n−1
f(x)

1
]

=
1

(n− 1)!

∑
nς=n−1

per[F(x)
n−1

] [ς/.) per[f(x)
1

] [ς ′/.)

=
∑

nς=n−1

(
n−1∏
l=1

Fςl(x)

)
fς′(x)

=
∑∑

n[F s(x)]n−1fs(x).(3.6)

Proof. If r = n in (3.4), (3.6) is obtained.

Result 3.7.

f1,n:n(x1, x2)

=
1

(n− 2)!
per[f(x1)

1
F(x2)− F(x1)

n−2
f(x2)

1
]
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=
1

(n− 2)!

n−1∑
t=1

(−1)n−1−t
(
n− 2
t− 1

)
per[F(x1)

n−1−t
F(x2)
t−1

f(x1)
1

f(x2)
1

]

=
1

(n− 2)!

n−1∑
t=1

(−1)n−1−t
(
n− 2
t− 1

) ∑
ns1=n−t

per[F(x1)
n−1−t

f(x1)
1

] [s1/.)

· per[F(x2)
t−1

f(x2)
1

] [s2/.)

=
1

(n− 2)!

n−1∑
t=1

(−1)n−1−t
(
n− 2
t− 1

) ∑
ns1=n−t

2∏
w=1

·
∑
nςw

per[ F(xw)
rw+1−rw−1−1−tw+tw−1

] [ςw/.) per[f(xw)
1

][ς ′w/.)

=
1

(n− 2)!

n−1∑
t=1

(−1)n−1−t
(
n− 2
t− 1

) ∑
ns1=n−t

2∏
w=1

∑
nςw

nςw !

·

(nςw∏
l=1

Fςl
w

(xw)

)
fς′ww (xw)

=
∑∑

n(n− 1)
n−1∑
t=1

(−1)n−1−t
(
n− 2
t− 1

)
[F s(x1)]n−1−t[F s(x2)]t−1

· fs(x1)fs(x2), x1 < x2.(3.7)

Proof. In (2.8), (2.12) and (2.13), if d = 2 and r1 = 1, r2 = n, (3.7) is obtained.

Result 3.8.

f1,2,...,k:n(x1, x2, ..., xk) =
1

(n− k)!
per[f(x1)

1
f(x2)

1
... f(xk)

1
1-F(xk)
n−k

]

=
1

(n− k)!

n∑
t=k

(−1)n−t
(
n− k
t− k

) ∑
ns=n−t+k

(t− k)!

· per[F(xk)
n−t

f(x1)
1

f(x2)
1

... f(xk)
1

][s/.)

=
1

(n− k)!

n∑
t=k

(−1)n−t
(
n− k
t− k

) ∑
ns=n−t+k

(t− k)!
∑

ns1 ,ns2 ,...,nsk−1

.

k−1∏
w=1

per[ f(xw)
1

][sw/.) per[F(xk)
n−t

f(xk)
1

] [sk/.)

=
1

(n− k)!

n∑
t=k

(−1)n−t
(
n− k
t− k

) ∑
ns=n−t+k

(t− k)!
∑

ns1 ,ns2 ,...,nsk−1

·
k∏

w=1

∑
nςw

per[ F(xw)
rw+1−rw−1−1−tw+tw−1

] [ςw/.) per[f(xw)
1

][ς ′w/.)



On Joint Distributions of Order Statistics from innid Variables 225

=
1

(n− k)!

n∑
t=k

(−1)n−t
(
n− k
t− k

)

·
∑

ns=n−t+k

(t− k)!
∑

ns1 ,ns2 ,...,nsk−1

k∏
w=1

∑
nςw

nςw !

(nςw∏
l=1

Fςl
w

(xw)

)
fς′ww (xw)

=
∑∑ n!

(n− k)!

n∑
t=k

(−1)n−t
(
n− k
t− k

)
[F s(xk)]n−t

k∏
w=1

fs(xw).(3.8)

Proof. If d = k and r1 = 1, r2 = 2, . . . , rk = k in (2.8), (2.12) and (2.13), (3.8) is
obtained.
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