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1. Introduction

All groups considered in this paper are finite. A subgroup H of a group G is said
to have the cover-avoiding property in G if H covers or avoids every chief factor
of G, in short, H is a C'AP-subgroup of G. There has been much interest in the
past in investigating the structure of finite groups when some subgroups have the
cover-avoiding property, and many interesting results have been made, for example
[3,7-13,15,16,18,21,22].

Our motivation in this paper comes from the following example.

Example 1.1. Let P = (a,bla* = b* = [a,b] = 1) be a direct product of two
cyclic groups of order 4 and ¢ € Aut (P) such that a® = a?b®, b¢ = a3b. Then the
semidirect product: K = P x (c) is of order 2% x 3. We set G = K x Cs, a direct
product of K and a cyclic group Cy = (d) of order 2.
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An easy proof gives ®(G) = (a?,b?) is a minimal normal subgroup of G, where
®(G) is the Frattini subgroup of G. It follows that all chief factors of G are non-
Frattini besides ®(G)/1 and ®(G)Cy/Cy. We consider the subgroup H = (a?) of
order 2 of G. It is easy to see that H avoids every non-Frattini chief factors of G.
However, HN®(G) = H #1 = HN1 and HP(G) = ®(G) # H. This implies
that the chief factor ®(G)/1 is neither covered nor avoided by H. Thus H is not
a C'AP-subgroup of G. Hence it is quite natural to ask non-Frattini chief factor
how to affect the structure of finite groups. For convenience, we give the following
definition.

Definition 1.1. A subgroup H of a group G is said to be a C AP*-subgroup of G if,
for any non-Frattini chief factor K/L of G, we have HK = HL or HNK = HN L.

In this paper, some new characterizations for finite solvable groups are obtained
based on the assumption that some subgroups are C A P*-subgroups of G. We write
Mg to indicate that the core of a subgroup M in a group G. If M is a maximal
subgroup of G and H is a maximal subgroup of M, then we call H a 2-maximal
subgroup of G.

2. Basic definitions and preliminary results

Let K and L be normal subgroups of a group G with K < L. Then K/L is called
a normal factor of G. A subgroup H of G is said to cover K/L if HK = HL. On
the other hand, if H N K = H N L, then H is said to avoid K/L. If K/L is a chief
factor of G and K/L < ®(G/L) (respectively K/L < ®(G/L)), then K/L is said to
be a Frattini (respectively non-Frattini) chief factor of G.

Lemma 2.1. [6, Chapter A, 9.9] Let K/L be a chief factor of a group G. If N is
a normal subgroup of G contained in L, then K/L is a Frattini chief factor of G if
and only if (K/N)/(L/N) is a Frattini chief factor of G/N.

Lemma 2.2. FEvery non-Frattini chief factor of G is avoided by every subgroup of
D(Q).

Proof. Let K/L be a non-Frattini chief factor of G and B < ®(G). Then BL/L <
®(G/L). 1t is easy to see that K/L N ®(G/L) = 1 since K/L is a minimal normal
subgroup of G/L. Tt follows that (BNK)L = L. Hence BNK = BNL, as desired. 1

Lemma 2.3. Let N be a normal subgroup of a group G. If H is a CAP*-subgroup
of G, then:

(1) HN/N is a CAP*-subgroup of G/N;

(2) HN N is a CAP*-subgroup of G.

Proof. (1) Let G = G/N and K /L be a non-Frattini chief factor of G. It is easy to
see that K/L is a non-Frattini chief factor of G by Lemma 2.1. Then H covers or
avoids K /L by hypotheses. If HK = HL, then HN/N - K/N = HN/N - L/N and
so HN/N covers K/L. If HNK = HN L, then HN N K = HN N L, which implies
that HN/N avoids K /L, as desired.

(2) Let K/L be a non-Frattini chief factor of G. If one of H and N avoids K/L,
then H N N avoids K/L. Hence we may assume that both H and N cover K/L.
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We use the induction on the length of any piece of chief series of G below N. If
N is a minimal normal subgroup of G and N &« ®(G), then HN = H or HNN =1
by hypotheses. It follows that H N N is a CAP*-subgroup of G. If N < ®(G),
then H N N is a CAP*-subgroup of G by Lemma 2.2. Now, we let D be a minimal
normal subgroup of G contained in N. By (1), HD/D is a C AP*-subgroup of G/D.
It follows that HD/D N N/D = (H N N)D/D is a CAP*-subgroup of G/D by
induction.

Suppose that N N L # 1. Then, there exists a minimal normal subgroup D of G
such that D < NN L. By the above paragraph, (HNN)D/D either covers or avoids
(K/D)/(L/D). If covers, then (H N N)K = (H N N)L, as desired. If avoids, then
(HONNNK)D=(HNNNL)D andso HNNNK = HNN N L by comparing the
orders, as desired. Hence we can consider that N N L = 1.

By our assumption, N N K # 1. Let M be a minimal normal subgroup of G with
M < NNK. Ttisclear that MNK # MNL and so MK = ML = K. This means that
(HOWN)K = (HNN)ML. f M < ®(G), then K/L = ML/L < ®(G)L/L < ®(G/L).
However, this contradicts the fact that K/L is a non-Frattini chief factor of G. It
follows that M/1 is the non-Frattini chief factor of G. By hypotheses, H covers or
avoids M. On the one hand, if HM = H, then (HNN)K = (HNN)ML = (HNN)L,
as desired. On the other hand, if HNM =1, then HN NN M = 1, and an easy
calculation gives

|HNN|K|
HNN)K|=——————=|HNN|ML|=|(HNN)ML|.
(01 N)K| = (g e = [H O N|IME| = |(H 0 V)M
It follows that HNNNK = 1. This implies that HNN avoids K/L, which completes
our proof. 1

Remark 2.1. If H is a CAP*-subgroup of a group G and H < M, then it does
not necessarily follow that H is a CAP*-subgroup of M. This means that the
C AP*-subgroups are not inherited in intermediate subgroups.

Example 2.1. The Example 1.3 of [2] shows that the C AP*-subgroups are not
inherited in intermediate subgroups.

Even if G is solvable, the C AP*-subgroups are not inherited in intermediate
subgroups. For example, let G = Ay x A4, a direct product of two Alternating
groups on four letters. We write Vy x Vy as (x,y) X (a,b) with generators z,y, a and
b of order 2. Let H = {(1,1), (z,a), (y,b), (xvy,adb)}, then H covers or avoids every
non-Frattini chief factor of G, which implies that H is a C'AP*-subgroup of G. Put
M=A;xVy. f K=V, x (a) and L =1 x (a), then K/L is a non-Frattini chief
factor of M. Since HN K = {(1,1),(x,a)} # {(1,1)} = H N L, we can see that

|H||K| _ H|IL| _
|HN K| |HNL|

Therefore, K/L is neither covered nor avoided by H. In particular, H is not a
C AP*-subgroup of M.

|HK| = 16 and |HL|=

Lemma 2.4. Let N be a normal subgroup of a group G and let H be a CAP*-
subgroup of G. Then HN is a CAP*-subgroup of G if one of the following holds:

(1) N < ®(G), the Frattini subgroup of G;
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(2) HN is a mazimal subgroup of G.

Proof. Let K/L be a non-Frattini chief factor of G. If one of H and N covers K/L,
then HN covers K/L. Hence we may assume that both H and N avoid K/L. Then
KN/LN is a chief factor of G.

Suppose that N < ®(G). There exists a maximal subgroup M/L of G/L such
that K/L £ M/L, then KN/LN % M/LN. This implies that KN/LN is a non-
Frattini chief factor of G. By the hypotheses, H covers or avoids KN/LN. We only
need to consider that H avoids KN/LN, that is, (HNNK)N = (HNNL)N. It
follows from comparing the orders that HN N K = HN N L, as desired.

Let HN be a maximal subgroup of G. If KN/LN is a non-Frattini chief factor
of G, then HN covers or avoids K/L. We may assume that KN/LN < ®(G/LN).
If LN < HN,then HNK = HNL. If LN j(_ HN, then HNK = HNL. Therefore
HN covers K/L. 1

Recall that the normal index of a maximal subgroup M in a group G is defined
as the order of a chief factor H/K of G, where H is minimal in the set of normal
supplements to M in G. We let (G : M) denote this number.

Lemma 2.5. [4, Lemma 2| If N <G and M is a mazimal subgroup of a finite group
G such that N C M, then n(G/N : M/N) =n(G : M).

Lemma 2.6. [11, Lemma 2.8] Let N be a minimal normal subgroup and M a max-
imal subgroup of a group G. If M is solvable and M NN =1, then G is solvable.

3. Main result

In this section, we study the solvability of a group G when some subgroups are
C AP*-subgroups of G.

Theorem 3.1. Let G be a finite group. Then the following statements are equivalent:

(1) G is solvable;

(2) Every Hall subgroup of G is a CAP*-subgroup of G;

(3) Fwvery Sylow subgroup of G is a CAP*-subgroup of G;
(4) Fvery maximal subgroup of G is a C AP*-subgroup of G.

Proof. (1)= (2) Let H be a Hall subgroup of G and K/L be a non-Frattini chief
factor of G. Since G is solvable, K/L is an elementary abelian p-group for some
prime p. If H is a p’-group, then H N K = HN L. Otherwise, HK = HL. It follows
that H is a C AP*-subgroup of G.

(1)= (4) Let M be a maximal subgroup of G and K/L be a non-Frattini chief
factor of G. If L £ M or K < M, then MK = ML. If L <M and K £ M, then
M/LNK/L is a normal subgroup of G/L since K/L is an elementary abelian group.
By the minimal normality of K/L, we can see that M N K = M N L. Hence M is a
C AP*-subgroup of G.

(2)= (3) Trivial.

(3)= (1) Let N be a minimal normal subgroup of G and P a Sylow subgroup of
G. Then PN/N is a CAP*-subgroup of G/N by hypotheses and Lemma 2.3. Tt
follows from the induction that G/N is solvable. Now, let ¢ be a prime dividing
the order of N and @ € Syl,(G). If N is solvable, then G is solvable. If N is not
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solvable, then N/1 is a non-Frattini chief factor of G. By the hypotheses, we can
see that QNN =1 or QN = . However, these two cases are impossible. Hence N
is solvable and G is as well.

()= (1) Let N be a minimal normal subgroup of G. Then G/N satisfies the
hypotheses of the statement (4) and therefore G/N is solvable by induction. Since
N < ®(G) implies that N is solvable. In this case, G is solvable. Hence we may
assume that N/1 is a non-Frattini chief factor of G. Then there exists a maximal
subgroup M of G such that G = M N. By hypotheses, M covers or avoids N/1.
Since N £ M, we can see that M NN = 1. It follows that M = G/N is solvable.
Applying Lemma 2.6, G is solvable. 1

Theorem 3.2. A group G is solvable if and only if there exists a maximal subgroup
M of G such that M is a solvable C AP*-subgroup of G.

Proof. If GG is solvable, then every maximal subgroup of G is a C AP*-subgroup of G
by Theorem 3.1, and M is solvable. Now, we prove the sufficiency of the condition.
We prove it by induction on |G|.

If Mg # 1, then G/Mg satisfies the hypotheses of our theorem by Lemma 2.3.
We can see that G/Mg is solvable by induction and so is G. If Mg = 1, then the
group G is primitive and then ®(G) = 1. Let N be a minimal subgroup of G, then
G/N = M/(M N N) is solvable. Tt is clear that N is a non-Frattini chief factor of
G, then M NN =1 by hypotheses. Applying Lemma 2.6, G is solvable. 1

Theorem 3.3. A group G is solvable if and only if there exists a maximal subgroup
M of G such that every Sylow subgroup of M is a CAP*-subgroup of G.

Proof. We firstly prove the necessary condition. Suppose that G is solvable. Then
M is a CAP*-subgroup of G by Theorem 3.1. Let P be a Sylow p-subgroup of M
where p is a prime dividing the order of M and let K/L be a non-Frattini chief
factor of G. If pf|K/L|, then PN K = PN L and so P avoids K/L. So we may
assume that K/L is a p-group. If M avoids K/L, then P avoids K/L too. Suppose
that M covers K/L. Then we have |K/L| = (M NL)(PNMNK): MNL| =
(IMNL)PNK): MNL|=|PNK:PnL|so|PK:PL| =1, this means that P
covers K /L, as desired.

We now prove the converse. Suppose that Mg # 1. Let N be a minimal normal
subgroup of G with N < M and let R be a Sylow r-subgroup of M, where r is a
prime dividing the order of M. Then, RN/N € Syl.(M/N) and RN/N is a CAP*-
subgroup of G/N by Lemma 2.3. This means that G/N satisfies the hypotheses of
our theorem. By induction, G/N is solvable. If N is a Frattini chief factor of G,
then N is solvable and G is as well. Suppose that N £ ®(G). By hypotheses, there
exists a Sylow subgroup @ of M such that NNQ # 1, this forces that N < @. Thus,
N is solvable and so is G.

It remains to consider the case where Mg = 1 and let T' be a minimal normal
subgroup of G. It is clear that 7 £ M and therefore T'/1 is a non-Frattini chief
factor of G. Every Sylow subgroup of M covers or avoids T'/1 by hypotheses. If some
Sylow subgroup of M covers T/1, then T' < M, in contradiction to our assumption.
Therefore, suppose that every Sylow subgroup of M avoids T'/1. In this case, it is
clear that M NT =1 and G/T = M. We can deduce that every Sylow subgroup of
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G/T is a C AP*-subgroup of G/T. If follows from Theorem 3.1 that G/T is solvable
and so is M. By Lemma 2.6, G is solvable. 1

Theorem 3.4. Let M be a maximal subgroup of a group G. Then M is a CAP*-
subgroup of G if and only if n(G : M) = |G : M|.

Proof. A maximal subgroup M of a group G is a CAP*-subgroup of G if and only
if the core-free maximal subgroup U = M /Mg is a C AP*-subgroup of the primitive
group X = G/M¢g. On the other hand, U is a CAP*-subgroup of X if and only if
U complements any minimal normal subgroup of X. This happens if and only if X
is a primitive group of type 1 or 3, or X is a primitive group of type 2 and U is a
small maximal subgroup of X.

In fact, (G : M) is the order of any minimal normal subgroup of the primitive
group G/Mg.

If G/M¢ is a monolithic primitive group [1, Definition 1.1.8], then n(G : M) =
|Soc(G/M¢)|. In this case, M/Mg is a C AP*-subgroup of the monolithic primitive
group G /My if and only if (M/M¢g)NSoc(G/M¢g) = 1. By order considerations and
Lemma 2.5, this implies that (G : M) = |Soc(G/M¢g)| = |G/Mg : M/M¢| = |G :

Suppose that G/Mg is a primitive group of type 3. If X is a primitive group of
type 3, then then Soc(X) has exactly two minimal normal subgroups Ny, Ny and
Soc(X) = N1N3, N; = Ny and N; is non-abelian. In this case, if U is a core-free
maximal subgroup of X, then, by [1, Theorem 1.1.7] X = UN; and U N N; = 1 for
i = 1,2 . This is to say that n(X : U) = |N;| = |X : U|. Hence, if G/M¢g is a
primitive group of type 3, then M/M¢ is always a C AP*-subgroup of G/M¢g and
n(G:M)=|G/Mg: M/Mg| = |G : M|. |
Corollary 3.1. [5, 2.5] A finite group G is solvable if and only if n(G : M) = |G : M|

for every maximal subgroup M of G.

Let H be a normal subgroup of a group G and p a prime. We define the following
families of subgroups:

F(G)={M|M < G}
Fpe(G) ={M|M € F(G), |G : M|, =1and |G : M|is composite}
FPr(G) ={M|M € F(G), Ng(P) < M for a Sylow p-subgroup P of G,
M is non-nilpotent and |G : M| is composite}
Frn(G) ={M|M € F(G) and G = MH}
L(G) ={M|M € F(G) and M is not normal in G}
Theorem 3.5. Let H be a normal subgroup of a group G and p the largest prime

dividing the order of G. If every mazimal subgroup M of G in Fpe(G) NFr(G) is a
C AP*-subgroup of G, then H is solvable.

Proof. It F,.(G) NFp(G) = 0, then we claim that H is solvable. In fact, if Fp.(G)
=0, by [17, Theorem 8], G is solvable and so is H. If F,.(G)# 0, then H is contained
in every maximal subgroup M of G in F,.(G). Applying [17, Theorem 8] again, H
is solvable. Now we may assume that F,.(G) NF,(G) is not empty set.
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Let N be a minimal normal subgroup of G, and let M /N be a maximal subgroup of
G/N with M/N €Fp.(G/N) NFr(G/N). Then M €F,.(G) NFr(G). Furthermore,
M/N is a CAP*-subgroup of G/N by Lemma 2.3. It is clear that G/N satisfies the
hypotheses of the theorem for the normal subgroup HN/N and so HN/N is solvable
by induction. If N £ H, then H =~ HN/N is solvable, as desired. Hence we may
assume that N < H and N is a non-Frattini chief factor of G.

Suppose that N is non-solvable. Let g be the largest prime dividing the order of
N and @ a Sylow g-subgroup of N. Then G = Ng(Q)N by the Frattini argument.
So there exists a maximal subgroup M of G which contains Ng(Q), but N £ M.
By hypotheses, p > ¢. If p > g, it is clear that |G : M|, = [N : MNN|,=1. If p =g,
then Ng(Q) contains a Sylow p-subgroup of G. Thus we conclude that |G : M|, =1
in these two cases. If |G : M| = r for some prime r, then, since Mg = 1, we have
that G is isomorphic to a subgroup of the symmetric group S, on r letters. This
implies that |G\|r! and so |N\|r!, in contradiction to that ¢ is the largest prime in
7(N). Hence we conclude that M €F,.(G) NF(G). By the hypotheses, M is a
C AP*-subgroup of G and N £ ®(G), we have that MN = M or M NN = 1. But
these two situations are clearly impossible as N (Q) is contained in M and N £ M,
a contradiction. This shows that IV is solvable and therefore H is solvable. 1

From Theorem 3.5 we have the following corollary.

Corollary 3.2. Let p be the largest prime dividing the order of a group G. If every
mazimal subgroup M of G in F,o(G) is a CAP*-subgroup of G, then G is solvable.

Proof. Let G = H in Theorem 3.5. Then we have the corollary. 1

In Theorem 3.5, the group G is not necessary solvable.

Example 3.1. Let K, H be the Alternating groups on 5 and 4 letters, respectively
and let G = K x H. Suppose that M = K x C3, where ('3 is a cyclic group of order 3
of H. Then M is a maximal subgroup of G. It is clear that H £ M and |G : M| = 4.
Thus M €Fp.(G) NFr(G) and we can also see that F,.(G) NFr(G)={M9g € G}.
Furthermore, it is easy to see that M avoids (K4 x K)/K and K4/1, and covers the
other non-Frattini chief factors of G, where K, is the Klein four group contained in
H. That is, M is a C AP*-subgroup of G. However, G is not solvable.

Theorem 3.6. Let H be a normal subgroup of a group G and p the largest prime
dividing the order of G. If every maximal subgroup M of G in FP™(G) NF(G) is
a CAP*-subgroup of G, then H is p-solvable.

Proof. It FP"(G) NFr(G) = 0, then we can see that H is p-solvable by [11, Lemma
2.4]. Now, we may assume that FP"(G) NFy(G) # 0. Let P € Syl,(G). If P is
normal in G, then G is certainly p-solvable and so is H. So we may assume that
Ng(P) < G.

Let N be a minimal normal subgroup of G. It is clear that G/N satisfies the
hypotheses of the theorem for the normal subgroup HN/N and so HN/N is p-
solvable by induction. By a routine argument, we can assume that IV is contained
in H and N is a non-Frattini chief factor of G.

Suppose that N is non-p-solvable. Then p is a divisor of the order of N. We
know that NN P € Syl,(N) and PN N is not a normal subgroup of N. By Frattini
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argument, we have that G = Ng(P N N)N. So there exists a maximal subgroup
M of G which contains Ng(P N N) and M # N. It is clear that Ng(P) < M. If
|G : M| = g is a prime, then by Sylow’s theorem, we have ¢ = 1 + kp and qHN\.
This contradicts p being the largest prime which divides the order of N. Hence
|G : M| must be a composite number. If M is nilpotent, then the Sylow 2-subgroup
My of M is not identity by [19, Theorem 10.4.2]. Let My be a Hall 2’-subgroup
of M. By [20, Theorem 1], My is normal in G and therefore P < G since P is a
characteristic subgroup of May/. It follow that PN N < G, a contradiction. Thus,
M e Fr™ (G)NF p, (G). By the hypotheses, M is a C AP*-subgroup of G and so
MN = M or MN N = 1. However, these two situations are impossible. This shows
that IV is p-solvable and therefore H is p-solvable. The proof of the theorem is now
complete. 1

Corollary 3.3. Let p be the largest prime dividing the order of G. If every mazimal
subgroup M of G in FP(G) is a CAP*-subgroup of G, then G is p-solvable.

In Theorem 3.6, the group G need not be p-solvable as the following example
shows.

Example 3.2. Let H = (3 x C3 x C5 x Cs be an elementary abelian group of order
2%, Then there is a subgroup M = As in the automorphism group of H, where As
is the Alternating group on 5 letters. Let G = (Cy x Co x Co x Cs) x As be the
corresponding semidirect product. We can deduce that FP"*(G) NF,(G)={MY|g €
G}. Furthermore, MY covers or avoids every non-Frattini chief factor of G. Thus,
M9 is a CAP*-subgroup of GG. That is, G satisfies the hypotheses of the Theorem
3.6. However, GG is not 5-solvable.

Theorem 3.7. A group G is solvable if and only if M is a CAP*-subgroup of G
for every mazimal subgroup M € L(G).

Proof. If G is solvable, then by Theorem 3.1, we know that every maximal subgroup
of G is C AP*-subgroup of G. We only need prove the sufficient condition.

If £(G) =0, then, for any maximal subgroup M of G, M < G. So G is nilpotent
by [19, Theorem 5.2.4]. We may assume that £(G) # . If G is a simple group, then
every maximal subgroup M of G is contained in £(G). It follows from Theorem 3.1
that G is solvable. Hence we may assume that G is not a simple group.

Let N be a minimal normal subgroup of G. If M/N € L(G/N), then M 4 G. If
follows from Lemma 2.3 that M /N is a C AP*-subgroup of G/N. Thus, G/N satisfies
the hypotheses of our theorem. By induction, G/N is solvable. If N < ®(G), then
G is solvable. If N is a non-Frattini chief factor of G, then there exists a maximal
subgroup M of G such that G = M N. By hypotheses, M NN =1 and M = G/N
is solvable. Hence G is solvable by Lemma 2.6. Thus, our proof is complete. 1

By using the 2-maximal subgroups, we obtain the following theorem.

Theorem 3.8. If every 2-mazimal subgroup of a group G is a CAP*-subgroup of
G, then G is solvable.

Proof. Let G be a minimal counterexample. If G is simple, then the trivial subgroup
is the unique 2-maximal subgroup of G. This implies that every maximal subgroup
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is a cyclic group of prime order. In this case G is solvable. Thus G is a non-simple
group.

Let N be a minimal normal subgroup of G. If H/N is a 2-maximal subgroup
of G/N, then H is 2-maximal in G. By hypotheses, H is a C AP*-subgroup of G.
By Lemma 2.3, H/N is a CAP*-subgroup of G/N. Hence, by induction G/N is a
solvable group.

This holds for every minimal normal subgroup of G. By minimality of G we have
that G is a monolithic primitive group of type 2. Suppose that N is the minimal
normal subgroup of G and there exists a core-free maximal subgroup M of G such
that M NN # 1. Let H be any maximal subgroup of M containing M N N. Since H
is a CAP*-subgroup of GG, we have that H N IV = 1. But this is not possible. This
is the final contradiction. 1

Theorem 3.9. If there is a 2-maximal subgroup H of a group G such that H is a
solvable C AP*-subgroup of G, then G is solvable.

Proof. We claim that G is not a simple group. In fact, if G is a simple group and
H is a 2-maximal C AP*-subgroup of G, then H = 1. This forces the existence of a
maximal subgroup M of G such that M is isomorphic to a cyclic group of prime order.
If p is the order of M, then it is clear that M is self-normalizing in G. This implies
that Ng(M) = Ce(M) = M. By the well-known Burnside Theorem [14, IV. 2.6
Satz], the group G has a normal p-complement. But this contradicts our assumption
of simplicity of G.

If He # 1, then it is easy to see that G/H¢ satisfies the hypotheses of the
theorem. An inductive argument shows that G/Hg is solvable and so is G. Suppose
that Hg = 1.

If ®(G) # 1. Let N be a minimal normal subgroup of G containing in ®(G). Then
HN is a maximal subgroup of G and HN is a C AP*-subgroup of G by Lemma 2.4.
We can see that HN is solvable. In view of Theorem 3.2, GG is solvable. Hence we
may assume that ®(G) = 1. If N is a minimal normal subgroup of G, then HN = H
or HN N = 1. It follows from the above arguments that H N N = 1.

We claim that HN < G. Otherwise, if HN = G. By hypotheses, there is
a maximal subgroup M of G such that H is a maximal subgroup of M. It is
clear that M = M NG = H(M N N). Noticing that M N N is normal in M and
(MNN)NH < NNH =1, we see that M NN is a minimal normal subgroup of M.
Applying Lemma 2.6, M is solvable and so M NN is an elementary p-group for some
prime p. Let P = M N N, then we can see that M < Ng(P). If Ng(P) = G, then
N = P by the minimality of N, this implies that G = HN < M, a contradiction.
Hence Ng(P) = M. Tt follows that Ny(P) = P = Cn(P). By the Burnside
theorem, we see that N is p-nilpotent. However, because N is a minimal normal
subgroup of G, N is a p-group and N = P < M = Ng(P) < G, which contradicts
HN =G.

We claim that HN is a maximal subgroup of G. In fact, since H is a 2-maximal
subgroup of G, there is a maximal subgroup M of G such that H is a maximal
subgroup of M. If N « M, then G = MN and HN < MN. Let K be a subgroup
of G with HN < K < MN =G. Then K = N(KNM)and H< KNM < M.
Noticing that H is a maximal subgroup of M, we have that K " M = H or M.
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It follows that K = HN or K = MN = G. Hence HN is a maximal subgroup
of G. If N < M, then HN < M. Since H is a maximal subgroup of M, we see
that HN = M is also a maximal subgroup of G. This implies that N is a minimal
normal subgroup of HN since H is a 2-maximal subgroup of G. By Lemma 2.6,
HN is solvable. Applying Lemma 2.4 and Theorem 3.2, G is solvable. Thus, the
proof is complete. 1

Theorem 3.9 is not true for r-maximal subgroup of a group G when r > 3.

Example 3.3. Let G = §,,, the symmetric group on n letters with n > 5, and
N = A, the alternating group on n letters. If we set H = ((13)) , then H is a
r-maximal subgroup with r > n—2 since we have the following series of subgroups of
G: H<S3<Sy<S5<---<8,. It is easy to see that H is a solvable C' AP*-subgroup
of G, but G is not solvable.
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