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Abstract. In this paper, by using the least action principle in critical point the-

ory, we obtain some existence theorems of periodic solutions for p(t)-Laplacian

system 
d

dt
(|u̇(t)|p(t)−2u̇(t)) = ∇F (t, u(t)) a.e. t ∈ [0, T ]

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

which generalize some existence theorems.
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1. Introduction

This paper is concerned with the existence of periodic solutions for the following
p(t)-Laplacian system

(1.1)


d

dt
(|u̇(t)|p(t)−2u̇(t)) = ∇F (t, u(t)) a.e. t ∈ [0, T ]

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

where p(t) ∈ C([0, T ], R+), p+ = max
0≤t≤T

p(t), p(t) = p(t + T ) for all t ∈ R1, T > 0,

F : [0, T ]× RN → R satisfies the following assumption:
(A) F (t, x) is measurable in t for every x ∈ RN and continuously differentiable in

x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈ L1(0, T ; R+), such
that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)
for all x ∈ RN and a.e. t ∈ [0, T ].

The p(t)-Laplacian system can be applied to describe the physical phenomena
with “pointwise different properties” which arose from the nonlinear elasticity theory
(see [12]). System (1.1) has been studied by Fan in a series of papers (see [2–4]).
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The p(t)-Laplacian system possesses more complicated nonlinearity than that of the
p-Laplacian, for example, it is not homogeneous, this causes many troubles, and
some classical theories and methods, such as the theory of Sobolev spaces, are not
applicable.

If p = 2, system (1.1) reduces to

(1.2)

{
ü(t) = ∇F (t, u(t)) a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0.

the corresponding functional ψ on H1
T given by

ψ(u) =
1
2

∫ T

0

|u̇(t)|2dt+
∫ T

0

F (t, u(t))dt

is a continuously differentiable and weakly lower semi-continuous on H1
T (see [5]),

where

H1
T =

{
u : [0, T ]→ RN, u is absolutely continuous,

u(0) = u(T ), u̇ ∈ L2(0, T ; RN)
}

is a Hilbert space with a norm defined by

‖u‖H1
T

=

(∫ T

0

|u(t)|2dt+
∫ T

0

|u̇(t)|2dt

)1/2

for u ∈ H1
T .

Considerable attention has been paid to the periodic solutions for system (1.2) in
recent years. It has been proved by the least action principle that system (1.2) has at
least one solution which minimizes ϕ on H1

T (see [5, 6–8, 10]). When F (t, ·) is convex
for a.e. t ∈ [0, T ], Mawhin-Willem (see [4]) have proved the existence of solutions
for system (1.2) which minimizes ϕ on H1

T . For non-convex potential cases, by using
the least action principle and the minimax method, the existence of solutions which
minimize ϕ on H1

T has been researched by many people, for example, (see [5–10]).
Inspired and motivated by the results due to Mawhin (see [5]) and Tang (see [6–7]) ,
in this paper, we start to consider system (1.1). Some new solvability conditions are
obtained by using the least action principle, and the results in this paper develop
and generalize some corresponding results.

2. Preliminaries

In this section, we recall some known results in critical point theory, and the prop-
erties of space W 1,p(t)

T are listed for the convenience of readers.

Definition 2.1. [2] Let p(t) ∈ C([0, T ], R+) with p− = min
0≤t≤T

p(t) > 1. Define

Lp(t)([0, T ], RN ) =

{
u ∈ L1([0, T ], RN );

∫ T

0

|u|p(t)dt <∞

}
with the norm

|u|p(t) := inf

{
λ > 0;

∫ T

0

∣∣∣u
λ

∣∣∣p(t)

dt ≤ 1

}
.
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For u ∈ L1
loc([0, T ], RN ), let u′ denotes the weak derivative of u, if u′ ∈ L1

loc([0, T ], RN )
and satisfies ∫ T

0

u′φdt = −
∫ T

0

uφ′dt, ∀φ ∈ C∞0 ([0, T ], RN ).

Define

W 1,p(t)([0, T ], RN ) =
{
u ∈ Lp(t)([0, T ], RN ); u′ ∈ Lp(t)([0, T ], RN )

}
with the norm ‖u‖W 1,p(t) := |u|p(t) + |u′|p(t).

Remark 2.1. If p(t) = p, where p ∈ [1,∞) is a constant, by the definition of |u|p(t),
it is easy to get |u|p = (

∫ T

0
|u(t)|pdt)1/p, which is the same with the usual norm in

space Lp.

The space Lp(t) is a generalized Lebesgue space, and the space W 1,p(t) is a gener-
alized Sobolev space. Because most of the following Lemmas have appeared in [2–5],
we omit their proofs.

Lemma 2.1. [3] Lp(t) and W 1,p(t) are both Banach spaces with the norms defined
above, when p− > 1, they are reflexive.

Definition 2.2. [5]

C∞T = C∞T (R,RN ) =
{
u ∈ C∞(R,RN ) : u is T -periodic

}
with the norm ‖u‖∞ := max

t∈[0,T ]
|u(t)|.

For a constant p ∈ [1,∞), using another conception of weak derivative which is
called T -weak derivative, Mawhin and Willem gave the definition of the space W 1,p

T

by the following way.

Definition 2.3. [5] Let u ∈ L1([0, T ], RN ) and v ∈ L1([0, T ], RN ), if∫ T

0

vφdt = −
∫ T

0

uφ′dt, ∀φ ∈ C∞T

then v is called a T -weak derivative of u and is denoted by u̇.

Definition 2.4. [5] Define

W 1,p
T ([0, T ], RN ) =

{
u ∈ Lp([0, T ], RN ); u̇ ∈ Lp([0, T ], RN )

}
with the norm ‖u‖W 1,p

T
= (|u|pp + |u̇|pp)1/p.

Definition 2.5. [2] Define

W
1,p(t)
T ([0, T ], RN ) =

{
u ∈ Lp(t)([0, T ], RN ); u̇ ∈ Lp(t)([0, T ], RN )

}
and H1,p(t)

T ([0, T ], RN ) to be the closure of C∞T in W 1,p(t)([0, T ], RN ).

Remark 2.2. By Definition 2.5, if u ∈ W 1,p(t)
T ([0, T ], RN ), it is easy to conclude

that u ∈W 1,p−

T ([0, T ], RN ).

By Definition 2.1 and 2.2, we conclude that, for u ∈ L1([0, T ], RN ), the weak
derivative u′ and the T -weak derivative u̇ are two different conceptions (for details
see [4]). Although the two derivatives are distinct, we have
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Lemma 2.2. [2]

(i) C∞T ([0, T ], RN ) is dense in W 1,p(t)([0, T ], RN ),
(ii) W

1,p(t)
T ([0, T ], RN )=H1,p(t)

T ([0, T ], RN ):=
{
u ∈W 1,p(t)([0, T ], RN );u(0) = u(T )

}
,

(iii) If u ∈ H1,1
T , then the derivative u′ is also the T -weak derivative u̇, i.e.

u′ = u̇.

Remark 2.3. In the following part of article, we use ‖u‖ instead of ‖u‖
W

1,p(t)
T

for
convenience without clear indications.

Lemma 2.3. [2] Assume that u ∈W 1,1
T , then

(i)
∫ T

0
u̇dt = 0,

(ii) u has its continuous representation, which is still denoted by u(t) =
∫ t

0
u̇(s)ds+

u(0), u(0) = u(T ),
(iii) u̇ is the classical derivative of u, if u̇ ∈ C([0, T ], RN ).

Since every closed linear subspace of a reflexive Banach space is also reflexive, we
have

Lemma 2.4. [2] H1,p(t)
T ([0, T ], RN ) is a reflexive Banach space if p− > 1.

Obviously, there are continuous embeddings Lp(t) ↪→ Lp− , W 1,p(t) ↪→ W 1,p− and
H

1,p(t)
T ↪→ H1,p−

T . By the classical Sobolev embedding theorem we obtain

Lemma 2.5. [2] There is a continuous embedding

W 1,p(t)(or H1,p(t)
T ) ↪→ C([0, T ], RN ),

when p− > 1, the embedding is compact.

Lemma 2.6. The space W 1,p(t)
T = W̃

1,p(t)
T

⊕
RN , where

W̃
1,p(t)
T :=

{
u ∈W 1,p(t)

T ;
∫ T

0

u(t)dt = 0

}
,

there exist C0 > 0, C1 > 0, if u ∈ W̃ 1,p(t)
T , such that

‖u‖∞ ≤ 2C0

(∫ T

0

|u̇(t)|p(t)
dt

)1/p−

+ C1.

Proof. Let A = {t ∈ [0, T ]||u̇(t)| ≥ 1}. From Remark 2.2, u ∈ W 1,p−

T , from the
inequality in classical Sobolev space, there exists a positive constant C0 > 0, such
that

‖u‖∞ ≤ C

(∫ T

0

|u̇(t)|p
−
dt

)1/p−

= C

(∫
A

|u̇(t)|p
−
dt+

∫
[0,T ]\A

|u̇(t)|p
−
dt

)1/p−
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≤ C
(∫

A

|u̇(t)|p(t)
dt+meas[0, T ]\A

)1/p−

≤ C

(∫ T

0

|u̇(t)|p(t)
dt+ T

)1/p−

≤ 2C

(∫ T

0

|u̇(t)|p(t)
dt

)1/p−

+ 2CT 1/p− ,

This completes the proof of Lemma 2.6.

Lemma 2.7. [2] Each of the following two norms is equivalent to the norm in
W

1,p(t)
T

(i) |u̇|p(t) + |u|q, 1 ≤ q ≤ ∞;
(ii) |u̇|p(t) + |ū|, where ū = (1/T )

∫ T

0
u(t)dt.

Lemma 2.8. [2] If we denote ρ(u) =
∫ T

0
|u|p(t)dt, ∀u ∈ Lp(t), then

(i) |u|p(t) < 1 (= 1;> 1)⇐⇒ ρ(u) < 1 (= 1;> 1);

(ii) |u|p(t) > 1 =⇒ |u|p
−

p(t) ≤ ρ(u) ≤ |u|p
+

p(t), |u|p(t) < 1 =⇒ |u|p
+

p(t) ≤ ρ(u) ≤

|u|p
−

p(t);
(iii) |u|p(t) → 0⇐⇒ ρ(u)→ 0; |u|p(t) →∞⇐⇒ ρ(u)→∞.

Proposition 2.1. In space W 1,p(t)
T , ‖u‖ → ∞ =⇒

∫ T

0
|u̇|p(t)dt+ |ū| → ∞.

Proof. By Lemma 2.7, there exists a constant C2 > 0 such that

‖u‖ ≤ C2(|u̇|p(t) + |ū|),

If |u̇|p(t) < 1, it is easy to get

(2.1) |u̇|p(t) <

∫ T

0

|u̇|p(t)dt+ 1.

If |u̇|p(t) ≥ 1, we conclude that

(2.2)
|u̇|p(t) ≥ 1 =⇒ |u̇|p(t) ≤

(∫ T

0

|u̇|p(t)dt

)1/p−

=⇒ |u̇|p(t) ≤
∫ T

0

|u̇|p(t)dt+ 1

by Lemma 2.8, it follows (2.1) and (2.2) that

‖u‖ ≤ C2

(∫ T

0

|u̇|p(t)dt+ 1 + |ū|

)
,

the above inequality implies that

‖u‖ → ∞ =⇒
∫ T

0

|u̇|p(t)dt+ |ū| → ∞.
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Lemma 2.9. [2] If un, u ∈ Lp(t) (n = 1, 2, · · · ), then the following statements are
equivalent to each other

(i) lim
n→∞

|un − u|p(t) = 0;

(ii) lim
n→∞

ρ(un − u) = 0;

(iii) un → u in measure in [0, T ] and lim
n→∞

ρ(un) = ρ(u).

Definition 2.6. [5] Let X be a normed space. A minimizing sequence for a function
ϕ : X → (−∞,+∞] is a sequence such that

ϕ(uk)→ inf ϕ, as k →∞.
A function ϕ : X → (−∞,+∞] is lower semi-continuous if

uk ⇀ u =⇒ lim
k→∞

ϕ(uk) ≥ ϕ(u).

Lemma 2.10. [11] The functional on W
1,p(t)
T given by

ϕ(u) =
∫ T

0

1
p(t)
|u̇(t)|p(t) +

∫ T

0

F (t, u(t))dt

is a continuously differentiable and weakly lower semi-continuous on W
1,p(t)
T . More-

over, we have

〈ϕ′(u), v〉 =
∫ T

0

[(|u̇(t)|p(t)−2u̇(t), v̇(t)) + (∇F (t, u(t)), v(t))]dt

for all u, v ∈W 1,p(t)
T . It is well known that the critical points of ϕ correspond to the

solutions for system (1.1).

Lemma 2.11. [5] If φ: X → R is w.l.s.c. on a reflexive Banach space X and has
a bounded minimizing sequence, then φ has a minimum on X. If φ is differentiable,
every local minimum (resp. maximum) point satisfies the Euler equation φ′(u) = 0,
that is to say, the minimum (resp. maximum) point corresponds to a critical point
of φ.

Remark 2.4. By Lemma 2.10 and Lemma 2.11, as long as we get a bounded
minimizing sequence of ϕ on W 1,p(t)

T , the existence of a critical point for ϕ is ensured.

Definition 2.7. [6] A function G : RN → R is called γ-quasisubadditive if

G(x+ y) ≤ γ((G(x) +G(y))

for all x, y ∈ RN . We call G subadditive if G is 1-quasisubadditive.

Lemma 2.12. [7] Assume that F satisfies the assumption (A) and

F (t, x)→ +∞, as |x| → ∞
uniformly for a.e. t ∈ [0, T ]. Then there exist β ∈ L1(0, T ) and a subadditive
function G : RN → R, that is

G(x+ y) ≤ G(x) +G(y)

for all x and y in RN , such that

G(x) + β(t) ≤ F (t, x)
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for a.e. t ∈ [0, T ] and all x ∈ RN , and

G(x)→ +∞, as |x| → ∞
and

0 ≤ G(x) ≤ |x|+ 1
for all x ∈ RN .

3. Main results and proofs of theorems

If ϕ has a bounded minimizing sequence, ϕ has a minimum on W
1,p(t)
T and system

(1.1) is solvable. It remains to find conditions under which ϕ has a bounded min-
imizing sequence by Lemma 2.11. When ∇F is bounded by a L1 function for all
x ∈ RN , we shall see that it suffices to require a coercivity condition on the integral
value of potential F (t, x).

Theorem 3.1. Suppose that F satisfies the assumption (A) and that there exists
g(t) ∈ L1(0, T,R+) such that

|∇F (t, x)| ≤ g(t)

for a.e. t ∈ [0, T ] and all x ∈ RN , and if

(3.1)
∫ T

0

F (t, x)dt→ +∞ as |x| → ∞,

then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .

Proof. For u ∈W 1,p(t)
T , we have u = ū+ ũ, where ū = (1/T )

∫ T

0
u(t)dt and

ϕ(u) =
∫ T

0

1
p(t)
|u̇(t)|p(t)dt+

∫ T

0

F (t, ū(t))dt+
∫ T

0

(F (t, u(t)− F (t, ū(t))dt

=
∫ T

0

1
p(t)
|u̇(t)|p(t)dt+

∫ T

0

F (t, ū(t))dt+
∫ T

0

∫ 1

0

(∇F (t, ū+ sũ(t), ũ(t))dsdt

≥
∫ T

0

1
p(t)
|u̇(t)|p(t)dt−

(∫ T

0

g(t)dt

)
‖ũ‖∞ +

∫ T

0

F (t, ū)dt

≥
∫ T

0

1
p(t)
|u̇(t)|p(t)dt− 2C

∫ T

0

g(t)dt

(∫ T

0

|u̇(t)|p(t)
dt

)1/p−

+
∫ T

0

F (t, ū)dt− 2CT 1/p−
∫ T

0

g(t)dt

≥ (1/p+)
∫ T

0

|u̇(t)|p(t)dt+
∫ T

0

F (t, ū)dt− C3

(∫ T

0

|u̇(t)|p(t)
dt

)1/p−

− C4,

(3.2)

for some positive constants C3, C4 by Lemma 2.6. Proposition 2.1, (3.1) and (3.2)
imply that

ϕ(u)→ +∞ as |u‖ → ∞,
and hence every minimizing sequence is bounded, which completes the proof.
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Remark 3.1. Theorem 3.1 generalizes Theorem 1.5 in [5], and we use ū = (1/T )∫ T

0
u(t)dt and ũ = u− ū without clear indications in the following part of article.

We show system (1.1) is solvable when F is periodic in each variable xi. Let
(ei) (1 ≤ i ≤ N) denote the canonical basis of RN .

Theorem 3.2. Assume that F satisfies the condition (A) and there exists Ti > 0
such that

F (t, x+ Tiei) = F (t, x) (1 ≤ i ≤ N)

for a.e. t ∈ [0, T ] and all x ∈ RN , then system (1.1) has at least one solution which
minimizes ϕ on W

1,p(t)
T .

Proof. It follows from the periodicity of F in x that there exists h ∈ L1(0, T ) such
that

F (t, x) ≥ h(t)

for a.e. t ∈ [0, T ] and all x ∈ RN . Consequently, if
∫ T

0
h(t)dt = C5,

ϕ(u) ≥
∫ T

0

1
p(t)
|u̇(t)|p(t)dt+ C5

for all u ∈ W 1,p(t)
T . As inf

W
1,p(t)
T

ϕ < +∞, it follows from the above inequality that
if (uk) is a minimizing sequence for ϕ, there exists C6 > 0 such that

(3.3)
∫ T

0

|u̇k(t)|p(t)dt ≤ C6

for all k ∈ N . On the other hand, it follows from the periodicity of F in x that

ϕ(u+ Tiei) = ϕ(u), 1 ≤ i ≤ N

for all u ∈ W
1,p(t)
T and hence if (uk) is a minimizing sequence for ϕ, ([(ūk, e1) +

k1T1 + (ũk, e1), ..., (ūk, eN ) + kNTN + (ũk, eN )]) is also a minimizing sequence of ϕ
and we can therefore assume that

0 ≤ (ūk, ei) ≤ Ti, (1 ≤ i ≤ N).

Consequently by Proposition 2.1 and (3.3), ϕ admits a bounded minimizing se-
quence, and the proof is completed.

Remark 3.2. Theorem 3.2 generalizes Theorem 1.6 in [5].

When F is convex in x, it is possible to eliminate the boundedness condition on
∇F in Theorem 3.1 and to deduce an existence theorem for system (1.1).

Theorem 3.3. Assume that F satisfies the condition (A) and F (t, ·) is convex for
a.e. t ∈ [0, T ] and

(3.4)
∫ T

0

F (t, x)dt→ +∞ as |x| → ∞,

then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .
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Proof. By assumption of (3.4), the real function on RN defined by

x→
∫ T

0

F (t, x)dt

has a minimum at some point x̄ for which

(3.5)
∫ T

0

∇F (t, x̄)dt = 0.

Let (uk) be a minimizing sequence for ϕ, it follows from (3.5) and the convex property
of F (t, ·) that

ϕ(uk) ≥
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt+
∫ T

0

F (t, x̄)dt+
∫ T

0

(∇F (t, x̄), uk(t)− x̄)dt

=
∫ T

0

1
p(t)
|u̇k|p(t)

dt+
∫ T

0

F (t, x̄)dt+
∫ T

0

(∇F (t, x̄), ũk(t))dt,

where uk = ūk + ũk. By Lemma 2.6, we have

ϕ(uk) ≥
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt+
∫ T

0

F (t, x̄)dt−

(∫ T

0

|∇F (t, x̄)|dt

)
‖ũk‖∞

≥
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt− C7

(∫ T

0

|u̇k(t)|p(t)

)1/p−

− C8

≥ (1/p+)
∫ T

0

|u̇k(t)|p(t)
dt− C7

(∫ T

0

|u̇k(t)|p(t)

)1/p−

− C8,

for some positive constants C7, C8. Hence, there exists a constant C9 > 0 such that

(3.6)
∫ T

0

|u̇k(t)|p(t)
dt ≤ C9.

By Lemma 2.6, it is easy to get that

(3.7) ‖ũk‖∞ ≤ C10

for some constant C10 > 0. Now we have, by convexity,

F (t, ūk/2) = F (t, (1/2)(uk(t)− ũk(t)))

≤ (1/2)F (t, uk(t)) + (1/2)F (t,−ũk(t)),

for a.e. t ∈ [0, T ] and all k ∈ N , hence

ϕ(uk) ≥
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt+ 2
∫ T

0

F (t, ūk/2)dt−
∫ T

0

F (t,−ũk(t))dt.

This implies, by (3.7),

ϕ(uk) ≥ 2
∫ T

0

F (t, ūk/2)dt− C11

for some C11 > 0 and therefore, by (3.4), (ūk) is bounded, which completes the
proof.
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Remark 3.3. Theorem 3.3 generalizes Theorem 1.7 in [5].

We continue to consider system (1.1) with a potential which is the sum of a
function with uniform coercivity and a function with bounded nonlinearity, and get
an existence theorem of periodic solution for system (1.1) under suitable conditions.

Theorem 3.4. Assume that F = F1 + F2, where F1 and F2 satisfy the condition
(A) and

F1(t, x)→ +∞, as |x| → ∞
uniformly for a.e. t ∈ [0, T ], and there exist D0 ∈ R and g1(t) ∈ L1(0, T,R+) such
that

|∇F2(t, x)| ≤ g1(t)

for a.e. t ∈ [0, T ] and all x ∈ RN , and∫ T

0

F2(t, x)dt ≥ D0

for all x ∈ RN , then system (1.1) has at least one solution which minimizes ϕ on
W

1,p(t)
T .

Proof. Let (uk) be a minimizing sequence of ϕ on W
1,p(t)
T , we obtain

ϕ(uk) ≥
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt+
∫ T

0

β(t)dt+
∫ T

0

F2(t, ūk)dt

+
∫ T

0

∫ 1

0

(∇F2(t, ūk + sũk(t), ũk(t))dsdt

≥
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt−
∫ T

0

g1(t)dt‖ũk‖∞ +D0 −D1

≥
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt−D2

(∫ T

0

|u̇k(t)|p(t)
dt

)1/p−

+D0 −D1

≥ (1/p+)
∫ T

0

|u̇k(t)|p(t)
dt−D2

(∫ T

0

|u̇k(t)|p(t)
dt

)1/p−

+D0 −D1,

for some constants D1, D2 > 0 by Lemma 2.6. Hence, there exists a constant D3 > 0
such that ∫ T

0

|u̇k(t)|p(t)
dt ≤ D3.

By Lemma 2.6, we have
‖ũk‖∞ ≤ D4

for some constant D4 > 0. Moreover, we have

ϕ(uk) ≥
∫ T

0

G(uk(t))dt+
∫ T

0

β(t)dt+
∫ T

0

F2(t, ūk)dt

+
∫ T

0

∫ 1

0

(∇F2(t, ūk + sũk(t), ũk(t))dsdt
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≥ TG(ūk)−
∫ T

0

G(−ũk(t))dt−
∫ T

0

g1(t)dt‖ũk‖∞ +D0 −D1

≥ TG(ūk)−D5,

for some constant D5 > 0. By the coercivity of G, we obtain

|ūk| ≤ D6,

for some constant D6 > 0. Therefore, (uk) is bounded in W
1,p(t)
T , which completes

the proof.

Remark 3.4. Theorem 3.4 generalizes Theorem 1.1 in [7].

Corollary 3.1. Assume that F (t, x) satisfies the assumption (A) and

F (t, x)→ +∞, as |x| → ∞

uniformly for a.e. t ∈ [0, T ], then system (1.1) has at least one solution which
minimizes ϕ on W

1,p(t)
T .

We consider system (1.1) with γ-quasisubadditive potential and obtain two exis-
tence theorems of periodic solutions for system (1.1) under suitable conditions.

Theorem 3.5. Assume that F = F1 + F2, where F1 and F2 satisfy the condition
(A) and F1(t, ·) is subadditive for a.e. t ∈ [0, T ] and there exists g2(t) ∈ L1(0, T,R+)
such that

|∇F2(t, x)| ≤ g2(t)

for all a.e. t ∈ [0, T ] and x ∈ RN , and if

(3.8)
∫ T

0

F (t, x)dt→ +∞ as |x| → ∞,

then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .

Proof. By the subadditivity and assumption (A), we obtain

F1(t, x) ≤ ([|x|] + 1)F1(t, x/([|x|] + 1)) ≤ (|x|+ 1)ab(t)

for a.e. t ∈ [0, T ] and all x ∈ RN , where [·] is the Gaussian function and

a = max
0≤s≤1

a(s).

Now write u = ū+ ũ, by Lemma 2.6, we get

ϕ(u) =
∫ T

0

1
p(t)
|u̇(t)|p(t)

dt+
∫ T

0

F1(t, u(t))dt+
∫ T

0

F2(t, u(t))dt.

≥
∫ T

0

1
p(t)
|u̇(t)|p(t)

dt+
∫ T

0

F1(t, ū)dt−
∫ T

0

F1(t,−ũ(t))dt

+
∫ T

0

F2(t, ū)dt+
∫ T

0

∫ 1

0

(∇F2(t, ū+ sũ(t), ũ(t))dsdt

≥
∫ T

0

1
p(t)
|u̇(t)|p(t)

dt+
∫ T

0

F (t, ū)dt− a
∫ T

0

b(t)dt(‖ũ‖∞ + 1)
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−
∫ T

0

g2(t)dt‖ũ‖∞

≥ (1/p+)
∫ T

0

|u̇(t)|p(t)dt− E0

(∫ T

0

|u̇(t)|p(t)
dt

)1/p−

+
∫ T

0

F (t, ū)dt− E1,

for some constants E0 > 0, E1 > 0. It follows from the Proposition 2.1 and (3.8)
that

ϕ(u)→ +∞ as |u‖ → ∞,
and hence every minimizing sequence is bounded, which completes the proof.

Remark 3.5. Theorem 3.5 generalizes Theorem 1 in [7].

Theorem 3.6. Assume that F = F1 + F2, where F1 and F2 satisfy the condition
(A) and F1(t, ·) is γ-quasisubadditive with γ > 1 for a.e. t ∈ [0, T ] and there exists
E2 ∈ R and g3(t) ∈ L1(0, T,R+) such that

|∇F2(t, x)| ≤ g3(t)

for a.e. t ∈ [0, T ] and all x ∈ RN , and∫ T

0

F2(t, x)dt ≥ E2

for all x ∈ RN , and if

(3.9)
∫ T

0

F (t, x)dt→ +∞ as |x| → ∞,

then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .

Proof. By the γ-quasisubadditivity of F1(t, ·) with γ > 1 and the assumption (A),
we have

F1(t, x) ≥ (γ/(1− γ))F1(t, 0)

≥ (γ/(1− γ))a(0)b(t)

for all x ∈ RN and a.e. t ∈ [0, T ]. Let (uk) be a minimizing sequence of ϕ. By
Lemma 2.6, we obtain

ϕ(uk) =
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt+ (a(0)γ/(1− γ))
∫ T

0

b(t)dt

+
∫ T

0

F2(t, ūk)dt+
∫ T

0

∫ 1

0

(∇F2(t, ūk + sũk(t), ũk(t))dsdt

≥
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt−
∫ T

0

g3(t)dt‖ũk‖∞ + E2 − E3

≥
∫ T

0

1
p(t)
|u̇k(t)|p(t)

dt− E4

(∫ T

0

|u̇k(t)|p(t)
dt

)1/p−

− E5

≥ (1/p+)
∫ T

0

|u̇k(t)|p(t)
dt− E4

(∫ T

0

|u̇k(t)|p(t)
dt

)1/p−

− E5,
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for some positive constants E3, E4, E5. Hence, we have∫ T

0

|u̇k(t)|p(t)
dt ≤ E6.

for some positive constant E6 by Lemma 2.6, there exists E7 > 0, such that

‖ũk‖∞ ≤ E7.

Moreover, we have

ϕ(uk) = (1/γ)
∫ T

0

F1(t, ūk)dt−
∫ T

0

F1(t,−ũk)dt+
∫ T

0

F2(t, ūk)dt

+
∫ T

0

∫ 1

0

(∇F2(t, ūk + sũk(t), ũk(t))dsdt

≥ (1/γ)
∫ T

0

F1(t, ūk)dt− ( max
0≤s≤E7

a(s))
∫ T

0

b(t)dt

+

(∫ T

0

F2(t, ūk)dt− E2

)
+ E2 −

∫ T

0

g3(t)dt‖ũk‖∞

≥ (1/γ)
∫ T

0

F (t, ūk)dt− E8,

for some positive constant E8. Hence, one obtains

|ūk| ≤ E9,

for some positive constant E9 by (3.9). Therefore (uk) is bounded in W
1,p(t)
T , and

hence every minimizing sequence is bounded, which completes the proof.

Remark 3.6. Theorem 3.6 generalizes Theorem 2 in [7].

Corollary 3.2. Assume that F satisfies the assumption (A) and F (t, ·) is γ-quasi-
subadditive with γ ≥ 1 for a.e. t ∈ [0, T ], and if∫ T

0

F (t, x)dt→ +∞ as |x| → ∞,

then system (1.1) has at least one solution which minimizes ϕ on W
1,p(t)
T .
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