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1. Introduction

Philips [24] proposed a new generalization of Bernstein polynomials by

Bn,q (f ;x) =
n∑
k=0

f

(
[k]
[n]

)[
n
k

]
xk

n−k−1∏
s=0

(1− qsx) ,

where
[
n
k

]
is defined by (2.1). These were studied widely by a number of authors

[2, 3, 5–26]. In [16], Lupaş proposed the q-Bernstein polynomials: for each positive
integer n, and f ∈ C[0, 1], the q-Bernstein polynomial of f is

Rn,q (f ;x) =
∞∑
k=0

f

(
[k]
[n]

)[
n
k

]
q

k(k−1)
2 xk (1− x)n−k

n−1∏
j=0

(1− x+ qjx)
.

The polynomial Bn,q (f ;x) and the rational function Rn,q (f ;x) have much in
common. They reduce to the Bernstein polynomials when we put q = 1 and share
the shape-preserving properties of the Bernstein polynomials when 0 < q < 1. Lupaş
[16] investigated approximating and shape-preserving properties of Rn,q (f ;x). For
q 6= 1, the operators Rn,q (f ;x) are rational functions rather than polynomials.
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In [22], Ostrovska proved that for each f ∈ C [0, 1] and q ∈ (0, 1), the sequence
{Rn,q (f ;x)}n≥1 converges uniformly to R∞,q (f ;x) on [0, 1] as n→∞, where

R∞,q (f ;x) =
{ ∑∞

k=0f
(
1− qk

)
r∞,k (q;x) , x ∈ [0, 1) ,

f (1) , x = 1,

and

r∞,k (q;x) :=
q

k(k−1)
2 (x/ (1− x))k

(1− q)k [k]!
∞∏
j=0

(1 + qjx/ (1− x))
.

Cheney and Sharma [3] introduced a slight modification of the MKZ operators
[20] and called the operators Bernstein power series. On the other hand, in [26],
Trif introduced the q-Meyer-König and Zeller operators (or the q-MKZ operators for
simplicity): for each positive integer n, and f ∈ C[0, 1],

Mn,q (f ;x) :=

 (1− x)n+1
q

∑∞
k=0f

(
[k]

[n+k]

)[ n+ k
k

]
xk, 0 ≤ x < 1,

f (1) , x = 1.

Doğru and Duman [6] introduced a new generalization of q-MKZ operators and
studied statistical approximation properties of such operators. A q-generalization
of Meyer-König and Zeller operators in several variables was studied by Aktuglu,
Ozarslan and Duman [1]. In [13], Wang investigated properties of convergence for
the q-MKZ operators Mn,q. He also gave explicit formulas of Voronovskaya type
for the q-MKZ operators Mn,q for fixed 0 < q < 1. In [10], Govil and Gupta intro-
duced a new type of q-integrated Meyer-König-Zeller-Durrmeyer operators, obtained
moments for the these operators and estimated the convergence of these integrated
q-MKZD operators.

Motivating by the work [16], we introduce a new q-analogue of the MKZ operators.

Definition 1.1. The linear operator Mn,q : C [0, 1]→ C [0, 1] defined by

Mn,q (f ;x) :=


(1− x)n+1∑∞

k=0f
(

[k]
[n+k]

)[ n+ k
k

]
q

k(k−1)
2 xk

n+k∏
j=0

(1−x+qjx)

, 0 ≤ x < 1,

f (1) , x = 1.

is called the q-analoque of the Meyer-König and Zeller operator.

New q-MKZ operators Mn,q (f ;x) have an advantage of generating positive linear
operators for all q > 0, whereas q-MKZ operators Mn,q (f ;x) generate positive linear
operators only if 0 < q < 1. In this paper, we study the rate of convergence of the new
q-MKZ operators Mn,q (f ;x). We obtain the estimates for the rate of convergence
of Mn,q (f ;x) by the modulus of continuity of f , and the estimates are sharp in the
sense of order for Lipschitz continuous functions. Our results demonstrate that the
estimates for the rate of convergence of the new q-MKZ operators Mn,q (f ;x) are
essentially different from those for the classical MKZ operators, however they are
very similar to those for the q-MKZ operators Mn,q (f ;x) in the case 0 < q < 1.
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2. Some auxilary results

Before introducing the operators, we mention some basic definitions of q calculus.
Let q > 0. For any n ∈ N ∪ {0}, the q-integer [n] = [n]q is defined by

[n] := 1 + q + ...+ qn−1, [0] := 0;

and the q-factorial [n]! = [n]q! by

[n]! := [1] [2] ... [n] , [0]! := 1.

For integers 0 ≤ k ≤ n, the q-binomial is defined by

(2.1)
[
n
k

]
:=

[n]!
[k]! [n− k]!

.

Also, we use the following standard notations:

(1− z)nq :=
n−1∏
j=0

(
1− qjz

)
, (1− z)∞q :=

∞∏
j=0

(
1− qjz

)
,

mn,k (q;x) :=
[
n+ k
k

]
qk(k−1)/2 (x/ (1− x))k∏n+k
j=0 (1 + qj (x/ (1− x)))

,

m∞,k(q;x) := r∞,k(q;x) =
q

k(k−1)
2 (x/ (1− x))k

(1− q)k [k]!
∞∏
j=0

(1 + qjx/ (1− x))
.

It will be convenient to use for x ∈ [0, 1) the substitution

u :=
x

1− x
, u ∈ [0,∞) .

We may express mn,k (q;x) , m∞,k (q;x) for x ∈ [0, 1) as follows:

mn,k (q;x) =
[
n+ k
k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

=: bn,k(q;u),

m∞,k (q;x) =
q

k(k−1)
2 uk

(1− q)k [k]! (1 + u)∞q
=: b∞,k(q;u).

Clearly

bn,k(q;u) = mn,k

(
q;

u

1 + u

)
and

Mn,q(f ;x) = Mn,q

(
f ;

u

1 + u

)
=
∞∑
k=0

f

(
[k]

[n+ k]

)
bn,k(q;u).

For f ∈ C[0, 1], t > 0, the modulus of continuity ω(f ; t) and the second modulus of
smoothness ω2(f ; t) of f are defined by

ω(f ; t) = sup
|x−y|≤t

|f(x)− f(y)| ,

ω2(f ; t) = sup
0≤h≤t

sup
0≤x≤1−2h

|f(x+ 2h)− 2f(x+ h) + f(x)| .
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Lemma 2.1. The following are true:

Mn,q (1;x) = 1, Mn,q (t;x) = x,(2.2)

0 ≤Mn,q

(
t2;x

)
− x2 ≤ 1

[n+ 1]
x+

q2x2

1− x+ qx
− x2

≤ 1
[n+ 1]

x− x2 (1− x) (1− q)
1− x+ qx

,(2.3)

M∞,q
(
t2;x

)
= (1− q)x+

q2x2

1− x+ qx
.(2.4)

Proof. First we prove that Mn,q (1;x) =
∑∞
k=0mn,k (q;x) = 1. Indeed if gn (u) =

1/(1 + u)n+1
q , then by the q-Taylor formula

1 = gn (0) =
∞∑
k=0

(−1)k ukqk(k−1)/2

[k]!
D(k)
q gn (u)

=
∞∑
k=0

(−1)k ukqk(k−1)/2

[k]!
(−1)k [n+ 1] ... [n+ k]

(1 + u)n+k+1
q

=
∞∑
k=0

[
n+ k
k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

=
∞∑
k=0

bn,k (q;u) =
∞∑
k=0

mn,k (q;x) .

By using the above identity, the second equality of (2.2) folllows:

Mn,q (t;x) = Mn,q

(
t;

u

1 + u

)
=
∞∑
k=0

[k]
[n+ k]

[
n+ k
k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

=
u

1 + u

∞∑
k=1

[
n+ k − 1
k − 1

]
q(k−1)(k−2)/2 (qu)k−1

(1 + qu)n+k
q

=
u

1 + u

∞∑
k=0

bn,k (q; qu) =
u

1 + u
= x.

Now we estimate Mn,q

(
t2;x

)
− x2. We find an upper estimate for Mn,q

(
t2;x

)
:

Mn,q

(
t2;x

)
= Mn,q

(
t2;

u

1 + u

)
=
∞∑
k=0

[k]2

[n+ k]2

[
n+ k
k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

=
∞∑
k=0

[k]
[n+ k]

[
n+ k − 1
k − 1

]
qk(k−1)/2uk

(1 + u)n+k+1
q

=
∞∑
k=1

1
[n+ k]

[
n+ k − 1
k − 1

]
qk(k−1)/2uk

(1 + u)n+k+1
q

+
∞∑
k=2

[k]− 1
[n+ k]

[n+ k − 1]
[n+ k − 2]!
[k − 1]! [n]!

qk(k−1)/2uk

(1 + u)n+k+1
q

=: I1 + I2
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It is clear that

I1 ≤
1

[n+ 1]
u

1 + u

∞∑
k=0

[
n+ k
k

]
qk(k−1)/2 (qu)k

(1 + qu)n+k+1
q

=
1

[n+ 1]
u

1 + u
=

x

[n+ 1]

and

I2 = q

∞∑
k=2

[n+ k − 1]
[n+ k]

[n+ k − 2]!
[k − 2]! [n]!

qk(k−1)/2uk

(1 + u)n+k+1
q

= q

∞∑
k=2

(
[n+ k]− qn+k−1

[n+ k]

)[
n+ k − 2
k − 2

]
qk(k−1)/2uk

(1 + u)n+k+1
q

≤ q
∞∑
k=0

[
n+ k
k

]
qk(k−1)/2q2k+1uk+2

(1 + u)n+k+3
q

= q
qu2

(1 + u) (1 + qu)

∞∑
k=0

[
n+ k
k

]
qk(k−1)/2

(
q2u
)k

(1 + q2u)n+k+1
q

=
q2u2

(1 + u) (1 + qu)
=

q2x2

1− x+ qx
.

Thus

Mn,q

(
t2;x

)
= I1 + I2 ≤

x

[n+ 1]
+

q2x2

1− x+ qx
.

From [5, p. 281] we know that if a positive linear operator L on C[0, 1] reproduces
linear functions, then L (f ;x) ≥ f (x) for any convex function f and for any x ∈ [0, 1].
So Mn,q

(
t2;x

)
− x2 ≥ 0.

Finally we prove (2.4):

M∞,q
(
t2;x

)
= M∞,q

(
t2;

u

1 + u

)
=
∑∞

k=0

(
1− qk

)2
b∞,k (q;u)

=
∑∞

k=0
(1− q)2 [k]2

qk(k−1)/2uk

(1− q)k [k]! (1 + u)∞q

=
∑∞

k=0

[k] (q [k − 1] + 1) qk(k−1)/2uk

(1− q)k−2 [k]! (1 + u)∞q

=
1− q

(1 + u)∞q

∑∞

k=1

qk(k−1)/2uk

(1− q)k−1 [k − 1]!
+

q

(1 + u)∞q

∑∞

k=2

qk(k−1)/2uk

(1− q)k−2 [k − 2]!

= (1− q) u

1 + u

∑∞

k=0
b∞,k (q; qu) +

q2u2

(1 + u) (1 + qu)

∑∞

k=0
b∞,k

(
q; q2u

)
= (1− q) u

1 + u
+

q2u2

(1 + u) (1 + qu)
= (1− q)x+

q2x2

1− x+ qx
.

Lemma 2.2. Let 0 < q < 1, k ≥ 0, n ≥ 1. For any x ∈ [0, 1) we have

|mn,k(q;x)−m∞,k(q;x)| ≤ x

1− x
qn+k+1

1− q
mn,k(q;x) +

qn+1

1− q
m∞,k(q;x).
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Proof. Standard computations show that

|mn,k(q;x)−m∞,k(q;x)| = |bn,k(q;u)− b∞,k(q;u)|

=

∣∣∣∣∣∣
[
n+ k
k

] k−1∏
j=0

qju

1 + qju

n∏
j=0

(
1− qk+ju

1 + qk+ju

)

− 1
(1− q)k [k]!

k−1∏
j=0

qju

1 + qju

∞∏
j=0

(
1− qk+ju

1 + qk+ju

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
[
n+ k
k

] k−1∏
j=0

qju

1 + qju

 n∏
j=0

(
1− qk+ju

1 + qk+ju

)
−
∞∏
j=0

(
1− qk+ju

1 + qk+ju

)
+

k−1∏
j=0

qju

1 + qju

∞∏
j=0

(
1− qk+ju

1 + qk+ju

)([
n+ k
k

]
− 1

(1− q)k [k]!

)∣∣∣∣∣∣
≤ bn,k(q;u)

∣∣∣∣∣∣1−
∞∏

j=n+k+1

(
1− qju

1 + qju

)∣∣∣∣∣∣+ b∞,k(q;u)

∣∣∣∣∣∣
n+k∏
j=n+1

(1− qj)− 1

∣∣∣∣∣∣ .(2.5)

Now using the inequality

1−
k∏
j=1

(1− aj) ≤
k∑
j=1

aj , (a1, a2, ..., ak ∈ (0, 1), k = 1, 2, ...,∞),

we get from (2.5) that

|bn,k(q;u)− b∞,k(q;u)| ≤ bn,k(q;u)
∞∑

j=n+k+1

qju

1 + qju
+ b∞,k(q;u)

n+k∑
j=n+1

qj

≤ bn,k(q;u)
uqn+k+1

1− q
+ b∞,k(q;u)

qn+1

1− q
.

Lemma 2.3. With the definitions of mn,k(q;x) and m∞,k(q;x), we have
∞∑
k=0

qkmn,k(q;x) ≤ 1− x+ qnx,

∞∑
k=0

qkm∞,k(q;x) = 1− x.

Proof. Using (2.2), we get
∞∑
k=0

qkmn,k(q;x) =
∞∑
k=0

(qn+k − 1)
qk − 1
qn+k − 1

mn,k(q;x) +
∞∑
k=0

mn,k(q;x)

≤ (qn − 1)
∞∑
k=0

[k]
[n+ k]

mn,k(q;x) +
∞∑
k=0

mn,k(q;x)

= (qn − 1)Mn,q(t;x) + 1 = 1− x+ qnx.

The second identity can be done in a similar way.

Theorem 2.1. If f : [0, 1] → R is a convex function, then the sequence {Mn,q (f ;
x)}n≥1 is nonincreasing in n for each q > 0 and x ∈ [0, 1].
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Proof. One can easily obtain

Mn,q (f ;x)−Mn+1,q (f ;x)

= Mn,q

(
f ;

u

1 + u

)
−Mn+1,q

(
f ;

u

1 + u

)
=
∞∑
k=0

f

(
[k]

[n+ k]

)[
n+ k
k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

−
∞∑
k=0

f

(
[k]

[n+ k + 1]

)[
n+ k + 1

k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

(
1− qn+k+1u

1 + qn+k+1u

)

=
∞∑
k=0

f

(
[k]

[n+ k]

)[
n+ k
k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

−
∞∑
k=0

f

(
[k]

[n+ k + 1]

)[
n+ k + 1

k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

+
∞∑
k=1

qn+1f

(
[k − 1]
[n+ k]

)[
n+ k
k − 1

]
qk(k−1)/2uk

(1 + u)n+k+1
q

=
∞∑
k=1

(
[n+ 1]

[n+ k + 1]
f

(
[k]

[n+ k]

)
+ qn+1 [k]

[n+ k + 1]
f

(
[k − 1]
[n+ k]

)
− f

(
[k]

[n+ k + 1]

))

×
[
n+ k + 1

k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

By choosing

α =
[n+ 1]

[n+ k + 1]
, β = qn+1 [k]

[n+ k + 1]
, α+ β = 1,

x1 =
[k]

[n+ k]
, x2 =

[k − 1]
[n+ k]

we can write

Mn,q (f ;x)−Mn+1,q (f ;x)

=
∞∑
k=1

(αf (x1) + βf (x2)− f (αx1 + βx2))
[
n+ k + 1

k

]
qk(k−1)/2uk

(1 + u)n+k+1
q

.

Because of convexity of f , we can say that {Mn,q (f ;x)}n≥1 is nonincreasing in n.

3. Main results

In this section we will discuss approximating properties of the new q-MKZ operators.
From the definition of the new q-MKZ operators Mn,q we know that Mn,q are positive
linear operators for all q > 0. Hence the moments Mn,q (tr;x) (r = 0, 1, 2) are of
particular importance by the theory of approximation by positive operators. Based
on the formulas for Mn,q (tr;x) (r = 0, 1, 2) we have the following approximation
theorem.
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Theorem 3.1. Let 0 < qn < 1. Then the sequence {Mn,qn
(f)}n≥1 converges to f

uniformly on [0, 1] for each f ∈ C [0, 1] if limn→∞ qn = 1.

Proof. Since Mn,qn
(f ;x), define positive linear operators, the Korovkin theorem

implies thatMn,qn
(f ;x) ⇒ f (x) for any f ∈ C [0, 1] if and only ifMn,qn

(tm;x) ⇒ xm

for x ∈ [0, 1] and m = 0, 1, 2. For m = 0, 1 this is true for any sequence {qn} due to
(2.2).

Suppose that qn → 1. Then, for any fixed positive integer k, we have [n]qn
≥ [k]qn

when n ≥ k. Therefore, lim infn→∞ [n]qn
≥ limn→∞ [k]qn

= k. Since k was chosen
arbitrarily, it follows that [n]qn

→∞. Hence, x
[n+1]qn

⇒ 0 for x ∈ [0, 1]. At the same
time, for qn ≥ 1/2, we have

0 ≥ −x
2 (1− x) (1− qn)

1− x+ qnx
≥ −1

4
1− qn

1− x+ qnx
≥ −1

4
1− qn

1− x/2
≥ −1

2
(1− qn)

for all x ∈ [0, 1]. Therefore,

x

[n+ 1]qn

− x2 (1− x) (1− qn)
1− x+ qnx

⇒ 0

for x ∈ [0, 1]. It follows from (2.3) that Mn,qn(t2;x) ⇒ x2 for x ∈ [0, 1].
Theorem 3.1 implies that if 0 < q < 1 is fixed, {Mn,q (f)}n≥1 may not be ap-

proximating for some continuous functions. We will discuss convergence properties
for the new q-MKZ operators for fixed 0 < q < 1. It should be mentioned that the
new limit q- MKZ operators, M∞,q (f) , are exactly the same with the limit q-Lupaş
operators, R∞,q (f) , introduced by Ostrovska in [22], namely

M∞,q (f ;x) :=


∑∞
k=0f

(
1− qk

)
m∞,k (q;x) , x ∈ [0, 1) ,

f (1) , x = 1.

Theorem 3.2. Let 0 < q < 1 and f ∈ C [0, 1]. Then

(3.1) ‖Mn,q (f)−M∞,q (f)‖ ≤ Cqω (f ; qn) ,

where Cq = max {5, 2 + 3q/(1− q)} . The above estimate is sharp in the following
sense of order: for each α, 0 < α ≤ 1, there exists a function fα (x) which belongs
to the Lipschitz class Lip α := {f ∈ C [0, 1] : ω (f ; t)� tα} such that

‖Mn,q (f)−M∞,q (f)‖ � qαn.

Proof. Consider
∆ (x) := Mn,q(f ;x)−M∞,q(f ;x).

SinceMn,q(f ;x) andM∞,q(f ;x) possess the end point interpolation property, ∆ (0) =
∆ (1) = 0. For all x ∈ (0, 1) we rewrite ∆ in the following form

∆ (x) =
∞∑
k=0

[
f

(
[k]

[n+ k]

)
− f

(
1− qk

)]
mn,k(q;x)

+
∞∑
k=0

[
f
(
1− qk

)
− f (1)

]
(mn,k(q;x)−m∞,k(q;x)) =: I1 + I2.
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We start with estimation of I1. Since

[k]
[n+ k]

−
(
1− qk

)
=

1− qk

1− qn+k
−
(
1− qk

)
= qn+k 1− qk

1− qn+k
≤ qn+k ≤ qn,

we get

(3.2) |I1| ≤ ω (f ; qn)
∞∑
k=0

mn,k(q;x) = ω (f ; qn) .

Then we estimate I2. Using the property of the modulus of continuity

ω (f ;λt) ≤ (1 + λ)ω (f ; t) , λ > 0

and Lemma 2.2, we get

|I2| ≤
∞∑
k=0

ω
(
f ; qk

)
|mn,k(q;x)−m∞,k(q;x)|

≤ ω (f ; qn)
∞∑
k=0

(
1 + qk−n

)
|mn,k(q;x)−m∞,k(q;x)|

≤ 2ω (f ; qn) + ω (f ; qn)
1
qn

∞∑
k=0

qk |mn,k(q;x)−m∞,k(q;x)|

≤ 2ω (f ; qn) + ω(f ; qn)
1
qn

∞∑
k=0

qk
(

x

1− x
qn+k+1

1− q
mn,k(q;x) +

qn+1

1− q
m∞,k(q;x)

)
.

If qnx/(1− x) ≤ 1, then

|I2| ≤ 2ω (f ; qn)

+ ω(f ; qn)
1
qn

(
qn+1x

(1− q)(1− x)

∞∑
k=0

q2kmn,k(q;x) +
qn+1

1− q

∞∑
k=0

qkm∞,k(q;x)

)

≤ 2ω (f ; qn) + ω(f ; qn)
1
qn

(
qn+1x

(1− q)(1− x)

∞∑
k=0

qkmn,k(q;x) +
qn+1

1− q
(1− x)

)

≤ 2ω (f ; qn) + ω(f ; qn)
1
qn

(
qn+1x

(1− q)(1− x)
(1− x+ qnx) +

qn+1

1− q
(1− x)

)
= 2ω (f ; qn) + ω(f ; qn)

1
qn

(
qn+1x

1− q
+
qn+1x

1− q
qnx

1− x
+
qn+1(1− x)

1− q

)

≤ ω (f ; qn)
(

2 +
3q

1− q

)
.

(3.3)

From (3.2) and (3.3), we conclude the desired estimation for 0 < x ≤ 1/(1 + qn).
Now suppose x ∈ (1/(1 + qn), 1) , that is, 1 − x < qn/(1 + qn) < qn. Then we

have

|∆(x)| = |Mn,q(f ;x)−M∞,q(f ;x)|
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=

∣∣∣∣∣
∞∑
k=0

(
f

(
[k]

[n+ k]

)
− f(1)

)
mn,k(q;x)−

∞∑
k=0

(
f
(
1− qk

)
− f(1)

)
m∞,k(q;x)

∣∣∣∣∣
≤
∞∑
k=0

∣∣∣∣f ( [k]
[n+ k]

)
− f(1)

∣∣∣∣mn,k(q;x) +
∞∑
k=0

∣∣f (1− qk)− f(1)
∣∣m∞,k(q;x)

since ∣∣∣∣ [k]
[n+ k]

− 1
∣∣∣∣ =

∣∣∣∣ 1− qk

1− qn+k
− 1
∣∣∣∣ = qk

1− qn

1− qn+k
≤ qk,

and
ω (f ;λt) ≤ (1 + λ)ω (f ; t) , λ > 0,

we get

|∆(x)| ≤
∞∑
k=0

ω
(
f ; qk

)
mn,k(q;x) +

∞∑
k=0

ω
(
f ; qk

)
m∞,k(q;x)

≤
∞∑
k=0

ω (f ; qn)
(

1 +
qk

qn

)
mn,k(q;x) +

∞∑
k=0

ω (f ; qn)
(

1 +
qk

qn

)
m∞,k(q;x)

= 2ω (f ; qn) +
ω (f ; qn)

qn

∞∑
k=0

qkmn,k(q;x) +
ω (f ; qn)

qn

∞∑
k=0

qkm∞,k(q;x)

≤ 2ω (f ; qn) +
ω (f ; qn)

qn
(1− x+ qnx) +

ω (f ; qn)
qn

(1− x)

≤ 2ω (f ; qn) +
ω (f ; qn)

qn
(qn + qnx) +

ω (f ; qn)
qn

qn

≤ 5ω (f ; qn) .

Finally we show that (3.1) is sharp. For each 0 < α ≤ 1, suppose that fα is a
continuous function defined as follows.

fα (x) =


0, 0 ≤ x ≤ 1− q,

(x− (1− q))α , 1− q ≤ x ≤ 1− q + q−q2
2 ,

−
[
q(1−q)

2

]α−1 (
x− 1 + q2

)
, 1− q + q−q2

2 ≤ x ≤ 1− q2,
0, 1− q2 ≤ x ≤ 1.

Then ω (fα; t) ≤ Ctα, and

‖Mn,q (fα;x)−M∞,q (fα;x)‖

=
(
qn+1 (1− q)

1− qn+1

)α
‖mn,1 (q; ·)‖ � qαn ‖mn,1 (q; ·)‖ � qαn.

The proof of Theorem 3.2 is completed.

Remark 3.1. It should be emphasized that Theorem 3.2 cannot be obtained in
a way similar to the proof of the Popoviciu Theorem for the classical Bernstein
polynomials. It requires different estimation techniques due to the infinite product
involved. Also, the proof in the paper is more difficult than the one used for q-MKZ
operators (see [13]), since the new q-analogue of MKZ operators has the singular
nature at the point x = 1 and need a new method.
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Theorem 3.3. Let 0 < q < 1. Then

(3.4) ‖Mn,q (f)−M∞,q (f)‖ ≤ Cω2

(
f ;
√
qn
)
.

Furthermore,

(3.5) sup
0<q≤1

‖Mn,q (f)−M∞,q (f)‖ ≤ Cω2

(
f ;n−1/2

)
,

where C is an absolute constant.

Proof. It is clear that the new q-MKZ operators satisfy conditions (A) and (B) of
Theorem 2 [12]:

(A) Mn,q (1;x) = M∞,q (1;x), Mn,q (t;x) = M∞,q (t;x) and

0 ≤ λn (x) = Mn,q

(
t2;x

)
−M∞,q

(
t2;x

)
= Mn,q

(
(t− x)2 ;x

)
−M∞,q

(
(t− x)2 ;x

)
≤ 1

[n+ 1]
x+

q2x2

1− x+ qx
− (1− q)x− q2x2

1− x+ qx
=

qn+1

[n+ 1]
x→ 0

as n→∞.
(B) The sequence {Mn,q (f ;x)}n≥1 is nonincreasing for any convex function f

and for any x ∈ [0, 1], see Theorem 2.1.
On the otherhand, from Theorem 3.2 we know that for q ∈ (0, 1),

Mn,q (f ;x)→M∞,q (f ;x)

pointwise as n→∞. It follows that

|Mn,q (f ;x)−M∞,q (f ;x)| ≤ Cω2

(
f ;
√
Mn,q (t2;x)−M∞,q (t2;x)

)
≤ Cω2

(
f ;
√
qn+1

)
≤ Cω2

(
f ;
√
qn
)
.

Since

sup
0<q<1

∣∣Mn,q

(
t2;x

)
−M∞,q

(
t2;x

)∣∣ ≤ sup
0<q<1

qn+1 (1− q)
1− qn+1

= sup
0<q<1

qn+1

[n+ 1]

= sup
0<q<1

q

[n+ 1]1/q
=

1
n+ 1

<
1
n
,

∣∣Mn,1

(
t2;x

)
− x2

∣∣ ≤ 1
n+ 1

<
1
n
,

the inequality (3.5) follows.

Remark 3.2. Results similar to Theorem 3.2 and Theorem 3.3 for q-Bernstein
polynomials and q-MKZ operators were obtained in [28] and [13], respectively. Note
that when f (x) = x2, for q ∈ (0, 1), we have

‖Mn,q (f)−M∞,q (f)‖ � qn � ω2

(
f ;
√
qn
)
.

Hence, the estimate (3.4) is sharp in the following sense: the sequence
√
qn in (3.4)

cannot be replaced by any other sequence decreasing to zero more rapidly as n→∞.
However, (3.4) is not sharp for the Lipschitz class Lip α (α ∈ (0, 1]) in the sense of
order. This combining with Theorem 3.2, shows that in the case 0 < q < 1 the
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modulus of continuity is more appropriate to describe the rate of convergence for
the new q-MKZ operators than the second modulus of smoothness. This is different
from that in the case q = 1.

Remark 3.3. The constant C in (3.4) is an absolute constant and does not depend
on q, however the constant Cq in (3.1) depends on q, and tends to +∞ as q ↑ 1.
Hence, (3.4) does not follow from (3.1).
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