The Edge Steiner Number of a Graph

Michael B. Frondoza and Sergio R. Canoy, Jr. Department of Mathematics, College of Science and Mathematics, MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines michael.frondoza@g.msuiit.edu.ph, serge_canoy@yahoo.com

Abstract

The concepts of edge Steiner set and edge Steiner number of a graph are investigated in this study. A necessary and sufficient condition for a graph G to satisfy st $e(G)=|V(G)|-1$, where $\mathrm{st}_{e}(G)$ denotes the edge Steiner number of G, is obtained. Edge Steiner sets in the joins of graphs are also studied and the Steiner numbers of these graphs are determined.

2010 Mathematics Subject Classification: 05C12
Keywords and phrases: Steiner W-tree, edge Steiner set, edge Steiner number.

1. Introduction

Given a connected graph G and a nonempty subset W of $V(G)$, a Steiner W-tree is a tree of minimum order that contains W. The sets $S(W)$ and $S_{e}(W)$ denote, respectively, the sets of all vertices and edges of G that lie on any Steiner W-tree. W is called a vertex Steiner set if $S(W)=V(G)$. If $S_{e}(W)=E(G)$, then W is said to be an edge Steiner set of G. A vertex (edge) Steiner set of minimum cardinality is called a minimum vertex (edge) Steiner set. The cardinality of a minimum vertex (edge) Steiner set of G is defined as the vertex (edge) Steiner number st(G) (resp. $\left.\mathrm{st}_{e}(G)\right)$ of G.

Steiner sets and Steiner numbers have been studied recently in [1, 2, 4]. In [2], the authors characterized the Steiner sets in the join $G+H$ and the composition $G[H]$ of two nontrivial connected graphs G and H. Edge Steiner sets, edge Steiner number, minimal edge Steiner sets, and upper edge Steiner numbers have been extensively studied very recently in [5]. For other terminologies, one may refer to [3].

2. Results

The following remarks are immediate from the definitions of edge Steiner set and edge Steiner number of a graph. The first and the third of these can be found in [5].
Remark 2.1. If G is a connected graph of order $n \geq 2$, then $2 \leq \operatorname{st}_{e}(G) \leq n$.

[^0]Remark 2.2. Let G be a connected graph of order $n \geq 2$. Then $\mathrm{st}_{e}(G)<n$ if and only if there exists a proper subset W of $V(G)$ such that $\langle W\rangle$ is disconnected and $S_{e}(W)=E(G)$.
Remark 2.3. $\mathrm{st}_{e}\left(K_{n}\right)=n$ for each positive integer $n \geq 2$.
Next, we briefly define the concepts of independent cutset and essential independent cutset in a graph and look at some relationships between these concepts and the concept of edge Steiner set.
Definition 2.1. Let G be a connected graph. A subset Y of $V(G)$ is said to be an independent cutset (or simply an ics) in G if it is independent and $\langle V(G) \backslash Y\rangle$ is disconnected. Y is said to be an essential independent cutset (or eics) if it is an ics and $\langle(V(G) \backslash Y) \cup\{y\}\rangle$ is connected for every $y \in Y$. An eics of G of maximum cardinality is called a maximum eics of G.
Example 2.1. Consider the graph below.

$S=\left\{v_{2}, v_{4}, v_{6}\right\}$ and $R=\left\{v_{4}, v_{2}\right\}$ are independent cutsets. S is not an eics since $\langle V(G) \backslash S\rangle \cup\left\{v_{6}\right\}$ is disconnected. The set R is an eics since $\langle V(G) \backslash R\rangle \cup\left\{v_{2}\right\}$ and $\langle V(G) \backslash R\rangle \cup\left\{v_{4}\right\}$ are connected.
Example 2.2. Consider another graph below.

It can be verified that the sets $\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{1}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{6}\right\},\left\{v_{3}, v_{6}\right\}$, $\left\{v_{2}, v_{3}, v_{6}\right\}$ are the only essential independent cutsets of G. Thus $U=\left\{v_{2}, v_{3}, v_{6}\right\}$ is a maximum eics of G.
Remark 2.4. A connected non-complete graph may have no eics.
To see this, consider the graph below.

It can be verified that G has no eics.
Theorem 2.1. Let G be a connected non-complete graph of order $n \geq 2$. If Y is an essential independent cutset of G, then $V(G) \backslash Y$ is an edge Steiner set of G.

Proof. Let $W=V(G) \backslash Y$, where Y is an eics. Then $\langle W\rangle$ is disconnected. Let $y \in Y$. Since Y is an eics, $\langle W \cup\{y\}\rangle$ is connected. Hence every spanning tree of $\langle W \cup\{y\}\rangle$ is a Steiner W-tree. This implies that $E(\langle W \cup\{y\}\rangle) \subseteq S_{e}(W)$. Since Y is independent, it follows that $E(G)=\cup_{y \in Y} E(\langle W \cup\{y\}\rangle) \subseteq S_{e}(W)$. Thus W is an edge Steiner set of G.

The following result is immediate from Theorem 2.1.
Corollary 2.1. Let G be a connected non-complete graph of order $n \geq 2$. If G has an essential independent cutset, then $\operatorname{st}_{e}(G) \leq n-r$, where $r=\max \{|Y|$: Y is an eics in $G\}$.

Remark 2.5. The converse of Theorem 2.1 is not true.
To see this, consider again the graph in Example 2.4. The graph G has no eics and $W=\left\{v_{1}, v_{3}, v_{5}\right\}$ is a minimum edge Steiner set of G. Thus $\mathrm{st}_{e}(G)=3 \neq 6$.

Lemma 2.1. Let G be a connected graph and v a cut-vertex of G. If $W \subseteq V(G)$ and $W \cap H \neq \varnothing$ for every component H of $\langle V(G) \backslash\{v\}\rangle$, then $v \in V(T)$ for every Steiner W-tree T of G.

Proof. Let v be a cut-vertex of a connected graph G and $W \subseteq V(G)$. Then $\langle V(G) \backslash\{v\}\rangle$ is disconnected. If $v \in W$, then we are done. Suppose that $v \notin W$. Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be the components of $\langle V(G) \backslash\{v\}\rangle$ and suppose that $V\left(Y_{j}\right) \cap W \neq \varnothing$ for all $j \in I=\{1,2, \ldots, k\}$. Clearly, $\cup_{j \in I}\left(V\left(Y_{j}\right) \cap W\right)=W$; hence $\langle W\rangle=$ $\left\langle\cup_{j \in I}\left(V\left(Y_{j}\right) \cap W\right)\right\rangle$ is disconnected. Now, let T be a Steiner W-tree of G. Pick $v_{1} \in V\left(Y_{1}\right) \cap W$ and $v_{2} \in V\left(Y_{2}\right) \cap W$. Since $W \subseteq V(T)$, it follows that $v_{1}, v_{2} \in V(T)$. Hence there is a path in T connecting v_{1} and v_{2}. Clearly, this path contains v. Therefore, $v \in V(T)$.

The next result is found in [5].
Lemma 2.2. Let G be a connected graph and v a cut-vertex of G. If W is an edge Steiner set of G, then $v \in V(T)$ for every Steiner W-tree T of G.

Theorem 2.2. Let v be a cut-vertex of a connected graph G and $W \subseteq V(G)$ with $v \notin W$. Then $W \cup\{v\}$ is an edge Steiner set of G if and only if W is an edge Steiner set of G.

Proof. Suppose that $W^{\prime}=W \cup\{v\}$ is an edge Steiner set of G and $e \in E(G)$. Since $S_{e}\left(W^{\prime}\right)=E(G)$, there exists a Steiner W^{\prime}-tree T_{e} of G such that $e \in E\left(T_{e}\right)$. Since $W^{\prime} \cap V(H) \neq \varnothing$ for every component H of $\langle V(G) \backslash\{v\}\rangle, W \cap V(H) \neq \varnothing$ for every component H of $\langle V(G) \backslash\{v\}\rangle$. By Lemma 2.1, T_{e} is also a Steiner W-tree of G. Thus $e \in S_{e}(W)$, that is, $E(G) \subseteq S_{e}(W)$. Hence $E(G)=S_{e}(W)$. This implies that W is also an edge Steiner set of G.

Conversely, assume that W is an edge Steiner set of G and let $e \in E(G)$. Since $S_{e}(W)=E(G)$ it follows that there exists a Steiner W-tree T_{e} such that $e \in E\left(T_{e}\right)$.

From Lemma 2.2, $v \in V\left(T_{e}\right)$. This implies that T_{e} is also a Steiner $(W \cup\{v\})$ tree of G. Thus $e \in S_{e}(W \cup\{v\})$, that is, $E(G) \subseteq S_{e}(W \cup\{v\})$. Consequently, $E(G)=S_{e}(W \cup\{v\})$. Therefore $W \cup\{v\}$ is an edge Steiner set of G.

The following result is found in [5].
Corollary 2.2. Let G be a connected graph and v a cut-vertex of G. If W is a minimum edge Steiner set of G, then $v \notin W$.

The next three results are also quick consequences of Theorem 2.2.
Corollary 2.3. Let G be a connected graph of order n and W an edge Steiner set of G. If C is the set of cut-vertices of G, then $W \backslash C$ is an edge Steiner set of G.

Proof. Let $C=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Clearly, $W \backslash C=W \backslash(W \cap C)$. If $C \cap W=\varnothing$, then $W \backslash C=W$. Hence $W \backslash C$ is an edge Steiner set of G. Assume that $C_{o}=C \cap W \neq \varnothing$, say $\left|C_{o}\right|=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$. Since W is an edge Steiner set of $G, Y_{1}=W \backslash\left\{y_{1}\right\}$ is also an edge Steiner set of G by Theorem 2.2. Again, by Theorem, 2.2, $Y_{2}=Y_{1} \backslash\left\{y_{2}\right\}$ is an edge Steiner set of G. Repeating the process for the remaining vertices of C_{o}, it follows that $Y_{m}=Y_{m-1} \backslash\left\{y_{m}\right\}$ is an edge Steiner set of G. Therefore $Y_{m}=$ $Y_{1} \backslash\left\{y_{2}, y_{3}, \ldots, y_{m-1}, y_{m}\right\}=W \backslash C_{o}=W \backslash C$ is an edge Steiner set of G.

Corollary 2.4. Let G be a connected graph and C the set containing all the cutvertices of G. Then any superset W_{o} of $V(G) \backslash C$ is an edge Steiner set of G.

Proof. Let $C_{o}=W_{o} \cap C$. If $C_{o}=\varnothing$, then $W_{o}=V(G) \backslash C$ is an edge Steiner set by Corollary 2.3. So, suppose $C_{o} \neq \varnothing$, say $C_{o}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Since $x_{1} \notin V(G) \backslash C$, it follows from Theorem 2.2 that $Y_{1}=(V(G) \backslash C) \cup\left\{x_{1}\right\}$ is also an edge Steiner set of G. Again, since $x_{2} \notin Y_{1}, Y_{2}=Y_{1} \cup\left\{x_{2}\right\}$ is an edge Steiner set of G. Proceeding in this manner, we find that $W_{o}=Y_{m}=Y_{m-1} \cup\left\{x_{m}\right\}$ is an edge Steiner set of G.

Corollary 2.5. If G is a connected graph and q is the number of cut-vertices of G, then $\mathrm{st}_{e}(G) \leq|V(G)|-q$.
Proof. Let $C=\{v: v$ is a cut-vertex of $G\}$. From Corollary 2.3 and the fact that $V(G)$ is an edge Steiner set of G, it follows that $V(G) \backslash C$ is an edge Steiner set of G. Hence, if $|C|=q$, then $\mathrm{st}_{e}(G) \leq|V(G) \backslash C|=|V(G)|-|C|=|V(G)|-q$.

Theorem 2.3. Let G be a connected graph of order $n \geq 2$. Then $\operatorname{st}_{e}(G)=n-1$ if and only if G has a unique cut-vertex v such that $\operatorname{st}_{e}(\langle V(H) \cup\{v\}\rangle=|V(H)|+1$ for every component H of $\langle V(G) \backslash\{v\}\rangle$.

Proof. Let G be a connected graph of order n and $\operatorname{st}_{e}(G)=n-1$. Then there exists a vertex $v \in V(G)$ such that $W=V(G) \backslash\{v\}$ is an edge Steiner set of G. Since $\langle W\rangle$ is disconnected, v is a cut-vertex of G. From Corollary 2.5, v is the unique cut-vertex of G. Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be the components of $\langle V(G) \backslash\{v\}\rangle$. Suppose that $\operatorname{st}_{e}\left(\left\langle V\left(Y_{m}\right) \cup\{v\}\right\rangle\right)<\left|V\left(Y_{m}\right)\right|+1$ for some m, where $1 \leq m \leq k$. Let $W_{Y_{m}}$ be a minimum edge Steiner set of $\left\langle V\left(Y_{m}\right) \cup\{v\}\right\rangle$. Then $\left\langle W_{Y_{m}}\right\rangle$ is a disconnected proper subgraph of $\left\langle V\left(Y_{m}\right) \cup\{v\}\right\rangle$. Let $W_{o}=\cup_{i \neq m} V\left(Y_{i}\right)$ and let $W^{*}=\left(W_{o} \cup W_{Y_{m}}\right)$. Since v is a cut-vertex of $\left\langle\left(\cup_{i \neq m} V\left(Y_{i}\right)\right) \cup\{v\}\right\rangle$, it follows that $\left(\cup_{i \neq m} V\left(Y_{i}\right)\right) \cup\{v\} \backslash\{v\}=\cup_{i \neq m} V\left(Y_{i}\right)$ is an edge Steiner set of $\left\langle\left(\cup_{i \neq m} V\left(Y_{i}\right)\right) \cup\{v\}\right\rangle$ by Theorem 2.2. Let $A=W_{o} \cup\{v\}, B=V\left(Y_{m}\right) \cup\{v\}$ and $e \in E(G)$. Consider the
following cases.
Case 1: $e \in E(\langle A\rangle)$.
Since W_{o} is an edge Steiner set of $\langle A\rangle$, there exists a Steiner W_{o}-tree T_{e} of $\langle A\rangle$ such that $e \in E\left(T_{e}\right)$. Choose $u \in V\left(Y_{m}\right)$ such that $e^{\prime}=u v \in E(\langle B\rangle)$. Since $W_{Y_{m}}$ is an edge Steiner set of $\langle B\rangle$, there exists a Steiner $W_{Y_{m}}$-tree T_{e}^{\prime} of $\langle B\rangle$ such $e^{\prime} \in E\left(T_{e}^{\prime}\right)$. Clearly, $v \in V\left(T_{e}\right) \cap V\left(T_{e}^{\prime}\right)$. Let $T(e)$ be the tree obtained by gluing T_{e} and T_{e}^{\prime} at vertex v. Then $T(e)$ is a Steiner W^{*}-tree of G with $e \in E(T(e))$.

Case 2: $e \in E(\langle B\rangle)$.
Let T be a Steiner W_{o}-tree of $\langle A\rangle$. Since $W_{Y_{m}}$ is an edge Steiner set, there exists a Steiner $W_{Y_{m}}$-tree T_{e} with $e \in E\left(T_{e}\right)$. Consider the following subcases:

Subcase 1: $v \in W_{Y_{m}}$.
Then $v \in V\left(T_{e}\right)$. Let $T(e)$ be the tree obtained by gluing T_{e} and T at the vertex v. Then $T(e)$ is a Steiner W^{*}-tree of G with $e \in E(T(e))$.

Subcase 2: $v \notin W_{Y_{m}}$.
Extend (if necessary) T_{e} to a tree $T_{u v}\left(u \in V\left(Y_{m}\right)\right)$ of minimum order such that $v \in V\left(T_{u v}\right)$. Let $T(e)$ be the tree obtained by gluing $T_{u v}$ and T at the vertex v. Then $T(e)$ is a Steiner W^{*}-tree of G with $e \in E(T(e))$.

In any case, $S_{e}\left(W^{*}\right)=E(G)$. Consequently, W^{*} is an edge Steiner set of G. By Corollary 2.3, $W^{*} \backslash\{v\}$ is also an edge Steiner set of G. If $v \in W_{Y_{m}}$, then $v \in W^{*}$ and $n-1=\operatorname{st}_{e}(G) \leq\left|W^{*} \backslash\{v\}\right|=\left|W^{*}\right|-1=\left|W_{o}\right|+\left|W_{Y_{m}}\right|-1<\left|W_{o}\right|+\left|V\left(Y_{m}\right)\right|+1-1=$ $n-1$, which is a contradiction. If $v \notin W_{Y_{m}}$, then $\left\langle W_{Y_{m}}\right\rangle$ is a disconnected subgraph of $\left\langle V_{Y_{m}}\right\rangle$. Thus $\left|W_{Y_{m}}\right| \leq\left|V\left(Y_{m}\right)\right|-1$ and st ${ }_{e}(G) \leq\left|W^{*} \backslash\{v\}\right|=\left|W^{*}\right| \leq n-2$, contrary to the assumption that $\mathrm{st}_{e}(G)=n-1$. Therefore, $\operatorname{st}_{e}(\langle V(H) \cup\{v\}\rangle)=|V(H)|+1$ for every component H of $G \backslash\{v\}$.

Conversely, assume that there exists a unique cut-vertex v such that for every component H of $G \backslash v, \operatorname{st}_{e}(\langle H \cup\{v\}\rangle)=|V(H)|+1$. Then by Corollary 2.5, $\mathrm{st}_{e}(G) \leq$ $n-1$. Suppose that $\mathrm{st}_{e}(G)<n-1$. Then there exists $W^{*} \subset V(G)$ such that $S_{e}\left(W^{*}\right)=E(G)$ and $\mathrm{st}_{e}(G)=\left|W^{*}\right|<|V(G)|-1$. By Corollary 2.2, v $\notin W^{*}$. This implies that there exists a component H of $G \backslash v$ such that $V(H) \cap W^{*} \subset V(H)$. Let $W_{H}=V(H) \cap W^{*}$. Let $e \in E(\langle V(H) \cup\{v\}\rangle)$. Then $e \in E(G)$ and $e \in E\left(T_{i}\right)$ for some Steiner W^{*}-tree T_{i} of G. Let T_{e} be the portion of the tree T_{i}, where $V\left(T_{e}\right)=V\left(T_{i}\right) \cap(V(H) \cup\{v\})$. Then T_{e} is a Steiner $\left(W_{H} \cup\{v\}\right)$-tree of $\langle V(H) \cup\{v\}\rangle$ and $e \in E\left(T_{e}\right)$. Hence $W_{H} \cup\{v\}$ is an edge Steiner set of $\langle V(H) \cup\{v\}\rangle$. This implies that st $(\langle V(H) \cup\{v\}\rangle) \leq\left|W_{H} \cup\{v\}\right|<|V(H)|+1$, contrary to the assumption.

The next result characterizes the edge Steiner sets in a join of two graphs.
Theorem 2.4. Let G and H be graphs of orders n and m, respectively, such that none of them is the empty graph. Then $W \subseteq V(G+H)$ is an edge Steiner set of G if and only if $W=V(G+H)$.

Proof. Suppose that W is an edge Steiner set of $G+H$. Let $W_{1}=W \cap V(G)$ and $W_{2}=W \cap V(H)$. If $W_{1}=\varnothing$, then $W=W_{2} \subseteq V(H)$. Since W is a Steiner set of $V(G+H)$, the graph $\langle W\rangle$ induced by W must be disconnected. Let $v \in V(G)$. Then
$\langle W \cup\{v\}\rangle$ is a connected subgraph of $G+H$. This implies that every Steiner W-tree of $G+H$ has exactly $|W|+1$ vertices. Since G is not an empty graph, there exist $x, y \in V(G)$ such that $x y \in E(G+H)$. Clearly, this edge cannot be in any Steiner W-tree of $G+H$. This contradicts our assumption that W is an edge Steiner set of $G+H$. Therefore $W_{1} \neq \varnothing$. Similarly, $W_{2} \neq \varnothing$. Consequently, $\langle W\rangle$ is a connected subgraph of $G+H$ and so any Steiner W-tree of $G+H$, therefore, has $|W|$ vertices. Since W is an edge Steiner set of $G+H$, it follows that $W=V(G+H)$.

The converse is clear.
An immediate consequence of the Theorem 2.4 is the following result.
Corollary 2.6. Let G and H be graphs of orders n and m, respectively, such that none of them is the empty graph. Then $\mathrm{st}_{e}(G+H)=n+m$.

Theorem 2.5. Let G and H be graphs of orders n and m, respectively, such that $G+H$ is not a star, and at least one of them is the empty graph. Then $W \subseteq V(G+H)$ is an edge Steiner set of G if and only if either
(i) $W=V(G+H)$;
(ii) $W=V(G), G$ is disconnected, and $H=\bar{K}_{m}$; or
(iii) $W=V(H), H$ is disconnected, and $G=\bar{K}_{n}$.

Proof. Suppose that W is an edge Steiner set of $G+H$. Suppose $W \neq V(G+H)$. Then $\langle W\rangle$ is disconnected and so $W \subseteq V(G)$ or $W \subseteq V(H)$. Furthermore, any Steiner W-tree of $G+H$ will have $|W|+1$ vertices. Assume that $W \subseteq V(G)$ and suppose that $W \neq V(G)$. Pick $v \in V(G) \backslash W$ and $u \in V(H)$. Then none of the Steiner W-trees of $G+H$ can contain $u v \in E(G+H)$, contrary to our assumption of W. Thus $W=V(G)$. In this case, $H=\bar{K}_{m}$; otherwise, there exist $a, b \in V(H)$ such that $a b \in E(G+H)$. However, none of the possible Stener W-trees can contain the edge $a b$, contradicting again our assumption. Similarly, if $W \subseteq V(H)$, then $W=V(H), H$ is disconnected, and $G=\bar{K}_{n}$.

The converse can easily be proved.
The following result is a direct consequence of Theorem 2.5.
Corollary 2.7. Let G and H be graphs of orders n and m, respectively, such that $G+H$ is not a star, and at least one of them is the empty graph. Then

$$
\text { st }_{e}(G+H)=\left\{\begin{array}{cl}
n, & \begin{array}{l}
\text { if } G \text { is disconnected, } G \neq \bar{K}_{n}, \\
\text { and } H=\bar{K}_{m}
\end{array} \\
m, & \begin{array}{l}
\text { if } H \text { is disconnected, } H \neq \bar{K}_{m}, \\
\text { and } G=\bar{K}_{n}
\end{array} \\
\min \{n, m\}, & \begin{array}{l}
\text { if } G=K_{m, n} \\
n+m, \\
\text { otherwise. }
\end{array}
\end{array}\right.
$$

Corollary 2.8. Let n and m be positive integers.
(a) $\mathrm{st}_{e}\left(\bar{K}_{n}+P_{m}\right)=n+m \quad(m \geq 2)$
(b) $\mathrm{st}_{e}\left(\bar{K}_{n}+C_{m}\right)=n+m \quad(m \geq 3)$
(c) $\operatorname{st}_{e}\left(K_{n_{1}, n_{2}, \cdots, n_{k}}\right)=\sum_{i=1}^{k} n_{i}$, where $k \geq 3$.

Acknowledgement. The authors are very grateful to the referee for pointing out errors in the initial manuscript and for giving helpful comments which led to the improvement of this paper.

References

[1] G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Math. 242 (2002), no. 1-3, 41-54.
[2] R. G. Eballe and S. R. Canoy, Jr., Steiner sets in the join and composition of graphs, Congr. Numer. 170 (2004), 65-73.
[3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., Reading, MA, 1969.
[4] C. Hernando, T. Jiang, M. Mora, I. M. Pelayo and C. Seara, On the Steiner, geodetic and hull numbers of graphs, Discrete Math. 293 (2005), no. 1-3, 139-154.
[5] A. P. Santhakumaran and J. John, The edge Steiner number of a graph, J. Discrete Math. Sci. Cryptogr. 10 (2007), no. 5, 677-696.

[^0]: Communicated by Lee See Keong.
 Received: July 11, 2008; Revised: March 29, 2010.

