On Lower Semi-Continuity of Interval-Valued Multihomomorphisms

S. Pianskool, P. Udomkavanich and P. Youngkhong
Department of Mathematics and Computer Science, Faculty of Science Chulalongkorn University, Bangkok 10330, Thailand
sajee.p@chula.ac.th, pattanee.u@chula.ac.th, pyoungkhong@yahoo.com

Abstract

It is well known that if f is a continuous homomorphism on $(\mathbb{R},+)$, then there exists a constant $c \in \mathbb{R}$ such that $f(x)=c x$ for all $x \in \mathbb{R}$. Termwuttipong et al. extended this result to interval-valued multifunctions on \mathbb{R}. They proved that an interval-valued multifunction f on \mathbb{R} is an upper semi-continuous multihomomorphism on $(\mathbb{R},+)$ if and only if f has one of the following forms : $f(x)=\{c x\}, f(x)=\mathbb{R}, f(x)=(0, \infty), f(x)=(-\infty, 0), f(x)=[c x, \infty), f(x)=$ $(-\infty, c x]$ where c is a constant in \mathbb{R}. In this paper, we extend the above well known result by considering lower semi-continuity. It is shown that an intervalvalued multifunction f on \mathbb{R} is a lower semi-continuous multihomomorphism on ($\mathbb{R},+$) if and only if f is one of the following: $f(x)=\{c x\}, f(x)=\mathbb{R}, f(x)=$ $(c x, \infty), f(x)=(-\infty, c x), f(x)=[c x, \infty), f(x)=(-\infty, c x]$ where c is a constant in \mathbb{R}.

2010 Mathematics Subject Classification: 26A15, 26E25
Keywords and phrases: Upper semi-continuous multifunction, lower semi-continuous multifunction, multihomomorphism.

1. Introduction

By a multifunction from a nonempty set X into a nonempty set Y we mean f : $X \rightarrow \mathcal{P}(Y) \backslash\{\emptyset\}$ where $\mathcal{P}(Y)$ is the power set of Y. A multifunction on X is a multifunction from X into itself.

A multifunction f from a group G into a group G^{\prime} is a multihomomorphism if

$$
f(x y)=f(x) f(y)(=\{s t \mid s \in f(x) \text { and } t \in f(y)\}) \text { for all } x, y \in G .
$$

The concept of multi-valued endomorphisms appeared in [1, p.176] is more general than the one given here. In [5], multihomomorphisms between cyclic groups were characterized. These results were used in [2] in order to characterize surjective multihomomorphisms between cyclic groups. In [6], some necessary conditions of multihomomorphisms from any group into groups of real numbers under the usual addition and multiplication were given.

[^0]A multifunction from a topological space X into a topological space Y is said to be upper semi-continuous at $a \in X$ if for any open set V in Y such that $f(a) \subseteq V$, there exists an open set U in X such that $a \in U$ and $f(U) \subseteq V$. Such a multifunction f is called lower semi-continuous at $a \in X$ if for any open set V in Y such that $V \cap f(a) \neq \emptyset$, there exists an open set U in X such that $a \in U$ and $f(x) \cap V \neq \emptyset$ for all $x \in U$. If f is both upper and lower semi-continuous at $a \in X, f$ is called continuous at a. If f is upper semi-continuous [lower semi-continuous, continuous] at every point of X, we call f upper semi-continuous [lower semi-continuous, continuous] on X. (See [3, p. 261]). The upper semi-continuity, lower semi-continuity and continuity of a single-valued functions coincide obviously.

Let \mathbb{R} be the set of real numbers, \mathbb{Q} the set of rational numbers and \mathbb{N} the set of natural numbers (positive integers). By an interval-valued multifunction on \mathbb{R} we mean a multifunction f on \mathbb{R} such that $f(x)$ is an interval in \mathbb{R}. Evidently, intervalvalued multihomomorphisms on $(\mathbb{R},+$) generalize homomorphisms on ($\mathbb{R},+$). It is well known that if f is a continuous homomorphism on $(\mathbb{R},+)$, then there is a constant $c \in \mathbb{R}$ such that $f(x)=c x$ for all $x \in \mathbb{R}$. This result was extended in [4] to interval-valued multifunctions on \mathbb{R} as follows:
Theorem 1.1. [4] Let f be an interval-valued multifunction on \mathbb{R}. Then f is an upper semi-continuous multihomomorphism on $(\mathbb{R},+)$ if and only if f is one of the following:
(i) There is a constant $c \in \mathbb{R}$ such that $f(x)=\{c x\}$ for all $x \in \mathbb{R}$.
(ii) $f(x)=\mathbb{R}$ for all $x \in \mathbb{R}$.
(iii) $f(x)=(0, \infty)$ for all $x \in \mathbb{R}$.
(iv) $f(x)=(-\infty, 0)$ for all $x \in \mathbb{R}$.
(v) There is a constant $c \in \mathbb{R}$ such that $f(x)=[c x, \infty)$ for all $x \in \mathbb{R}$.
(vi) There is a constant $c \in \mathbb{R}$ such that $f(x)=(-\infty, c x]$ for all $x \in \mathbb{R}$.

This result motivates us to extend the above well known result by considering lower semi-continuous interval-valued multihomomorphisms on \mathbb{R}. We characterize lower semi-continuous interval-valued multihomomorphisms on $(\mathbb{R},+)$. This characterization indicates that every upper semi-continuous multihomomorphism on $(\mathbb{R},+)$ is continuous.

The following results given in [4] are needed.
Lemma 1.1. [4] If f is an interval-valued multihomomorphism on $(\mathbb{R},+)$, then $f(0)$ is one of the following: $\{0\}, \mathbb{R},(0, \infty),(-\infty, 0),[0, \infty),(-\infty, 0]$.

Lemma 1.2. [4] If f is an interval-valued multihomomorphism on $(\mathbb{R},+)$, then for every $x \in \mathbb{R}, f(x)$ and $f(0)$ are intervals in \mathbb{R} of the same form, that is,

$$
f(x)= \begin{cases}\{y\} & \text { if } f(0)=\{0\} \\ \mathbb{R} & \text { if } f(0)=\mathbb{R} \\ (y, \infty) & \text { if } f(0)=(0, \infty) \\ (-\infty, y) & \text { if } f(0)=(-\infty, 0), \\ {[y, \infty)} & \text { if } f(0)=[0, \infty), \\ (-\infty, y] & \text { if } f(0)=(-\infty, 0]\end{cases}
$$

for some $y \in \mathbb{R}$.

Lemma 1.3. [4] Let f be an interval-valued multihomomorphism on $(\mathbb{R},+)$. If $x, y \in \mathbb{R}$ are such that $f(x)=(y, \infty),(-\infty, y),[y, \infty)$ or $(-\infty, y]$, then $f(-x)=$ $(-y, \infty),(-\infty,-y),[-y, \infty)$ or $(-\infty,-y]$, respectively.

Lemma 1.4. [4] If f is an interval-valued multihomomorphism on $(\mathbb{R},+)$, then for all $x \in \mathbb{R}$ and $m, n \in \mathbb{N}, f((m / n) x)=(m / n) f(x)$.

2. Main results

The following lemmas are also needed to obtain the main result.
Lemma 2.1. Let f be an interval-valued multihomomorphism on $(\mathbb{R},+)$ and $c \in \mathbb{R}$.
(i) If $f(1)=(c, \infty)$, then for all $q \in \mathbb{Q}, f(q)=(c q, \infty)$.
(ii) If $f(1)=(-\infty, c)$, then for all $q \in \mathbb{Q}, f(q)=(-\infty, c q)$.
(iii) If $f(1)=[c, \infty)$, then for all $q \in \mathbb{Q}, f(q)=[c q, \infty)$.
(iv) If $f(1)=(-\infty, c]$, then for all $q \in \mathbb{Q}, f(q)=(-\infty, c q]$.

Proof. (i) By Lemma 1.2, $f(0)=(0, \infty)=(c 0, \infty)$. If $q \in \mathbb{Q}$ is such that $q>0$, then by Lemma 1.3 and Lemma 1.4,

$$
\begin{aligned}
f(q) & =f(q 1)=q f(1)=q(c, \infty)=(c q, \infty) \\
f(-q) & =f(q(-1))=q f(-1)=q(-c, \infty)=(-c q, \infty)=(c(-q), \infty)
\end{aligned}
$$

Therefore (i) is proved. The results (ii)-(iv) can be proved analogously.
Lemma 2.2. Let f be an interval-valued multihomomorphism on $(\mathbb{R},+)$. If f is lower semi-continuous at 0 , then f is lower semi-continuous on \mathbb{R}.

Proof. If $f(0)=\{0\}$, by Lemma $1.2, f$ is a homomorphism which is continuous at 0 . It follows obviously that f is continuous on \mathbb{R}. Also, if $f(0)=\mathbb{R}$, then by Lemma $1.2, f(x)=\mathbb{R}$ for all $x \in \mathbb{R}$ and hence f is lower semi-continuous on \mathbb{R}.

Next, assume that $f(0)=(0, \infty)$. Let $x \in \mathbb{R}$. By Lemma 1.2, $f(x)=(y, \infty)$ for some $y \in \mathbb{R}$. By Lemma 1.3, $f(-x)=(-y, \infty)$. Let V be an open set in \mathbb{R} such that $V \cap(y, \infty) \neq \emptyset$. Then $V-y$ is an open set in \mathbb{R} and $(V-y) \cap(0, \infty) \neq \emptyset$. Since f is lower semi-continuous at 0 , there exists an open set U in \mathbb{R} such that $0 \in U$ and $f(z) \cap(V-y) \neq \emptyset$ for all $z \in U$. Thus $U+x$ is an open set in \mathbb{R} such that $x \in U+x$. Claim that $f(w) \cap V \neq \emptyset$ for all $w \in U+x$. Let $w \in U+x$. Then $w-x \in U$, so $f(w-x) \cap(V-y) \neq \emptyset$. Let $a \in f(w-x) \cap(V-y)$. Then $a+y \in V$. It follows from

$$
a \in f(w-x)=f(w)+f(-x)=f(w)+(-y, \infty)
$$

that

$$
a+y \in f(w)+(0, \infty)=f(w)+f(0)=f(w)
$$

Therefore $a+y \in f(w) \cap V$. Hence $f(w) \cap V \neq \emptyset$. This shows that f is lower semi-continuous at x.

By a similar argument, we can show that f is lower semi-continuous on \mathbb{R} for the cases that $f(0)=(-\infty, 0), f(0)=[0, \infty)$ and $f(0)=(-\infty, 0]$.

Lemma 2.3. For $c \in \mathbb{R}$, the following interval-valued multifunctions are lower semicontinuous multihomomorphisms on $(\mathbb{R},+)$.
(i) $f(x)=(c x, \infty)$ for all $x \in \mathbb{R}$.
(ii) $f(x)=(-\infty, c x)$ for all $x \in \mathbb{R}$.
(iii) $f(x)=[c x, \infty)$ for all $x \in \mathbb{R}$.
(iv) $f(x)=(-\infty, c x]$ for all $x \in \mathbb{R}$.

Proof. Evidently, f in (i)-(iv) is a multihomomorphism on $(\mathbb{R},+)$ and if $c=0$, then it is lower semi-continuous on \mathbb{R}. Assume that $c \neq 0$.
(i)We have that $f(0)=(c 0, \infty)=(0, \infty)$. Let V be an open set such that $V \cap$ $(0, \infty) \neq \emptyset$. Let $a \in V \cap(0, \infty)$. Then $(a-\epsilon, a+\epsilon) \subseteq V$ for some $\epsilon>0$. Thus $(-\epsilon, \epsilon) \subseteq$ $V-a$. Let $x \in(-\epsilon /|c|, \epsilon /|c|)$. It follows that $c x \in(-\epsilon, \epsilon)$, and so $(c x, \infty) \cap(-\epsilon, \epsilon) \neq \emptyset$. Hence $(c x, \infty) \cap(V-a) \neq \emptyset$. Let $b \in(c x, \infty) \cap(V-a)$. Then $b+a \in V$ and $b+a \in(c x, \infty)+(0, \infty)=(c x, \infty)$. Therefore $b+a \in f(x) \cap V$. This shows that $f(x) \cap V \neq \emptyset$ for all $x \in(-\epsilon /|c|, \epsilon /|c|)$. Thus f is lower semi-continuous at 0 . It follows from Lemma 2.2 that f is lower semi-continuous on \mathbb{R}. The results (ii)-(iv) can be proved analogously.

Theorem 2.1. Let f be an interval-valued multifunction on \mathbb{R}. Then f is a lower semi-continuous multihomomorphism on $(\mathbb{R},+)$ if and only if f is one of the following:
(i) There is a constant $c \in \mathbb{R}$ such that $f(x)=\{c x\}$ for all $x \in \mathbb{R}$.
(ii) $f(x)=\mathbb{R}$ for all $x \in \mathbb{R}$.
(iii) There is a constant $c \in \mathbb{R}$ such that $f(x)=(c x, \infty)$ for all $x \in \mathbb{R}$.
(iv) There is a constant $c \in \mathbb{R}$ such that $f(x)=(-\infty, c x)$ for all $x \in \mathbb{R}$.
(v) There is a constant $c \in \mathbb{R}$ such that $f(x)=[c x, \infty)$ for all $x \in \mathbb{R}$.
(vi) There is a constant $c \in \mathbb{R}$ such that $f(x)=(-\infty, c x]$ for all $x \in \mathbb{R}$.

Proof. Assume that f is a lower semi-continuous multihomomorphism on $(\mathbb{R},+)$. By Lemma 1.1, $f(0)$ is one of $\{0\}, \mathbb{R},(0, \infty),(-\infty, 0),[0, \infty)$ and $(-\infty, 0]$.

Case 1: $f(0)=\{0\}$. It follows from Lemma 1.2 that f is a continuous homomorphism on $(\mathbb{R},+)$. Hence f satisfies (i).

Case 2: $f(0)=\mathbb{R}$. By Lemma 1.2, f satisfies (ii).
Case 3: $f(0)=(0, \infty)$. From Lemma 1.2, $f(1)=(c, \infty)$ for some $c \in \mathbb{R}$. By Lemma 2.1(i),

$$
\begin{equation*}
f(q)=(c q, \infty) \quad \text { for all } \quad q \in \mathbb{Q} \tag{2.1}
\end{equation*}
$$

Let $x \in \mathbb{R}$. By Lemma 1.2, $f(x)=(y, \infty)$ for some $y \in \mathbb{R}$. Then for each $n \in \mathbb{N}$, $(y-1 / n, y+1 / n)$ is an open set such that $f(x) \cap(y-1 / n, y+1 / n) \neq \emptyset$. Since f is lower semi-continuous at x, we deduce that

$$
\begin{align*}
& \text { for every } n \in \mathbb{N} \text {, there is a } \delta_{n}>0 \text { such that } \delta_{n}<1 / n \text { and } \tag{2.2}\\
& f(z) \cap(y-1 / n, y+1 / n) \neq \emptyset \text { for all } z \in\left(x-\delta_{n}, x+\delta_{n}\right) \text {. }
\end{align*}
$$

For each $n \in \mathbb{N}$, let $q_{n} \in \mathbb{Q}$ be such that $q_{n} \in\left(x-\delta_{n}, x+\delta_{n}\right)$. From (2.1), $f\left(q_{n}\right)=\left(c q_{n}, \infty\right)$ for all $n \in \mathbb{N}$. It follows from (2.2) that

$$
\left(c q_{n}, \infty\right) \cap\left(y-\frac{1}{n}, y+\frac{1}{n}\right) \neq \emptyset
$$

for all $n \in \mathbb{N}$. This implies that $c q_{n}<y+1 / n$ for all $n \in \mathbb{N}$. Hence

$$
\begin{equation*}
c q_{n}-y<\frac{1}{n} \text { for all } n \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

Let $n \in \mathbb{N}$. Since $q_{n} \in\left(x-\delta_{n}, x+\delta_{n}\right)$, we have $-\delta_{n}<x-q_{n}<\delta_{n}$, so $2 x-q_{n} \in$ $\left(x-\delta_{n}, x+\delta_{n}\right)$. By $(2.2), f\left(2 x-q_{n}\right) \cap(y-1 / n, y+1 / n) \neq \emptyset$. But

$$
\begin{aligned}
f\left(2 x-q_{n}\right) & =f(2 x)+f\left(-q_{n}\right) \\
& =2 f(x)+f\left(-q_{n}\right) \quad(\text { from Lemma 1.4) } \\
& =2(y, \infty)+\left(-c q_{n}, \infty\right) \quad(\text { from (2.1) and Lemma 1.3) } \\
& =\left(2 y-c q_{n}, \infty\right),
\end{aligned}
$$

so $\left(2 y-c q_{n}, \infty\right) \cap(y-1 / n, y+1 / n) \neq \emptyset$. This implies that $2 y-c q_{n}<y+1 / n$. Thus $y-c q_{n}<1 / n$. This proves that

$$
\begin{equation*}
y-c q_{n}<\frac{1}{n} \text { for all } n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

It is immediate from (2.3) and (2.4), that $\left|y-c q_{n}\right|<1 / n$ for all $n \in \mathbb{N}$. Hence $\lim _{n \rightarrow \infty} c q_{n}=y$. Since $\left|q_{n}-x\right|<\delta_{n}<1 / n$ for all $n \in \mathbb{N}$, we have $\lim _{n \rightarrow \infty} q_{n}=x$. Consequently,

$$
y=\lim _{n \rightarrow \infty} c q_{n}=c \lim _{n \rightarrow \infty} q_{n}=c x
$$

This proves that $f(x)=(c x, \infty)$, as desired.
Case 4 : $f(0)=(-\infty, 0)$. By Lemma 1.2, $f(1)=(-\infty, c)$ for some $c \in \mathbb{R}$. It follows from Lemma 2.1(ii) that

$$
\begin{equation*}
f(q)=(-\infty, c q) \text { for all } q \in \mathbb{Q} \tag{2.5}
\end{equation*}
$$

If $x \in \mathbb{R}$, then by Lemma $1.2, f(x)=(-\infty, y)$ for some $y \in \mathbb{R}$. Then $f(x) \cap(y-$ $1 / n, y+1 / n) \neq \emptyset$ for all $n \in \mathbb{N}$. Since f is lower-semi-continuous we have that
for every $n \in \mathbb{N}$, there is a $\delta_{n}>0$ such that $\delta_{n}<1 / n$ and

$$
\begin{equation*}
f(z) \cap(y-1 / n, y+1 / n) \neq \emptyset \text { for all } z \in\left(x-\delta_{n}, x+\delta_{n}\right) . \tag{2.6}
\end{equation*}
$$

For each $n \in \mathbb{N}$, let $q_{n} \in \mathbb{Q} \cap\left(x-\delta_{n}, x+\delta_{n}\right)$. From (2.5), $f\left(q_{n}\right)=\left(-\infty, c q_{n}\right)$ for all $n \in \mathbb{N}$ and from (2.6), we have

$$
\left(-\infty, c q_{n}\right) \cap\left(y-\frac{1}{n}, y+\frac{1}{n}\right) \neq \emptyset \text { for all } n \in \mathbb{N} .
$$

It follows that $y-1 / n<c q_{n}$ for all $n \in \mathbb{N}$. Thus

$$
\begin{equation*}
y-c q_{n}<\frac{1}{n} \text { for all } n \in \mathbb{N} . \tag{2.7}
\end{equation*}
$$

If $n \in \mathbb{N}$, then $2 x-q_{n} \in\left(x-\delta_{n}, x+\delta_{n}\right)$. By (2.6), $f\left(2 x-q_{n}\right) \cap(y-1 / n, y+1 / n) \neq \emptyset$. From (2.5), Lemma 1.3 and Lemma 1.4, we have

$$
f\left(2 x-q_{n}\right)=2 f(x)+f\left(-q_{n}\right)=2(-\infty, y)+\left(-\infty,-c q_{n}\right)=\left(-\infty, 2 y-c q_{n}\right)
$$

This implies that $y-1 / n<2 y-c q_{n}$, and so $c q_{n}-y<1 / n$. Hence

$$
\begin{equation*}
c q_{n}-y<\frac{1}{n} \text { for all } n \in \mathbb{N} . \tag{2.8}
\end{equation*}
$$

It follows from (2.7) and (2.8) that $\lim _{n \rightarrow \infty} c q_{n}=y$. Also, from choosing q_{n}, we have that $\lim _{n \rightarrow \infty} q_{n}=x$. Consequently, $y=c x$ and therefore $f(x)=(-\infty, c x)$, as desired.

Case 5 : $f(0)=[0, \infty)$. By Lemma 1.2, $f(1)=[c, \infty)$ for some $c \in \mathbb{R}$. We can show similarly to Case 4 by Lemma 2.1(iii), Lemma 1.3 and Lemma 1.4 that $f(x)=[c x,-\infty)$ for all $x \in \mathbb{R}$.

Case 6 : $f(0)=(-\infty, 0]$. By Lemma $1.2, f(1)=(-\infty, c]$ for some $c \in \mathbb{R}$. It can be shown similarly to Case 5 by Lemma 2.1(iv), Lemma 1.3 and Lemma 1.4 that $f(x)=(-\infty, c x]$ for all $x \in \mathbb{R}$.

Conversely, assume that f satisfies one of (i)-(iv). If f satisfies (i), then f is a continuous homomorphism. Evidently, if f satisfies (ii), then f is a lower semi-continuous multihomomorphism on $(\mathbb{R},+)$. By Lemma 2.3, f is a lower semicontinuous multihomomorphism on $(\mathbb{R},+)$ if f satisfies one of (iii)-(vi). Hence the proof is completed.

The following results follow directly from Theorem 1.1 and Theorem 2.1.
Corollary 2.1. Every upper semi-continuous interval-valued multihomomorphism is continuous.

Corollary 2.2. All the lower semi-continuous interval-valued multihomomorphisms which are not continuous are the multifunctions of the following forms:

$$
f(x)=(c x, \infty) \text { and } g(x)=(-\infty, c x)
$$

where c is a nonzero constant in \mathbb{R}.

Acknowledgement. The authors wish to thank the referees for their valuable suggestions and comments which improved the manuscript of the paper.

References

[1] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
[2] S. Nenthein and P. Lertwichitsilp, Surjective multihomomorphisms between cyclic groups, Thai J. Math. 4 (2006), no. 1, 35-42.
[3] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988/89), no. 2, 259-306.
[4] I. Termwuttipong, W. Hemakul and Y. Kemprasit, Upper semi-continuous interval-valued multihomomorphisms, Int. Math. Forum 5 (2010), no. 25-28, 1323-1330.
[5] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, Set-valued Math. and Appl. 1 (2008), no. 1, 9-18.
[6] P. Youngkhong and K. Savettaraseranee, Multihomomorphisms from groups into groups of real numbers, Thai J. Math. 4 (2006), no. 1, 43-48.

[^0]: Communicated by Lee See Keong.
 Received: February 3, 2009; Revised: April 8, 2010.

