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Abstract. It is well known that if f is a continuous homomorphism on (R, +),

then there exists a constant c ∈ R such that f(x) = cx for all x ∈ R. Termwut-

tipong et al. extended this result to interval-valued multifunctions on R. They
proved that an interval-valued multifunction f on R is an upper semi-continuous

multihomomorphism on (R, +) if and only if f has one of the following forms :

f(x) = {cx}, f(x) = R, f(x) = (0,∞), f(x) = (−∞, 0), f(x) = [ cx,∞), f(x) =
(−∞, cx ] where c is a constant in R. In this paper, we extend the above well

known result by considering lower semi-continuity. It is shown that an interval-
valued multifunction f on R is a lower semi-continuous multihomomorphism on

(R, +) if and only if f is one of the following: f(x) = {cx}, f(x) = R, f(x) =

(cx,∞), f(x) = (−∞, cx), f(x) = [ cx,∞), f(x) = (−∞, cx ] where c is a con-
stant in R.
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1. Introduction

By a multifunction from a nonempty set X into a nonempty set Y we mean f :
X → P(Y ) r {∅} where P(Y ) is the power set of Y . A multifunction on X is a
multifunction from X into itself.

A multifunction f from a group G into a group G
′

is a multihomomorphism if

f(xy) = f(x)f(y) (= {st | s ∈ f(x) and t ∈ f(y)}) for all x, y ∈ G.
The concept of multi-valued endomorphisms appeared in [1, p.176] is more general
than the one given here. In [5], multihomomorphisms between cyclic groups were
characterized. These results were used in [2] in order to characterize surjective
multihomomorphisms between cyclic groups. In [6], some necessary conditions of
multihomomorphisms from any group into groups of real numbers under the usual
addition and multiplication were given.
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A multifunction from a topological space X into a topological space Y is said to
be upper semi-continuous at a ∈ X if for any open set V in Y such that f(a) ⊆ V,
there exists an open set U in X such that a ∈ U and f(U) ⊆ V. Such a multifunction
f is called lower semi-continuous at a ∈ X if for any open set V in Y such that
V ∩f(a) 6= ∅, there exists an open set U in X such that a ∈ U and f(x)∩V 6= ∅ for all
x ∈ U. If f is both upper and lower semi-continuous at a ∈ X, f is called continuous
at a. If f is upper semi-continuous [lower semi-continuous, continuous] at every point
of X, we call f upper semi-continuous [lower semi-continuous, continuous ] on X.
(See [3, p. 261]). The upper semi-continuity, lower semi-continuity and continuity
of a single-valued functions coincide obviously.

Let R be the set of real numbers, Q the set of rational numbers and N the set
of natural numbers (positive integers). By an interval-valued multifunction on R we
mean a multifunction f on R such that f(x) is an interval in R. Evidently, interval-
valued multihomomorphisms on (R,+) generalize homomorphisms on (R,+). It
is well known that if f is a continuous homomorphism on (R,+), then there is a
constant c ∈ R such that f(x) = cx for all x ∈ R. This result was extended in [4] to
interval-valued multifunctions on R as follows:

Theorem 1.1. [4] Let f be an interval-valued multifunction on R. Then f is an
upper semi-continuous multihomomorphism on (R,+) if and only if f is one of the
following:

(i) There is a constant c ∈ R such that f(x) = {cx} for all x ∈ R.
(ii) f(x) = R for all x ∈ R.
(iii) f(x) = (0,∞) for all x ∈ R.
(iv) f(x) = (−∞, 0) for all x ∈ R.
(v) There is a constant c ∈ R such that f(x) = [ cx,∞) for all x ∈ R.

(vi) There is a constant c ∈ R such that f(x) = (−∞, cx ] for all x ∈ R.

This result motivates us to extend the above well known result by considering
lower semi-continuous interval-valued multihomomorphisms on R. We characterize
lower semi-continuous interval-valued multihomomorphisms on (R,+). This charac-
terization indicates that every upper semi-continuous multihomomorphism on (R,+)
is continuous.

The following results given in [4] are needed.

Lemma 1.1. [4] If f is an interval-valued multihomomorphism on (R,+), then f(0)
is one of the following: {0},R, (0,∞), (−∞, 0), [ 0,∞), (−∞, 0 ].

Lemma 1.2. [4] If f is an interval-valued multihomomorphism on (R,+), then for
every x ∈ R, f(x) and f(0) are intervals in R of the same form, that is,

f(x) =



{y} if f(0) = {0},
R if f(0) = R,

(y,∞) if f(0) = (0,∞),
(−∞, y) if f(0) = (−∞, 0),
[ y,∞) if f(0) = [ 0,∞),
(−∞, y ] if f(0) = (−∞, 0 ],

for some y ∈ R.
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Lemma 1.3. [4] Let f be an interval-valued multihomomorphism on (R,+). If
x, y ∈ R are such that f(x) = (y,∞), (−∞, y), [ y,∞) or (−∞, y ], then f(−x) =
(−y,∞), (−∞,−y), [−y,∞) or (−∞,−y ], respectively.

Lemma 1.4. [4] If f is an interval-valued multihomomorphism on (R,+), then for
all x ∈ R and m,n ∈ N, f

(
(m/n)x

)
= (m/n)f(x).

2. Main results

The following lemmas are also needed to obtain the main result.

Lemma 2.1. Let f be an interval-valued multihomomorphism on (R,+) and c ∈ R.
(i) If f(1) = (c,∞), then for all q ∈ Q, f(q) = (cq,∞).
(ii) If f(1) = (−∞, c), then for all q ∈ Q, f(q) = (−∞, cq).
(iii) If f(1) = [ c,∞), then for all q ∈ Q, f(q) = [ cq,∞).
(iv) If f(1) = (−∞, c ], then for all q ∈ Q, f(q) = (−∞, cq ].

Proof. (i) By Lemma 1.2, f(0) = (0,∞) = (c0,∞). If q ∈ Q is such that q > 0, then
by Lemma 1.3 and Lemma 1.4,

f(q) = f(q1) = qf(1) = q(c,∞) = (cq,∞),

f(−q) = f(q(−1)) = qf(−1) = q(−c,∞) = (−cq,∞) = (c(−q),∞).

Therefore (i) is proved. The results (ii)–(iv) can be proved analogously.

Lemma 2.2. Let f be an interval-valued multihomomorphism on (R,+). If f is
lower semi-continuous at 0, then f is lower semi-continuous on R.

Proof. If f(0) = {0}, by Lemma 1.2, f is a homomorphism which is continuous at
0. It follows obviously that f is continuous on R. Also, if f(0) = R, then by Lemma
1.2, f(x) = R for all x ∈ R and hence f is lower semi-continuous on R.

Next, assume that f(0) = (0,∞). Let x ∈ R. By Lemma 1.2, f(x) = (y,∞) for
some y ∈ R. By Lemma 1.3, f(−x) = (−y,∞). Let V be an open set in R such that
V ∩ (y,∞) 6= ∅. Then V − y is an open set in R and (V − y) ∩ (0,∞) 6= ∅. Since f
is lower semi-continuous at 0, there exists an open set U in R such that 0 ∈ U and
f(z)∩ (V −y) 6= ∅ for all z ∈ U. Thus U +x is an open set in R such that x ∈ U +x.
Claim that f(w) ∩ V 6= ∅ for all w ∈ U + x. Let w ∈ U + x. Then w − x ∈ U, so
f(w− x)∩ (V − y) 6= ∅. Let a ∈ f(w− x)∩ (V − y). Then a+ y ∈ V. It follows from

a ∈ f(w − x) = f(w) + f(−x) = f(w) + (−y,∞)

that
a+ y ∈ f(w) + (0,∞) = f(w) + f(0) = f(w).

Therefore a + y ∈ f(w) ∩ V. Hence f(w) ∩ V 6= ∅. This shows that f is lower
semi-continuous at x.

By a similar argument, we can show that f is lower semi-continuous on R for the
cases that f(0) = (−∞, 0), f(0) = [ 0,∞) and f(0) = (−∞, 0 ].

Lemma 2.3. For c ∈ R, the following interval-valued multifunctions are lower semi-
continuous multihomomorphisms on (R,+).

(i) f(x) = (cx,∞) for all x ∈ R.
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(ii) f(x) = (−∞, cx) for all x ∈ R.
(iii) f(x) = [ cx,∞) for all x ∈ R.
(iv) f(x) = (−∞, cx ] for all x ∈ R.

Proof. Evidently, f in (i)–(iv) is a multihomomorphism on (R,+) and if c = 0, then
it is lower semi-continuous on R. Assume that c 6= 0.
(i)We have that f(0) = (c0,∞) = (0,∞). Let V be an open set such that V ∩
(0,∞) 6= ∅. Let a ∈ V ∩(0,∞). Then (a−ε, a+ε) ⊆ V for some ε > 0. Thus (−ε, ε) ⊆
V −a. Let x ∈ (−ε/|c|, ε/|c|) . It follows that cx ∈ (−ε, ε), and so (cx,∞)∩(−ε, ε) 6= ∅.
Hence (cx,∞) ∩ (V − a) 6= ∅. Let b ∈ (cx,∞) ∩ (V − a). Then b + a ∈ V and
b + a ∈ (cx,∞) + (0,∞) = (cx,∞). Therefore b + a ∈ f(x) ∩ V. This shows that
f(x) ∩ V 6= ∅ for all x ∈ (−ε/|c|, ε/|c|) . Thus f is lower semi-continuous at 0. It
follows from Lemma 2.2 that f is lower semi-continuous on R. The results (ii)–(iv)
can be proved analogously.

Theorem 2.1. Let f be an interval-valued multifunction on R. Then f is a lower
semi-continuous multihomomorphism on (R,+) if and only if f is one of the follow-
ing:

(i) There is a constant c ∈ R such that f(x) = {cx} for all x ∈ R.
(ii) f(x) = R for all x ∈ R.
(iii) There is a constant c ∈ R such that f(x) = (cx,∞) for all x ∈ R.
(iv) There is a constant c ∈ R such that f(x) = (−∞, cx) for all x ∈ R.
(v) There is a constant c ∈ R such that f(x) = [ cx,∞) for all x ∈ R.

(vi) There is a constant c ∈ R such that f(x) = (−∞, cx ] for all x ∈ R.

Proof. Assume that f is a lower semi-continuous multihomomorphism on (R,+).
By Lemma 1.1, f(0) is one of {0},R, (0,∞), (−∞, 0), [ 0,∞) and (−∞, 0 ].

Case 1: f(0) = {0}. It follows from Lemma 1.2 that f is a continuous homomor-
phism on (R,+). Hence f satisfies (i).

Case 2: f(0) = R. By Lemma 1.2, f satisfies (ii).

Case 3: f(0) = (0,∞). From Lemma 1.2, f(1) = (c,∞) for some c ∈ R. By Lemma
2.1(i),

(2.1) f(q) = (cq,∞) for all q ∈ Q.

Let x ∈ R. By Lemma 1.2, f(x) = (y,∞) for some y ∈ R. Then for each n ∈ N,(
y− 1/n, y+ 1/n

)
is an open set such that f(x)∩ (y − 1/n, y + 1/n) 6= ∅. Since f is

lower semi-continuous at x, we deduce that

(2.2)
for every n ∈ N, there is a δn > 0 such that δn < 1/n and
f(z) ∩ (y − 1/n, y + 1/n) 6= ∅ for all z ∈ (x− δn, x+ δn).

For each n ∈ N, let qn ∈ Q be such that qn ∈ (x − δn, x + δn). From (2.1),
f(qn) = (cqn,∞) for all n ∈ N. It follows from (2.2) that

(cqn,∞) ∩
(
y − 1

n
, y +

1
n

)
6= ∅
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for all n ∈ N. This implies that cqn < y + 1/n for all n ∈ N. Hence

(2.3) cqn − y <
1
n

for all n ∈ N.

Let n ∈ N. Since qn ∈ (x − δn, x + δn), we have −δn < x − qn < δn, so 2x − qn ∈
(x− δn, x+ δn). By (2.2), f

(
2x− qn

)
∩
(
y − 1/n, y + 1/n

)
6= ∅. But

f(2x− qn) = f(2x) + f(−qn)

= 2f(x) + f(−qn) (from Lemma 1.4)

= 2(y,∞) + (−cqn,∞) (from (2.1) and Lemma 1.3)

= (2y − cqn,∞),

so (2y − cqn,∞) ∩
(
y − 1/n, y + 1/n

)
6= ∅. This implies that 2y − cqn < y + 1/n.

Thus y − cqn < 1/n. This proves that

(2.4) y − cqn <
1
n

for all n ∈ N.

It is immediate from (2.3) and (2.4), that | y − cqn| < 1/n for all n ∈ N. Hence
limn→∞ cqn = y. Since | qn − x| < δn < 1/n for all n ∈ N, we have limn→∞ qn = x.
Consequently,

y = lim
n→∞

cqn = c lim
n→∞

qn = cx.

This proves that f(x) = (cx,∞), as desired.

Case 4 : f(0) = (−∞, 0). By Lemma 1.2, f(1) = (−∞, c) for some c ∈ R. It follows
from Lemma 2.1(ii) that

(2.5) f(q) = (−∞, cq) for all q ∈ Q.

If x ∈ R, then by Lemma 1.2, f(x) = (−∞, y) for some y ∈ R. Then f(x) ∩ (y −
1/n, y + 1/n) 6= ∅ for all n ∈ N. Since f is lower-semi-continuous we have that

(2.6)
for every n ∈ N, there is a δn > 0 such that δn < 1/n and
f(z) ∩ (y − 1/n, y + 1/n) 6= ∅ for all z ∈ (x− δn, x+ δn).

For each n ∈ N, let qn ∈ Q ∩ (x− δn, x+ δn). From (2.5), f(qn) = (−∞, cqn) for all
n ∈ N and from (2.6), we have

(−∞, cqn) ∩
(
y − 1

n
, y +

1
n

)
6= ∅ for all n ∈ N.

It follows that y − 1/n < cqn for all n ∈ N. Thus

(2.7) y − cqn <
1
n

for all n ∈ N.

If n ∈ N, then 2x−qn ∈ (x−δn, x+δn). By (2.6), f(2x−qn)∩
(
y−1/n, y+1/n

)
6= ∅.

From (2.5), Lemma 1.3 and Lemma 1.4, we have

f(2x− qn) = 2f(x) + f(−qn) = 2(−∞, y) + (−∞,−cqn) = (−∞, 2y − cqn).

This implies that y − 1/n < 2y − cqn, and so cqn − y < 1/n. Hence

(2.8) cqn − y <
1
n

for all n ∈ N.
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It follows from (2.7) and (2.8) that limn→∞ cqn = y. Also, from choosing qn, we
have that limn→∞ qn = x. Consequently, y = cx and therefore f(x) = (−∞, cx), as
desired.

Case 5 : f(0) = [ 0,∞). By Lemma 1.2, f(1) = [ c,∞) for some c ∈ R. We
can show similarly to Case 4 by Lemma 2.1(iii), Lemma 1.3 and Lemma 1.4 that
f(x) = [ cx,−∞) for all x ∈ R.

Case 6 : f(0) = (−∞, 0 ]. By Lemma 1.2, f(1) = (−∞, c ] for some c ∈ R. It can
be shown similarly to Case 5 by Lemma 2.1(iv), Lemma 1.3 and Lemma 1.4 that
f(x) = (−∞, cx ] for all x ∈ R.

Conversely, assume that f satisfies one of (i)–(iv). If f satisfies (i), then f
is a continuous homomorphism. Evidently, if f satisfies (ii), then f is a lower
semi-continuous multihomomorphism on (R,+). By Lemma 2.3, f is a lower semi-
continuous multihomomorphism on (R,+) if f satisfies one of (iii)–(vi). Hence the
proof is completed.

The following results follow directly from Theorem 1.1 and Theorem 2.1.

Corollary 2.1. Every upper semi-continuous interval-valued multihomomorphism
is continuous.

Corollary 2.2. All the lower semi-continuous interval-valued multihomomorphisms
which are not continuous are the multifunctions of the following forms:

f(x) = (cx,∞) and g(x) = (−∞, cx)

where c is a nonzero constant in R.
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