On Lower Semi-Continuity of Interval-Valued Multihomomorphisms

S. PIANSKOOL, P. UDOMKAVANICH AND P. YOUNGKHONG

Department of Mathematics and Computer Science, Faculty of Science Chulalongkorn University, Bangkok 10330, Thailand sajee.p@chula.ac.th, pattanee.u@chula.ac.th, pyoungkhong@yahoo.com

Abstract. It is well known that if f is a continuous homomorphism on $(\mathbb{R}, +)$, then there exists a constant $c \in \mathbb{R}$ such that f(x) = cx for all $x \in \mathbb{R}$. Termwuttipong *et al.* extended this result to interval-valued multifunctions on \mathbb{R} . They proved that an interval-valued multifunction f on \mathbb{R} is an upper semi-continuous multihomomorphism on $(\mathbb{R}, +)$ if and only if f has one of the following forms : $f(x) = \{cx\}, f(x) = \mathbb{R}, f(x) = (0, \infty), f(x) = (-\infty, 0), f(x) = [cx, \infty), f(x) = (-\infty, cx]$ where c is a constant in \mathbb{R} . In this paper, we extend the above well known result by considering lower semi-continuous multihomomorphism on $(\mathbb{R}, +)$ if and only if f is one of the following: $f(x) = \{cx\}, f(x) = \mathbb{R}, f(x) = (cx, \infty), f(x) = (-\infty, cx), f(x) = [cx, \infty), f(x) = (-\infty, cx), f(x) = (cx, \infty), f(x) = (-\infty, cx), f(x) = [cx, \infty), f(x) = (-\infty, cx]$ where c is a constant in \mathbb{R} .

2010 Mathematics Subject Classification: 26A15, 26E25

Keywords and phrases: Upper semi-continuous multifunction, lower semi-continuous multifunction, multihomomorphism.

1. Introduction

By a multifunction from a nonempty set X into a nonempty set Y we mean $f : X \to \mathcal{P}(Y) \setminus \{\emptyset\}$ where $\mathcal{P}(Y)$ is the power set of Y. A multifunction on X is a multifunction from X into itself.

A multifunction f from a group G into a group G' is a *multihomomorphism* if

$$f(xy) = f(x)f(y) \ (= \{st \mid s \in f(x) \text{ and } t \in f(y)\}) \text{ for all } x, y \in G.$$

The concept of multi-valued endomorphisms appeared in [1, p.176] is more general than the one given here. In [5], multihomomorphisms between cyclic groups were characterized. These results were used in [2] in order to characterize surjective multihomomorphisms between cyclic groups. In [6], some necessary conditions of multihomomorphisms from any group into groups of real numbers under the usual addition and multiplication were given.

Communicated by Lee See Keong.

Received: February 3, 2009; Revised: April 8, 2010.

A multifunction from a topological space X into a topological space Y is said to be upper semi-continuous at $a \in X$ if for any open set V in Y such that $f(a) \subseteq V$, there exists an open set U in X such that $a \in U$ and $f(U) \subseteq V$. Such a multifunction f is called *lower semi-continuous* at $a \in X$ if for any open set V in Y such that $V \cap f(a) \neq \emptyset$, there exists an open set U in X such that $a \in U$ and $f(x) \cap V \neq \emptyset$ for all $x \in U$. If f is both upper and lower semi-continuous at $a \in X$, f is called *continuous* at a. If f is upper semi-continuous [lower semi-continuous, continuous] at every point of X, we call f upper semi-continuous [lower semi-continuous, continuous] on X. (See [3, p. 261]). The upper semi-continuity, lower semi-continuity and continuity of a single-valued functions coincide obviously.

Let \mathbb{R} be the set of real numbers, \mathbb{Q} the set of rational numbers and \mathbb{N} the set of natural numbers (positive integers). By an *interval-valued multifunction* on \mathbb{R} we mean a multifunction f on \mathbb{R} such that f(x) is an interval in \mathbb{R} . Evidently, intervalvalued multihomomorphisms on $(\mathbb{R}, +)$ generalize homomorphisms on $(\mathbb{R}, +)$. It is well known that if f is a continuous homomorphism on $(\mathbb{R}, +)$, then there is a constant $c \in \mathbb{R}$ such that f(x) = cx for all $x \in \mathbb{R}$. This result was extended in [4] to interval-valued multifunctions on \mathbb{R} as follows:

Theorem 1.1. [4] Let f be an interval-valued multifunction on \mathbb{R} . Then f is an upper semi-continuous multihomomorphism on $(\mathbb{R}, +)$ if and only if f is one of the following:

- (i) There is a constant $c \in \mathbb{R}$ such that $f(x) = \{cx\}$ for all $x \in \mathbb{R}$.
- (ii) $f(x) = \mathbb{R}$ for all $x \in \mathbb{R}$.
- (iii) $f(x) = (0, \infty)$ for all $x \in \mathbb{R}$.
- (iv) $f(x) = (-\infty, 0)$ for all $x \in \mathbb{R}$.
- (v) There is a constant $c \in \mathbb{R}$ such that $f(x) = [cx, \infty)$ for all $x \in \mathbb{R}$.
- (vi) There is a constant $c \in \mathbb{R}$ such that $f(x) = (-\infty, cx]$ for all $x \in \mathbb{R}$.

This result motivates us to extend the above well known result by considering lower semi-continuous interval-valued multihomomorphisms on \mathbb{R} . We characterize lower semi-continuous interval-valued multihomomorphisms on $(\mathbb{R}, +)$. This characterization indicates that every upper semi-continuous multihomomorphism on $(\mathbb{R}, +)$ is continuous.

The following results given in [4] are needed.

Lemma 1.1. [4] If f is an interval-valued multihomomorphism on $(\mathbb{R}, +)$, then f(0) is one of the following: $\{0\}, \mathbb{R}, (0, \infty), (-\infty, 0), [0, \infty), (-\infty, 0].$

Lemma 1.2. [4] If f is an interval-valued multihomomorphism on $(\mathbb{R}, +)$, then for every $x \in \mathbb{R}$, f(x) and f(0) are intervals in \mathbb{R} of the same form, that is,

$$f(x) = \begin{cases} \{y\} & \text{if } f(0) = \{0\}, \\ \mathbb{R} & \text{if } f(0) = \mathbb{R}, \\ (y, \infty) & \text{if } f(0) = (0, \infty), \\ (-\infty, y) & \text{if } f(0) = (-\infty, 0), \\ [y, \infty) & \text{if } f(0) = [0, \infty), \\ (-\infty, y] & \text{if } f(0) = (-\infty, 0], \end{cases}$$

for some $y \in \mathbb{R}$.

Lemma 1.3. [4] Let f be an interval-valued multihomomorphism on $(\mathbb{R}, +)$. If $x, y \in \mathbb{R}$ are such that $f(x) = (y, \infty), (-\infty, y), [y, \infty)$ or $(-\infty, y]$, then $f(-x) = (-y, \infty), (-\infty, -y), [-y, \infty)$ or $(-\infty, -y]$, respectively.

Lemma 1.4. [4] If f is an interval-valued multihomomorphism on $(\mathbb{R}, +)$, then for all $x \in \mathbb{R}$ and $m, n \in \mathbb{N}$, f((m/n)x) = (m/n)f(x).

2. Main results

The following lemmas are also needed to obtain the main result.

Lemma 2.1. Let f be an interval-valued multihomomorphism on $(\mathbb{R}, +)$ and $c \in \mathbb{R}$.

- (i) If $f(1) = (c, \infty)$, then for all $q \in \mathbb{Q}$, $f(q) = (cq, \infty)$.
- (ii) If $f(1) = (-\infty, c)$, then for all $q \in \mathbb{Q}$, $f(q) = (-\infty, cq)$.
- (iii) If $f(1) = [c, \infty)$, then for all $q \in \mathbb{Q}$, $f(q) = [cq, \infty)$.
- (iv) If $f(1) = (-\infty, c]$, then for all $q \in \mathbb{Q}$, $f(q) = (-\infty, cq]$.

Proof. (i) By Lemma 1.2, $f(0) = (0, \infty) = (c0, \infty)$. If $q \in \mathbb{Q}$ is such that q > 0, then by Lemma 1.3 and Lemma 1.4,

$$\begin{aligned} f(q) &= f(q1) = qf(1) = q(c,\infty) = (cq,\infty), \\ f(-q) &= f(q(-1)) = qf(-1) = q(-c,\infty) = (-cq,\infty) = (c(-q),\infty). \end{aligned}$$

Therefore (i) is proved. The results (ii)–(iv) can be proved analogously.

Lemma 2.2. Let f be an interval-valued multihomomorphism on $(\mathbb{R}, +)$. If f is lower semi-continuous at 0, then f is lower semi-continuous on \mathbb{R} .

Proof. If $f(0) = \{0\}$, by Lemma 1.2, f is a homomorphism which is continuous at 0. It follows obviously that f is continuous on \mathbb{R} . Also, if $f(0) = \mathbb{R}$, then by Lemma 1.2, $f(x) = \mathbb{R}$ for all $x \in \mathbb{R}$ and hence f is lower semi-continuous on \mathbb{R} .

Next, assume that $f(0) = (0, \infty)$. Let $x \in \mathbb{R}$. By Lemma 1.2, $f(x) = (y, \infty)$ for some $y \in \mathbb{R}$. By Lemma 1.3, $f(-x) = (-y, \infty)$. Let V be an open set in \mathbb{R} such that $V \cap (y, \infty) \neq \emptyset$. Then V - y is an open set in \mathbb{R} and $(V - y) \cap (0, \infty) \neq \emptyset$. Since f is lower semi-continuous at 0, there exists an open set U in \mathbb{R} such that $0 \in U$ and $f(z) \cap (V - y) \neq \emptyset$ for all $z \in U$. Thus U + x is an open set in \mathbb{R} such that $x \in U + x$. Claim that $f(w) \cap V \neq \emptyset$ for all $w \in U + x$. Let $w \in U + x$. Then $w - x \in U$, so $f(w - x) \cap (V - y) \neq \emptyset$. Let $a \in f(w - x) \cap (V - y)$. Then $a + y \in V$. It follows from

$$a \in f(w - x) = f(w) + f(-x) = f(w) + (-y, \infty)$$

that

 $a + y \in f(w) + (0, \infty) = f(w) + f(0) = f(w).$

Therefore $a + y \in f(w) \cap V$. Hence $f(w) \cap V \neq \emptyset$. This shows that f is lower semi-continuous at x.

By a similar argument, we can show that f is lower semi-continuous on \mathbb{R} for the cases that $f(0) = (-\infty, 0), f(0) = [0, \infty)$ and $f(0) = (-\infty, 0]$.

Lemma 2.3. For $c \in \mathbb{R}$, the following interval-valued multifunctions are lower semicontinuous multihomomorphisms on $(\mathbb{R}, +)$.

(i)
$$f(x) = (cx, \infty)$$
 for all $x \in \mathbb{R}$.

- (ii) $f(x) = (-\infty, cx)$ for all $x \in \mathbb{R}$. (iii) $f(x) = [cx, \infty)$ for all $x \in \mathbb{R}$.
- (iv) $f(x) = (-\infty, cx]$ for all $x \in \mathbb{R}$.

Proof. Evidently, f in (i)–(iv) is a multihomomorphism on $(\mathbb{R}, +)$ and if c = 0, then it is lower semi-continuous on \mathbb{R} . Assume that $c \neq 0$.

(i)We have that $f(0) = (c0, \infty) = (0, \infty)$. Let V be an open set such that $V \cap (0, \infty) \neq \emptyset$. Let $a \in V \cap (0, \infty)$. Then $(a - \epsilon, a + \epsilon) \subseteq V$ for some $\epsilon > 0$. Thus $(-\epsilon, \epsilon) \subseteq V - a$. Let $x \in (-\epsilon/|c|, \epsilon/|c|)$. It follows that $cx \in (-\epsilon, \epsilon)$, and so $(cx, \infty) \cap (-\epsilon, \epsilon) \neq \emptyset$. Hence $(cx, \infty) \cap (V - a) \neq \emptyset$. Let $b \in (cx, \infty) \cap (V - a)$. Then $b + a \in V$ and $b + a \in (cx, \infty) + (0, \infty) = (cx, \infty)$. Therefore $b + a \in f(x) \cap V$. This shows that $f(x) \cap V \neq \emptyset$ for all $x \in (-\epsilon/|c|, \epsilon/|c|)$. Thus f is lower semi-continuous at 0. It follows from Lemma 2.2 that f is lower semi-continuous on \mathbb{R} . The results (ii)–(iv) can be proved analogously.

Theorem 2.1. Let f be an interval-valued multifunction on \mathbb{R} . Then f is a lower semi-continuous multihomomorphism on $(\mathbb{R}, +)$ if and only if f is one of the following:

- (i) There is a constant $c \in \mathbb{R}$ such that $f(x) = \{cx\}$ for all $x \in \mathbb{R}$.
- (ii) $f(x) = \mathbb{R}$ for all $x \in \mathbb{R}$.
- (iii) There is a constant $c \in \mathbb{R}$ such that $f(x) = (cx, \infty)$ for all $x \in \mathbb{R}$.
- (iv) There is a constant $c \in \mathbb{R}$ such that $f(x) = (-\infty, cx)$ for all $x \in \mathbb{R}$.
- (v) There is a constant $c \in \mathbb{R}$ such that $f(x) = [cx, \infty)$ for all $x \in \mathbb{R}$.
- (vi) There is a constant $c \in \mathbb{R}$ such that $f(x) = (-\infty, cx]$ for all $x \in \mathbb{R}$.

Proof. Assume that f is a lower semi-continuous multihomomorphism on $(\mathbb{R}, +)$. By Lemma 1.1, f(0) is one of $\{0\}, \mathbb{R}, (0, \infty), (-\infty, 0), [0, \infty)$ and $(-\infty, 0]$.

Case 1: $f(0) = \{0\}$. It follows from Lemma 1.2 that f is a continuous homomorphism on $(\mathbb{R}, +)$. Hence f satisfies (i).

Case 2: $f(0) = \mathbb{R}$. By Lemma 1.2, f satisfies (ii).

Case 3: $f(0) = (0, \infty)$. From Lemma 1.2, $f(1) = (c, \infty)$ for some $c \in \mathbb{R}$. By Lemma 2.1(i),

(2.1)
$$f(q) = (cq, \infty)$$
 for all $q \in \mathbb{Q}$.

Let $x \in \mathbb{R}$. By Lemma 1.2, $f(x) = (y, \infty)$ for some $y \in \mathbb{R}$. Then for each $n \in \mathbb{N}$, (y-1/n, y+1/n) is an open set such that $f(x) \cap (y-1/n, y+1/n) \neq \emptyset$. Since f is lower semi-continuous at x, we deduce that

(2.2) for every
$$n \in \mathbb{N}$$
, there is a $\delta_n > 0$ such that $\delta_n < 1/n$ and $f(z) \cap (y - 1/n, y + 1/n) \neq \emptyset$ for all $z \in (x - \delta_n, x + \delta_n)$.

For each $n \in \mathbb{N}$, let $q_n \in \mathbb{Q}$ be such that $q_n \in (x - \delta_n, x + \delta_n)$. From (2.1), $f(q_n) = (cq_n, \infty)$ for all $n \in \mathbb{N}$. It follows from (2.2) that

$$(cq_n,\infty)\cap \left(y-\frac{1}{n},y+\frac{1}{n}\right)\neq \emptyset$$

82

for all $n \in \mathbb{N}$. This implies that $cq_n < y + 1/n$ for all $n \in \mathbb{N}$. Hence

(2.3)
$$cq_n - y < \frac{1}{n} \text{ for all } n \in \mathbb{N}.$$

Let $n \in \mathbb{N}$. Since $q_n \in (x - \delta_n, x + \delta_n)$, we have $-\delta_n < x - q_n < \delta_n$, so $2x - q_n \in (x - \delta_n, x + \delta_n)$. By (2.2), $f(2x - q_n) \cap (y - 1/n, y + 1/n) \neq \emptyset$. But

$$f(2x - q_n) = f(2x) + f(-q_n)$$

= 2f(x) + f(-q_n) (from Lemma 1.4)
= 2(y, \infty) + (-cq_n, \infty) (from (2.1) and Lemma 1.3)
= (2y - cq_n, \infty),

so $(2y - cq_n, \infty) \cap (y - 1/n, y + 1/n) \neq \emptyset$. This implies that $2y - cq_n < y + 1/n$. Thus $y - cq_n < 1/n$. This proves that

(2.4)
$$y - cq_n < \frac{1}{n} \text{ for all } n \in \mathbb{N}.$$

It is immediate from (2.3) and (2.4), that $|y - cq_n| < 1/n$ for all $n \in \mathbb{N}$. Hence $\lim_{n\to\infty} cq_n = y$. Since $|q_n - x| < \delta_n < 1/n$ for all $n \in \mathbb{N}$, we have $\lim_{n\to\infty} q_n = x$. Consequently,

$$y = \lim_{n \to \infty} cq_n = c \lim_{n \to \infty} q_n = cx.$$

This proves that $f(x) = (cx, \infty)$, as desired.

Case 4 : $f(0) = (-\infty, 0)$. By Lemma 1.2, $f(1) = (-\infty, c)$ for some $c \in \mathbb{R}$. It follows from Lemma 2.1(ii) that

(2.5)
$$f(q) = (-\infty, cq) \text{ for all } q \in \mathbb{Q}.$$

If $x \in \mathbb{R}$, then by Lemma 1.2, $f(x) = (-\infty, y)$ for some $y \in \mathbb{R}$. Then $f(x) \cap (y - 1/n, y + 1/n) \neq \emptyset$ for all $n \in \mathbb{N}$. Since f is lower-semi-continuous we have that

(2.6) for every
$$n \in \mathbb{N}$$
, there is a $\delta_n > 0$ such that $\delta_n < 1/n$ and $f(z) \cap (y - 1/n, y + 1/n) \neq \emptyset$ for all $z \in (x - \delta_n, x + \delta_n)$.

For each $n \in \mathbb{N}$, let $q_n \in \mathbb{Q} \cap (x - \delta_n, x + \delta_n)$. From (2.5), $f(q_n) = (-\infty, cq_n)$ for all $n \in \mathbb{N}$ and from (2.6), we have

$$(-\infty, cq_n) \cap \left(y - \frac{1}{n}, y + \frac{1}{n}\right) \neq \emptyset \text{ for all } n \in \mathbb{N}.$$

It follows that $y - 1/n < cq_n$ for all $n \in \mathbb{N}$. Thus

(2.7)
$$y - cq_n < \frac{1}{n} \text{ for all } n \in \mathbb{N}.$$

If $n \in \mathbb{N}$, then $2x - q_n \in (x - \delta_n, x + \delta_n)$. By (2.6), $f(2x - q_n) \cap (y - 1/n, y + 1/n) \neq \emptyset$. From (2.5), Lemma 1.3 and Lemma 1.4, we have

$$f(2x - q_n) = 2f(x) + f(-q_n) = 2(-\infty, y) + (-\infty, -cq_n) = (-\infty, 2y - cq_n).$$

This implies that $y - 1/n < 2y - cq_n$, and so $cq_n - y < 1/n$. Hence

(2.8)
$$cq_n - y < \frac{1}{n} \text{ for all } n \in \mathbb{N}.$$

It follows from (2.7) and (2.8) that $\lim_{n\to\infty} cq_n = y$. Also, from choosing q_n , we have that $\lim_{n\to\infty} q_n = x$. Consequently, y = cx and therefore $f(x) = (-\infty, cx)$, as desired.

Case 5: $f(0) = [0, \infty)$. By Lemma 1.2, $f(1) = [c, \infty)$ for some $c \in \mathbb{R}$. We can show similarly to Case 4 by Lemma 2.1(iii), Lemma 1.3 and Lemma 1.4 that $f(x) = [cx, -\infty)$ for all $x \in \mathbb{R}$.

Case 6 : $f(0) = (-\infty, 0]$. By Lemma 1.2, $f(1) = (-\infty, c]$ for some $c \in \mathbb{R}$. It can be shown similarly to Case 5 by Lemma 2.1(iv), Lemma 1.3 and Lemma 1.4 that $f(x) = (-\infty, cx]$ for all $x \in \mathbb{R}$.

Conversely, assume that f satisfies one of (i)–(iv). If f satisfies (i), then f is a continuous homomorphism. Evidently, if f satisfies (ii), then f is a lower semi-continuous multihomomorphism on $(\mathbb{R}, +)$. By Lemma 2.3, f is a lower semi-continuous multihomomorphism on $(\mathbb{R}, +)$ if f satisfies one of (iii)–(vi). Hence the proof is completed.

The following results follow directly from Theorem 1.1 and Theorem 2.1.

Corollary 2.1. Every upper semi-continuous interval-valued multihomomorphism is continuous.

Corollary 2.2. All the lower semi-continuous interval-valued multihomomorphisms which are not continuous are the multifunctions of the following forms:

 $f(x) = (cx, \infty)$ and $g(x) = (-\infty, cx)$

where c is a nonzero constant in \mathbb{R} .

Acknowledgement. The authors wish to thank the referees for their valuable suggestions and comments which improved the manuscript of the paper.

References

- [1] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
- S. Nenthein and P. Lertwichitsilp, Surjective multihomomorphisms between cyclic groups, *Thai J. Math.* 4 (2006), no. 1, 35–42.
- [3] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988/89), no. 2, 259-306.
- [4] I. Termwuttipong, W. Hemakul and Y. Kemprasit, Upper semi-continuous interval-valued multihomomorphisms, Int. Math. Forum 5 (2010), no. 25–28, 1323–1330.
- N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, Set-valued Math. and Appl. 1 (2008), no. 1, 9–18.
- [6] P. Youngkhong and K. Savettaraseranee, Multihomomorphisms from groups into groups of real numbers, *Thai J. Math.* 4 (2006), no. 1, 43–48.