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Abstract. In this paper, we propose a model for a production system that
satisfies a continuous time-varying demand for a finished product over a known
and finite planning horizon by supplying both new and repaired items. New
items are fabricated from a single type of raw material procured from external
suppliers, while used items are collected from the customers and then repaired
to an ‘as new’ condition before being sold again. For simplicity, we assume
that there is no collection of used items during the repair uptime and downtime
periods. The problem is to determine a joint policy for raw materials procure-
ment, new items fabrication and used items repair such that the total relevant
cost of the model is minimized. We propose a numerical solution procedure and
we illustrate the model with some numerical examples and a simple sensitivity
analysis.
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1. Introduction

In many production systems, the producer procures raw materials from external
suppliers and then processes them into finished products. When raw materials are
used in production, their ordering quantities are dependent on the production batch
size of the finished product. Therefore, it is often desirable to consider the batch size
of the finished product and the ordering quantities of the associated raw materials
together by treating production and procurement in a single model. Omar and
Smith [18] developed such a model that is subject to a linearly increasing time-
varying demand process.

Besides fabricating the finished product from raw materials, it may be possible to
reuse used products collected from the customers. Reuse of products and materials

Communicated by Anton Abdulbasah Kamil.
Received: February 2, 2010; Revised: October 22, 2010.



86 M. Omar and I. Yeo

is not a new phenomenon. Metal scrap brokers, wastepaper recycling and deposit
systems for soft drink bottles are all examples that have been around for a long time.
In these cases, recovery of the used products is economically more attractive than
disposal. Furthermore, in the recent past, the growth of environmental concerns has
given ‘reuse’ increasing attention [6].

In literature, extensive study has been devoted to reuse models under a constant
demand process. As far as we know, the first EOQ reuse model was proposed by
Schrady [23]. He assumes fixed demand and return rates, fixed lead times for exter-
nal order and internal repair, infinite procurement and repair rates, and disallows
shortages. His formulation treats the serviceable and recoverable inventories as in-
terdependent parts of a total system, and jointly determines the optimal order and
repair quantities using expressions derived similarly to the classical EOQ formula.
He proposes policies that alternate one procurement batch with a fixed number R
of repair batches (or (1,R) policies for short). Nahmias and Rivera [17] extended
this model by considering the case of finite repair rate. They assume that the repair
rate is greater than the demand rate. Mabini et al. [16] also extended Schrady’s
model, but their formulation allows shortages to occur. Furthermore, they consider
a multi-item system where items share the same repair facility. For their extended
models, they propose numerical solution methods. Next, Koh et al. [10] proposed
control policies for a joint EOQ and EPQ model where two cases were investigated:
Multiple order setups (P ) for a single recycling setup and vice-versa (in other words,
(P ,1) and (1,R) policies). They also assume infinite production rate and finite repair
rate. However, their study is more general than that of Nahmias and Rivera [17],
since they allow the repair rate to be both smaller and greater than the demand
rate. For the four possible policy combinations, they derive a closed-form expression
for the average total cost which is then used to determine the optimal batch sizes
numerically. Konstantaras and Papachristos [12] obtained closed form expressions
for both the optimal recovery and optimal ordering setup numbers for the model in
Koh et al. [10]. Teunter [24] further generalized earlier works by deriving lot-sizing
formulae for (P ,1) and (1,R) policies under finite production and repair rates. Their
results are obtained in a graphical manner, thus avoiding the tedious mathematics
in previous works. Konstantaras and Papachristos [13] rectified the approximate
nature of the solution algorithm in Teunter [24] by proposing an exact method.

The authors above assumed that all returned items are reuseable. However,
Richter [20, 19] studied a two-shop EOQ waste disposal model in which the first
shop provides products to the second shop through production of new items and
repair of used items, while the second shop uses the products, stocks a portion of
the used items, and disposes of the remaining portion as waste. At the end of each
cycle, the stocked used items are transferred back to the first shop to be repaired.
The author assumes infinite production and repair rates, and n production setups
and m repair setups during each cycle. He formulates a EOQ-related cost function
and a joint EOQ-related and non-EOQ-related cost function, and analyzes them
separately. Later, Richter [21] extended the cost analysis of his earlier work to show
an extremal property: The pure strategy of total repair or the pure strategy of total
disposal (total production) dominates any mixed strategy of repair and disposal.
Next, Richter and Dobos [22, 2] extended the aforementioned works by considering
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part of the problem as an integer programming problem to secure the integrity of
the setup numbers. They also obtain similar findings with respect to the dominance
of pure strategies. After that, Dobos and Richter [3] relaxed the assumption that
the production and repair rates are infinite but considered only one production and
one repair setup per cycle. Subsequently, Dobos and Richter [4] generalized their
former work by considering multiple production and repair setups per cycle. These
works reiterated the dominance of pure strategies from an economical standpoint.

The question of the feasibility of the implementation of pure strategies leads to
Dobos and Richter [5] extending their 2004 waste disposal model by considering the
quality of returned items, i.e. not all returned used items are suitable for recycling.
They put forth the following question: Who should control the quality of returned
used items? The authors examine two strategies: (1) The producer repurchase all
used items and then reuse a maximal portion. (2) The producer repurchase only the
serviceable used items and then decide how much to reuse. The authors assume that
the serviceable portion of used items is known. Before minimizing the total cost, they
assume that a pure recycling strategy is more economical than a pure production
strategy. By minimizing the EOQ-related cost, they discover that Strategy 1 is more
economical than Strategy 2. This translates to the producer’s optimal policy being
to conduct quality control inhouse after repurchasing all used items. In contrast,
when the authors minimize the joint EOQ-related and non-EOQ-related cost, they
discover that Strategy 2 is more economical than Strategy 1. So, the producer’s
optimal policy now is to outsource quality control and repurchase only good used
items. Later, Jaber and El Saadany [9] extended Dobos and Richter’s 2006 model
by considering a variable return rate R(p, q) as being dependent on the purchasing
prince p and acceptance quality level q of the returned items. They show numerically
that by computing the optimal p∗ and q∗, and consequently leading to the optimal
R(p∗, q∗) for fixed parameter values of R, mixed strategies perform better than pure
strategies. In addition to discriminating the quality of used items, the relaxation of
the assumption that the quality of new and remanufactured items is indistinguishable
can lead to more realistic models in general. Jaber and El Saadany [8] explored this
avenue by extending the work of [19, 20] to the case where the demand for new
items is different from the demand for remanufactured items, i.e. the new items and
the remanufactured items are consumed by two separate markets. This leads to
lost sales situations, since new items are facing shortage during the remanufacturing
periods and vice versa.

Next, Konstantaras et al. [15] studied a model where not all used items qualify to
be recovered: Those that qualify are recovered to an as good as new condition, while
those that do not are recovered and sold at a secondary market for a lower price.
They derived formulas for the optimal inventory level of used items before inspection
and the optimal order quantity. Buscher and Linder [1] considered the case where
production and recovery takes place on a common facility. They jointly determined
the economic production and rework quantity as well as the optimal sizes of partial
lots for both activities. Jaber and Rosen [7] suggested that a EOQ repair and waste
disposal model can be treated as a ‘disordered’ physical system, and improvements
to the operation of the system can be achieved by reducing the disorder through the
application of the the first and second laws of thermodynamics.
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Most of the works above do not account for shortages, which can be econom-
ical in some situations. Konstantaras and Papachristos [11] obtained an optimal
production and recovery policy analytically for a EOQ model where excess demand
are completely backordered. Later, Konstantaras and Skouri [14] obtained sufficient
conditions for the optimal policy of a model with completely backlogged shortages
and variable setup numbers of equal batch sizes.

In this paper, we consider the reuse of items after a simple repair process. The
producer satisfies a continuous time-varying demand process for a finished product
over a known and finite planning horizon, and collects used items from the customers.
For satisfying the demand, he has two options: either he fabricates new items from
the raw materials that he procured externally, or he repairs the used items back to
an ‘as new’ condition. The material flow of this situation is depicted in Figure 1.
In the next two sections, we present a model that treats the inventories of the raw
materials, finished items, and used items as interdependent parts of a single system.
Our model operates with a predetermined inventory holding policy. In Section 4, we
propose a numerical solution procedure that finds the optimal solution recursively.
Section 5 contains some numerical examples and sensitivity analysis as well as a
conclusion.

Raw materials
Production

process

Repair process

Finished
products

Used products

Customers

Figure 1. Material flow of the model.

2. Model description

In this model, demand for the finished product is served by either newly fabricated
items or by used items that are repaired to an ‘as new’ condition. We assume that
only one type of raw material (called raw material 1) is required to fabricate the
finished product. We consider an n-cycle policy that alternates production runs
with repair runs throughout a known and finite planning horizon. For each cycle,
the producer orders one shipment of raw material 1 to fabricate new items in a single
production run, and then repairs used items in a single repair run. At the end of the
production run, all units of raw material 1 will be fully processed, and at the end of
the repair run, all units of the used products will be fully repaired. Since demand
varies with time, we assume that the collection rate of the used items is proportional
to the demand rate. We also assume that the collection of used items incurs no setup
cost. Moreover, we assume that there is no collection of used items during the period
when used items are repaired and shipped. Figure 2 shows the general pattern of the
inventory movement during the (i + 1)-th cycle (i = 0, 1, . . . , n− 1) when demand is
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increasing over time. Before going further, we list the assumptions and nomenclature
used in this paper.
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Figure 2. Inventory movement in a cycle for increasing demand.

2.1. Assumptions

• A single product inventory system is considered over a known and finite
planning horizon which is H units of time long.

• The demand rate at time t is given by the deterministic and continuous
function D(t).

• The production rate is a known constant P and P > D(t) for all t.
• The repair rate is a known constant R and R > D(t) for all t.
• The collection rate of the used items, C(t), is proportional to the demand

rate, i.e. C(t) = φD(t), 0 ≤ φ ≤ 1.
• All used items are repaired to an ‘as new’ condition. There is no collection

of used items during the repair period.
• Only one type of raw material (called raw material 1) is required to fabricate

the finished product. After an order is placed, raw material 1 is immediately
replenished.

• There is a single production run, a single repair run, and a single replenish-
ment of raw material 1 per cycle.

• Newly fabricated or repaired items are immediately shipped out.
• Shortages are not allowed during the planning horizon.
• The following cost parameters are considered:

- cP , the setup cost of the production run (cost/setup).
- cR, the setup cost of the repair run (cost/setup).
- c1, the ordering cost of raw material 1 (cost/order).
- hP , the inventory holding cost of finished items (cost/unit/time).



90 M. Omar and I. Yeo

- hR, the inventory holding cost of used items (cost/unit/time).
- h1, the inventory holding cost of raw material 1 (cost/unit/time).
- sP , the unit production cost finished items (cost/unit).
- sR, the unit repair cost of used items (cost/unit).

2.2. Nomenclature

• q1, the quantity of raw material 1 required to produce one unit of the finished
product.

• n, the number of cycles during the planning horizon (n = 1, 2, . . .).
• ti, the total elapsed time up to the start of the (i + 1)-th cycle’s production

run (i = 0, 1, . . . , n− 1), where t0 = 0 and tn = H.
• αi, the total time that is elapsed up to the end of the (i + 1)-th cycle’s

production run.
• βi, the total elapsed time up to the start of the (i + 1)-th cycle’s repair run.
• γi, the total time that is elapsed up to the end of the (i+1)-th cycle’s repair

run.

3. Mathematical formulation

The total relevant cost of the system when there are n cycles is given by

(3.1) TC(n, t) = n(cR + cP + c1) + HR + HP + H1,

where t are the starting times of the cycles, and HR, HP and H1 are the total
inventory holding cost throughout the planning horizon, respectively for the used
items, the finished items and raw material 1.

First, we consider the used items inventory during the (i + 1)-th cycle. Since the
amount of units collected is equal to the amount of units repaired, we have

(3.2) γi = βi +
φ

R

∫ βi

ti

D(t)dt.

Now, the inventory level of the used items at time t that spans the production period
(ti ≤ t ≤ βi), IR(t), is given by the amount of used items collected from time ti to
t, that is

(3.3) IR(t) =
∫ t

ti

φD(u)du, ti ≤ t ≤ βi.

Then, from the top graph in Figure 2, we observe that the time-weighted inventory
holding of the used items during the (i + 1)-th cycle is given by

(3.4)
∫ βi

ti

IR(t)dt + Bi,

where Bi is the area of the corresponding right triangle. Next, by assuming that
g(u) is the antiderivative of D(u), then the total inventory holding cost of the used
items throughout the planning horizon, HR, is given by

HR = hR

n−1∑

i=0

(∫ βi

ti

IR(t)dt + Bi

)
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= hRφ

n−1∑

i=0

(∫ βi

ti

g(t)dt− g(ti)(βi − ti) +
φ

2R

[ ∫ βi

ti

D(t)dt

]2
)

.(3.5)

Secondly, we consider the finished items inventory during the (i + 1)-th cycle.
Since the production during the production uptime period must satisfy the demand
during the production period, we have

(3.6) αi = ti +
1
P

∫ βi

ti

D(t)dt.

Now, four expressions for the inventory level of the finished items with respect to
time, Ij(t) (j = 1, 2, 3, 4) can be defined as follows; they are for the production
uptime and downtime periods as well as the repair uptime and downtime periods
respectively:

I1(t) = P (t− ti)−
∫ t

ti

D(u)du, ti ≤ t ≤ αi,(3.7)

I2(t) =
∫ βi

t

D(u)du, αi ≤ t ≤ βi.(3.8)

I3(t) = R(t− βi)−
∫ t

βi

D(u)du, βi ≤ t ≤ γi,(3.9)

I4(t) =
∫ ti+1

t

D(u)du, γi ≤ t ≤ ti+1.(3.10)

Then, from the middle graph in Figure 2, we observe that the time-weighted inven-
tory holding of the finished items during the (i + 1)-th batch is given by

(3.11)
∫ αi

ti

I1(t)dt +
∫ βi

αi

I2(t)dt +
∫ γi

βi

I3(t)dt +
∫ ti+1

γi

I4(t)dt.

Next, the total inventory holding cost of the finished items throughout the planning
horizon, HP , is given by

HP = hP

n−1∑

i=0

(∫ αi

ti

I1(t)dt +
∫ βi

αi

I2(t)dt +
∫ γi

βi

I3(t)dt +
∫ ti+1

γi

I4(t)dt

)
.

= hP

n−1∑
ı=0

([
φ2

2R
− 1

2P

][ ∫ βi

ti

D(t)dt

]2

+ g(ti+1)(ti+1 − βi) + g(βi)(βi − ti)

− φ

R

∫ βi

ti

D(t)dt

∫ ti+1

βi

D(t)dt−
∫ ti+1

ti

g(t)dt

)
.

(3.12)

Thirdly, we consider the raw material 1 inventory during the (i + 1)-th cycle.
From the bottom graph in Figure 2, we observe that the inventory holding of raw
material 1 during the (i + 1)-th batch is given by Ai, the area of the corresponding
right triangle. Hence, it follows that the total inventory holding cost of raw material
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1 throughout the planning horizon, H1, is given by

(3.13) H1 = h1

n−1∑

i=0

Ai =
h1q1

2P

n−1∑

i=0

(∫ βi

ti

D(t)dt

)2

.

Finally, using equations (3.5), (3.12) and (3.13), equation (3.1) can be rewritten
as

TC(n, t) = n(cR + cP + c1) +
n−1∑

i=0

([
φ2(hR − hP )

2R
+

h1q1 − hP

2P

][ ∫ βi

ti

D(t)dt

]2

+ hRφ

[ ∫ βi

ti

g(t)dt− g(ti)(βi − ti)
]

+ hP

[
g(βi)(βi − ti)

+ g(ti+1)(ti+1 − βi)−
∫ ti+1

ti

g(t)dt

])
.(3.14)

The problem is to minimize TC(n, t) by seeking the optimal integer value of n
and the optimal real values of t for that n, subject to the following constraints:

(3.15) ti ≤ βi ≤ ti+1, t0 = 0, tn = H.

It can easily be shown that βi is a function of (ti, ti+1). Hence, we present the
following lemma.

Lemma 3.1. For any demand function D(t) that is integrable in the interval [ti, ti+1],
βi is a function of (ti, ti+1).

Proof. Since the repair run during the repair uptime period must satisfy the demand
during the repair period, we have

R(γi − βi) =
∫ ti+1

βi

D(t)dt.

From equation (3.2), it follows that

(3.16)
∫ βi

ti

φD(t)dt =
∫ ti+1

βi

D(t)dt.

Now, since 0 ≤ φ ≤ 1, then for equation (3.16) to hold, ti ≤ βi ≤ ti+1 must be true.
Finally, it is easily observable that βi, which is a solution of equation (3.16), is a
function of (ti, ti+1).

To illustrate, we consider two common time-varying demand functions, i.e. the
linearly-varying demand function and the exponentially-varying demand function.
The linearly-varying demand function has the form D(t) = a + bt, and D(t) > 0,
b 6= 0 for 0 ≤ t ≤ H. Then, using Lemma 3.1, we have

(3.17) βi =
−a(1 + φ) +

√
a2(1 + φ)2 + 2b(1 + φ)[g(ti+1) + φg(ti)]

b(1 + φ)
.

The exponentially-varying demand function has the form D(t) = aebt, a > 0, b 6= 0
for 0 ≤ t ≤ H. Then, using Lemma 3.1, we have

(3.18) βi =
1
b

ln
∣∣∣∣

1
1 + φ

(ebti+1 + φebti)
∣∣∣∣.
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For fixed n, the set of equations tial TC/tial ti+1 = 0 (i = 0, 1, . . . , n − 1) gives
the following set of optimality conditions:

2A

[ ∫ βi

ti

D(t)dt−
∫ βi+1

ti+1

D(t)dt

]
+ hP

[
(ti+1 − ti) + φ(βi+1 − βi)

− φ + 1
D(ti+1)

∫ βi+1

ti+1

D(t)dt

]
+ φ(hR − hP )

[
1

D(βi)

∫ βi

ti

D(t)dt

+
1

D(βi+1)

∫ ti+2

βi+1

D(t)dt

]
− hRφ(φ + 1)(βi+1 − ti+1) = 0,(3.19)

where

A =
φ2(hR − hP )

2R
+

h1q1 − hP

2P
.

Now, from the set of equations (3.19) and using Lemma 3.1, we observe that ti+2

is a function of (ti, ti+1). Moreover, since t0 = 0, it is easy to see that once t1 is
fixed, the set of equations (3.19) will determine all other ti recursively as functions
of t1. Hence, a procedure for finding the optimal t for a given number of cycles n is
to fix t1, get the other ti (i = 2, 3, . . . , n) by solving the set of equations (3.19), and
finally check if tn = H.

A proof of the existence and uniqueness of the optimal t is difficult to derive.
However, under certain conditions, some arguments can be made, as presented in
the following lemma.

Lemma 3.2. For an increasing demand function D(t), if B ≥ 0 and hR − hP ≥ 0,
then the solution of equation (3.19) is unique.

Proof. Let F (ti, ti+1, ti+2) be the function representing the left hand side of equation
(3.19). If ti+2 = ti+1, then using equation (3.16), βi+1 = ti+1 and

∫ βi+1

ti+1
D(t)dt = 0.

Then, for fixed ti and ti+1, F (ti, ti+1, ti+2) is reduced to

F (ti+2) = 2B

∫ βi

ti

D(t)dt + hP [(ti+1 − ti) + φ(βi+1 − βi)]

+ φ(hR − hP )
1

D(βi)

∫ βi

ti

D(t)dt,(3.20)

which is positive if B ≥ 0 and hR − hP ≥ 0. Next, dF (ti+2)/dti+2 is given by

dF (ti+2)
dti+2

=
D(ti+1)D(ti+2)

(φ + 1)2

(
−2B − hP (φ + 1)

D(ti+1)
+

φ

D(βi+1)
[hP (1− φ)− hR]

− φ(hR − hP )
D′(βi+1)
D3(βi+1)

)
,(3.21)

and it is negative if B ≥ 0 and hR − hP ≥ 0. If follows that F (ti+2) is a decreasing
function of ti+2, and hence, there exists an unique value of ti+2 such that ti+2 > ti+1

and F (ti+2) = 0.
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4. Solution procedure

There is an integer decision variable (n) in this problem in addition to the real
decision variables t = {t1, t2, . . . , tn−1}. Therefore, to deal with this mixture of
integer and real variables, we first fix n and find t1 such that the set of equations
(3.19) will generate tn = H. The resultant t∗ minimizes the total relevant cost for
the fixed n, and we will write this minimized total relevant cost as TC∗(n). Next,
we change n to improve the total relevant cost, until the first n = N that satisfies
the conditions TC∗(N) < TC∗(N − 1) and TC∗(N) < TC∗(N + 1) is found.

We should observe an improvement on TC∗(n) as n increases until n = N . Beyond
this, increasing n should increase TC∗(n). When n is fixed, TC∗(n) is given by

(4.1) TC∗(n) = n(cR + cP + c1) + HR(t∗) + HP (t∗) + H1(t∗).

Since HR, HP and H1 are all positive, then TC∗(N + k), where k is a positive
integer, is guaranteed to be greater than TC∗(N) when

(4.2) (N + k)(cR + cP + c1) > TC∗(N).

If k = k0 is the first solution of the inequality in (4.2), then n = N + k0 is an upper
bound until which the evaluation of TC∗(n) should be conducted to test the validity
of TC∗(N) < TC∗(n) for any n > N . If this inequality holds until the upper bound,
then TC∗(N) is the absolute minimum of all TC∗(n).

Finally, the computer algorithm of the solution procedure is outlined below:

1. Let n = 1.
2. Compute the total relevant cost, TC(1). We note that TC(1) is already

minimized.
3a. Increase n by 1.
3b. Find t1 such that the set of equations (3.19) will generate tn = H. Calculate

the corresponding TC∗(n).
3c. If TC∗(n) > TC∗(n− 1), let N = n− 1. Go to Step 4.
3d. If TC∗(n) < TC∗(n− 1), return to Step 3a.
4. Compute the integer k0 such that the inequality in (4.2) is solved.
5. Validate that TC∗(N + k) from k = 1 to k = k0 are all ≥ TC∗(N).

5. Numerical example and sensitivity analysis

We present two numerical examples to illustrate the solution procedure described in
the preceding section. For Example 1, the demand function is a linearly-increasing
function of the form D(t) = 6 + 15t. The associated parameter values are cR = 100,
cP = 300, c1 = 50, hR = 30, hP = 30, h1 = 5, φ = 0.7, P = 100, R = 100, H = 5,
and q1 = 1. N +k0 is computed to be 10. For varying values of n, the corresponding
optimal total relevant costs, TC∗(n), are tabulated in Table 1. For Example 2, the
demand function is an exponential-increasing function of the form D(t) = 60e0.5t.
The associated parameter values are similar to those used in Example 1 except that
H = 2. N + k0 is computed to be 6. For varying values of n, the corresponding
TC∗(n) are tabulated in Table 2.
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Table 1. Optimal total relevant costs for varying n for Example 1.

n 1 2 3 4 5∗

TC∗(n) 12,983.01 6,342.21 4,800.88 4,321.87 4, 235.60∗

n 6 7 8 9 10
TC∗(n) 4,336.88 4,542.11 4,810.90 5,121.36 5,460.62

Table 2. Optimal total relevant costs for varying n for Example 2.

n 1 2 3∗

TC∗(n) 3,826.44 2,401.68 2, 314.16∗

n 4 5 6
TC∗(n) 2,509.88 2,811.71 3,164.70

5.1. Sensitivity analysis

One may ask the pertinent question: “How do the optimal total relevant costs
respond to parameter changes?” To attempt answering this question, we perform
a sensitivity analysis. Since the objective functions are quite complicated and the
optimal values of the decision variables are a mixture of integer and real values
that are computed through a search procedure, we perform a numerical sensitivity
analysis by solving many sample problems.

We use the following parameter values as the standard values of the parameters:
D(t) = 6 + 15t, cR = 100, cP = 300, c1 = 50, hR = 15, hP = 30, h1 = 5, φ = 0.7,
P = 1000, R = 1000, H = 5, and q1 = 1. For the cost parameters of cR, cP , c1, hR,
hP and h1, we choose seven different levels by multiplying their standard values by
1/5, 1/3, 1/2, 1, 2, 3 and 5, respectively. The results are depicted in Figures 3 to 8.

Figures 3 to 5 show that the optimal total relevant costs increase with cP , cR and
c1. We observe that when cR, cP or c1 is small, the system favors larger n, i.e. more
frequent production and repair runs in the planning horizon, and vice-versa.

Figures 6 to 8 show that the optimal total relevant costs increase with hP , hR

and h1 as well. The noticeably smaller effect h1 has compared to hR or hP is
because of its smaller base value and because the time-weighted inventory holding
of raw material 1 constitutes a small portion of the time-weighted inventory holding
of the whole system. Here, we observe that when hR or hP is small, the system
favors smaller n this time, that is, less frequent production and repair runs in the
planning horizon, and vice-versa. However, this trend is not apparent for h1 due to
aforementioned reasons.

For the non-cost parameters, i.e. the demand function parameter b, the production
rate P and the repair rate R, we multiply their standard values by 1/10, 1/4, 1/2,
1, 1.5, 2.5 and 5, respectively. The results are depicted in Figures 9 to 11.

In Figure 9, we find that the demand rate has a relatively large effect on the
optimal total relevant costs. Besides increasing the optimal total relevant costs,
a demand that grows more rapidly compels the system to perform more frequent
production and repair runs in the planning horizon for more savings, i.e. the larger
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the b, the larger the n. The former behavior is self-explanatory, while the latter
is because the larger the demand is at any point of time, the larger the on-hand
inventories are at that time, and thus more production and repair runs are required
to reduce the peak inventory levels. On the other hand, Figures 10 and 11 show
that larger production or repair rates lead to higher optimal total relevant costs
but this effect stagnates as the rates increase because the production and repair
uptime periods during which the finished items are kept in stock, and the repair
uptime period during which the used items are kept in stock, become increasingly
brief, thus reducing their contribution to the time-weighted inventory holding of the
whole system.

For the used products collection rate proportionality constant, φ, we choose the
levels of 0.1, 0.25, 0.5, 0.7, 0.8, 0.9 and 1.0 respectively. The result is depicted in
Figures 12, which shows that the optimal total relevant costs improve as φ increases.
This behavior is predictable and is true for cost structures that favors used products
holding as well as the repair process. In addition, it is easily observable that a pure
repair policy is better than a mixed policy.
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Figure 3. Effect of cP on TRC∗(n) for varying n.
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Figure 4. Effect of cR on TRC∗(n) for varying n.
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Figure 5. Effect of c1 on TRC∗(n) for varying n.
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Figure 6. Effect of hP on TRC∗(n) for varying n.
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Figure 7. Effect of hR on TRC∗(n) for varying n.
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Figure 8. Effect of h1 on TRC∗(n) for varying n.
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Figure 9. Effect of b on TRC∗(n) for varying n.
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Figure 10. Effect of P on TRC∗(n) for varying n.
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Figure 11. Effect of R on TRC∗(n) for varying n.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

φ

T
C
∗
(n

)

 

 

n=2
n=3
n=4
n=5

Figure 12. Effect of φ on TRC∗(n) for varying n.

5.2. Conclusion

In this paper, we have proposed a model of a production system where a continu-
ous time-varying demand for a finished product can be satisfied by newly fabricated
items or by repaired items. We assume that only one type of raw material is required
to fabricate the finished product, and there is no collection of used items during the
repair period. Moreover, we assume that the system procures raw materials, fabri-
cate finished items and repair used items in single lots during each cycle throughout
the planning horizon. For the optimal joint policy, the continuous variables are
computed numerically while an exhaustive search procedure is used for the integer
variable n. We also presented two numerical examples to illustrate the solution pro-
cedure. Furthermore, using a sensitivity analysis, we observed characteristics of our
model under various situations. Finally, we conclude the paper by noting that our
model may be extended to the case where used items are collected during the repair
period and shortages are allowed.
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