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Abstract. The linear arboricity la(G) of a graph G is the minimum number of linear forests
which partition the edge set E(G) of G. The vertex linear arboricity vla(G) of a graph G is
the minimum number of subsets into which the vertex set V (G) can be partitioned so that
every subset induces a linear forest. The Schrijver graph SG(n,k) is the graph whose vertex
set consists of all 2-stable k-subsets of the set [n] = {0,1, . . . ,n−1} and two vertices A and
B are adjacent if and only if A∩B = φ . In this paper, it is proved that la(SG(2k + 2,k)) =
d(k +2)/2e for k ≥ 3 and vla(SG(2k +2,k)) = va(SG(2k +2,k)) = 2 for k ≥ 2.
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1. Introduction

Throughout this paper, all graphs considered are finite, undirected and simple. For a real
number x, dxe is the least integer not less than x, and bxc is the most integer not more than
x. For a graph G, we use V (G),E(G),∆(G) to denote the vertex set, the edge set and the
maximum degree, respectively. NG(v) denotes the set of vertices adjacent to the vertex v
in G. G[W ] denotes the subgraph induced by W ⊆ V (G) (or W ⊆ E(G)) in G. For disjoint
subsets S and S′ of V (G), we denote the set of edges with one end in S and the other in S′

by [S,S′], which is called an edge cut if S′ = S, where S = V (G) \ S is the subset obtained
by removing all vertices of S from V (G). Let G\H be the graph G−E(H) that is obtained
by taking away all edges of H from G. A k-path is a path with length k.

A linear forest is a graph in which each component is a path. The linear arboricity la(G)
of a graph as defined by Harary [11] is the minimum number of linear forests which partition
the edge set E(G) of G. Akiyama et al. [1] conjectured that la(G) = d(∆(G)+ 1)/2e for
any regular graph G, and proved that the conjecture is true for complete graphs and graphs
with ∆ = 3,4 [1, 2]. Enomoto and Péroche [7] proved that the conjecture is true for graphs
with ∆ = 5,6,8. Guldan [10] proved that the conjecture is true for graphs with ∆ = 10. It is
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obvious that la(G)≥ d(∆(G))/2e for every graph G and la(G)≥ d(∆(G)+1)/2e for every
regular graph G. So the conjecture is equivalent to the following conjecture.

Conjecture 1.1 (Linear Arboricity Conjecture(LAC)). [1] For any graph G,

d∆(G)/2e ≤ la(G)≤ d(∆(G)+1)/2e.

Akiyama et al. [1] determined the linear arboricity of complete bipartite graphs and
trees. Martinov [12] determined the linear arboricity of extremal locally-tree-like graphs
which have a minimal number of edges according to the number of vertices. Martinova [13]
determined the linear arboricity of maximal outerplanar graphs. Wu [19] determined the
linear arboricity of series-parallel graphs, moreover, Wu [20] proved the conjecture is true
for a planar graph G with ∆(G) 6= 7, and the case ∆(G) = 7 was also settled in Wu [21]. Tan
et al. [18] determined the linear arboricity of planar graphs with maximum degree at least
five.

The vertex linear arboricity vla(G) of a graph is the minimum number of subsets into
which the vertex set V (G) can be partitioned so that every subset induces a linear forest. The
vertex arboricity va(G) of a graph G can be defined similarly. Matsumoto [14] proved that
for any finite graph G, vla(G)≤ d(∆(G)+1)/2e, moreover, if ∆(G) is even, then vla(G) =
d(∆(G)+1)/2e if and only if G is the complete graph of order ∆(G)+1 or a cycle. Goddard
[9] and Poh [15] proved that vla(G)≤ 3 for a planar graph G. Akiyama [3] proved vla(G)≤
2 if G is an outerplanar graph. Alavi [4] proved that vla(G)+ vla(Gc) ≤ 1 + d(n + 1)/2e
for any graph G of order n, where Gc is the complement of G. Zuo [22, 23] determined the
vertex linear arboricity of distance graphs and a class of integer distance graphs with special
distance sets, respectively. Raspaud and Wang [16] discussed the vertex arboricity of planar
graphs, and Borodin and Ivanova [5] proved that planar graphs without 4-cycles adjacent to
3-cycles are list vertex 2-arborable. The following result is obvious.

Lemma 1.1. If G = G1 ∪G2 ∪ ·· · ∪Gn, then la(G) ≤ la(G1) + la(G2) + · · ·+ la(Gn). In
particular, la(G) = max{la(G1), la(G2), . . . , la(Gn)}, where Gi(i = 1,2, . . . ,n) are connected
components of G.

The Kneser graph KG(n,k) is the graph whose vertex set consists of all k-subsets of an
n-set, and two vertices are adjacent if and only if they are disjoint. A subset S of [n] =
{0,1, . . . ,n−1} is said to be 2-stable if 2 ≤| x− y |≤ n−2 for any two distinct elements x
and y, i.e., S does not contain two consecutive numbers in the cyclic ordering of [n].

Definition 1.1. [17] The Schrijver graph SG(n,k) is defined as follows. Its vertices are those
k-element subsets of the set [n] = {0,1, . . . ,n−1} that do not contain cyclically consecutive
elements i, i + 1 or n− 1,0. Two such vertices are adjacent if they represent disjoint k-
subsets.

Equivalently, the Schrijver graph SG(n,k) is the graph whose vertex set consists of all 2-
stable k-subsets of the set [n] = {0,1, . . . ,n−1} and two vertices A and B are adjacent if and
only if A∩B = φ . Clearly, the Schrijver graph SG(n,k) is the subgraph of KG(n,k) induced
by all vertices that are 2-stable subsets. The structure of Schrijver graph SG(2k +2,k) was
studied in [6]. Now we recall some results that will be used here.

The vertex set of the Schrijver graph SG(n,k) has cardinality n
k

(n−k−1
k−1

)
. In particular,

SG(2k +2,k) has (k +1)2 vertices. For 0≤ i≤ 2k +1, let v(0, i) = {i, i+2, . . . , i+2k−2},
in which each element is taken modulo 2k + 2. We make the convention that all indices
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and elements are taken modulo 2k + 2 in the following except special instruction. We also
regard v(0, i) as a sequence with the elements ordered in the above manner.

A sequence is called a k-sequence if it has k elements. Let m = bk/2c. For 1 ≤ j ≤ m,
let A j be the k-sequence in which the (k− j +1)−th entry is equal to 2, and the other k−1
entries are equal to 1. Clearly, A j can be viewed as a row vector with k components, and
v(0, i) and A j can be added to v(0, i)+A j. In fact, when a k-set A, regarded as a row vector,
and a k-sequence B are added to get A+B, we just add the two sequences entry-wise to get
a k-sequence if all the sums are distinct. For the sake of convenience, in addition operation,
one can view v(0, i) as a row vector with k components (i, i + 2, . . . , i + 2k− 2) in Rk over
real number field R, in which each element is taken modulo 2k +2.

Now for 0≤ i≤ 2k +1 and 1≤ j ≤ m, let

v( j, i) = v( j−1, i)+A j

be the recursion formula, where v(0, i) = (i, i + 2, . . . , i + 2k− 2) and the addition is taken
modulo 2k+2. Let V0 = {v(0, i) | i = 0,1, . . . ,2k+1}, and Vj = {v( j, i)|i = 0,1, . . . ,2k+1}
for 1≤ j ≤ m. We need the following lemmas for the proof of our main results.

Lemma 1.2. [6] For 0≤ j ≤ m−1, |Vj |= 2k +2, and

|Vm |=
{

2k +2, i f k is odd,
k +1, otherwise.

Note that | Vm |= k + 1 when k is even. Thus, in this case, the index i of v(m, i) is taken
modulo k +1 for even k henceforth.

Lemma 1.3. [6] For each v(0, i) ∈V0, and v( j, i) ∈Vj, we have

NG(v(0, i)) = {v(0, i+ p) | p = 1,3, . . . ,2k +1}∪{v(1, i)},

NG(v( j, i)) = {v( j, i−1),v( j, i+1),v( j−1, i),v( j +1, i)}

for 1≤ j ≤ m−1,

NG(v(m, i)) = {v(m, i−1),v(m, i+1),v(m, i+ k +1),v(m−1, i)}

for k is odd, and

NG(v(m, i)) = {v(m, i−1),v(m, i+1),v(m−1, i),v(m−1, i+ k +1)}

for k is even.

By Lemma 1.3, ∆(G) = k + 2 for k ≥ 3, and the following two results are obtained
immediately.

Corollary 1.1. [6] The graph G[V0] is a complete bipartite graph with two partite subsets

X = {v(0,0),v(0,2), . . . ,v(0,2k)} and Y = {v(0,1),v(0,3), . . . ,v(0,2k +1)}.

Corollary 1.2. [6] The graph G[Vj] is a cycle with length 2k + 2 for 1 ≤ j ≤ m−1, G[Vm]
is a cycle with length k +1 for even k, and G[Vm] is a 3-regular graph for odd k.
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2. The linear arboricity of SG(2k +2,k)

Let G(X ,Y ) be a balanced bipartite graph with partite sets X = {xi | i ∈ Zn} and Y = {yi |
i ∈ Zn}. In [8], it was defined that the bipartite di f f erence α of an edge xpyq in G(X ,Y )
by the value (q− p)(mod n), i.e., α = (q− p)(mod n). It is obvious that an edge subsets
in G(X ,Y ) containing the edges with the same bipartite difference must be a matching. In
particular, this edge subset is also a perfect matching if G(X ,Y ) is Kn,n.

Let Mα be the edge set consisting of edges with bipartite difference α . The following
lemmas give a decomposition of Kn,n.

Lemma 2.1. Let Kn,n be a balanced complete bipartite graph with partite sets X = {xi |
i = 0,1, . . . ,n−1} and Y = {yi | i = 0,1, . . . ,n−1}, then Kn,n can be decomposed into the
union of n/2 Hamiltonian paths and a matching for even n, and decomposed into the union
of (n−1)/2 Hamilton paths and a linear forest for odd n.

Proof. If n is even, then Kn,n can be decomposed into the union of n/2 Hamiltonian cycles
Mα ∪Mα+1(α = 0,2, . . . ,n− 2). Next, we take away one edge xα/2yn−α/2−1 from each
Mα ∪Mα+1(α = 0,2, . . . ,n−2). Then

Hα/2 = Mα ∪Mα+1 \{xα/2yn−α/2−1} (α = 0,2, . . . ,n−2)

are n/2 Hamiltonian paths of Kn,n, and M = {xα/2yn−α/2−1 | α = 0,2, . . . ,n−2} is a match-
ing.

Similarly, for odd n, each Mα ∪Mα+1(α = 0,2, . . . ,n−3) generates a Hamiltonian cycle.
Therefore Mα ∪Mα+1 \{xα/2yn−α/2−1} is a Hamiltonian path. Let

Hα/2 = Mα ∪Mα+1 \{xα/2yn−α/2−1} (α = 0,2, . . . ,n−3).

Moreover, it is clear that M = Mn−1 ∪{xα/2yn−α/2−1 | α = 0,2, . . . ,n− 3} forms a linear
forest.

Therefore, la(Kn,n)≤ d(n+1)/2e and la(Kn,n \M)≤ d(n−1)/2e.

Lemma 2.2. [1] The linear arboricity of every 3-regular graph is 2.

Lemma 2.3. [2] The linear arboricity of every 4-regular graph is 3.

Now we give the main result of this paper.

Theorem 2.1. Let G = SG(2k +2,k) (k ≥ 2) be a Schrijver graph, then

la(G) =
{

3, for k = 2,
d(k +2)/2e, for k ≥ 3.

Proof. For k = 2, SG(2k + 2,k) = SG(6,2) is a 4-regular graph, and the result holds by
Lemma 2.3. So, in this section, suppose that k ≥ 3 hereafter. It is obvious that la(G) ≥
d(k+2)/2e since ∆(G) = k+2. So it suffices to show that la(G)≤ d(k+2)/2e. By Lemma
1.3,

[Vj,Vj+1] = {v( j, i)v( j +1, i) | i = 0,1, . . . ,2k +1}
for 0≤ j ≤ m−2,

[Vm−1,Vm] = {v(m−1, i)v(m, i) | i = 0,1, . . . ,2k +1}
which is a matching if k is odd, and

G[[Vm−1,Vm]] = {v(m−1, i)v(m, i)v(m−1, i+ k +1) | i = 0,1, . . . ,k}
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if k is even, in which each component is a 2-path.
By Corollary 1.1, G[V0] is a balanced complete bipartite graph with two partite subsets

X = {v(0,0),v(0,2), . . . ,v(0,2k)} and Y = {v(0,1),v(0,3), . . . ,v(0,2k +1)}.
Let v(0,2i) = xi and v(0,2i+1) = yi. Then G[V0] = Kk+1,k+1 is a balanced complete bipartite
graph with two partite subsets

X = {xi | i = 0,1, . . . ,k} and Y = {yi | i = 0,1, . . . ,k}.

Case 1. k ≥ 3 is odd.
It is not difficult to see that

G[∪m−1
j=0 [Vj,Vj+1]] = {v(0, i)v(1, i) · · ·v(m, i) | i = 0,1, . . . ,2k +1}

is a linear forest in which each component is an m-path. Let B = ∪m−1
j=0 [Vj,Vj+1] and

S j = V0 ∪V1 ∪ ·· · ∪Vj. By Lemma 1.3, it is not difficult to see that every [Vj,Vj+1] =
[S j,S j ](0 ≤ j ≤ m− 1) is an edge cut of G. Hence G \B is a graph whose components
are G[V0],G[V1], . . . ,G[Vm]. Next, we will take away a matching from G[V0]. By Lemma
2.1, G[V0] = Kk+1,k+1 can be decomposed into the union of (k + 1)/2 Hamiltonian path
and a matching M = {xα/2yk−α/2 | α = 0,2, . . . ,k− 1}. Then M ∪B forms a linear for-
est. Moreover, we have G = (G[V0] \M)∪G[V1]∪ ·· · ∪G[Vm]∪ (M∪B). Thus by Lemma
1.1, Corollary 1.2 and Lemma 2.2, la(G) ≤ la((G[V0] \M)∪G[V1]∪ ·· · ∪G[Vm]) + 1 =
la(G[V0]\M)+1≤ (k +1)/2+1 = d(k +2)/2e.
Case 2. k ≥ 4 is even.

Let

B′ = G[∪m−2
j=0 [Vj,Vj+1]] = {v(0, i)v(1, i) · · ·v(m−1, i) | i = 0,1,3, . . . ,2k +1},

then
G = G[V0]∪G[V1]∪·· ·∪G[Vm]∪B′∪G[[Vm−1,Vm]].

In the following, we first decompose G[Vj]( j = 0,1, . . . ,m) and B′. Let

Pi = v(0, i)v(1, i) · · ·v(m−1, i) for 0≤ i≤ 2k +1.

By Lemma 2.1, G[V0] = Kk+1,k+1 can be decomposed into the union of k/2 Hamiltonian
paths

Hα/2 = Mα ∪Mα+1 \{xα/2yk−α/2}(α = 0,2,4, . . . ,k−2)
and a linear forest

M = Mk ∪{xα/2yk−α/2 | α = 0,2,4, . . . ,k−2}.
Hence G[V0] = H0 ∪H1 ∪ ·· · ∪Hk/2−1 ∪M. For 1 ≤ j ≤ k/2− 1, let G[Vj] = Pj,1 ∪Pj,2,
where

Pj,1 = v( j,0)v( j,1) · · ·v( j,2k) and Pj,2 = v( j,0)v( j,2k +1)v( j,2k).

For j = m, let G[Vm] = Pm,1∪Pm,2, where

Pm,1 = v(m,0)v(m,1) · · ·v(m,k−1) and Pm,2 = v(m,0)v(m,k)v(m,k−1).

Subcase 2.1. k ≡ 0 (mod 4).
Let P0 = M0∪M′0, where

M0 = {v(2t,0)v(2t +1,0) | t = 0,1, . . . ,k/4−1},
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and
M′0 = {v(2t +1,0)v(2t +2,0) | t = 0,1, . . . ,k/4−2}.

And let P2k = M2k ∪M′2k, where

M2k = {v(2t,2k)v(2t +1,2k) | t = 0,1, . . . ,k/4−1},
and

M′2k = {v(2t +1,2k)v(2t +2,2k) | t = 0,1, . . . ,k/4−2}.
Then

H0∪M0∪M′2k ∪P2k+1∪ (∪m
j=1Pj,1)∪{v(m−1,2k)v(m,k−1),v(m−1,2k +1)v(m,k)}

forms a Hamiltonian path of G. Let

T = [Vm−1,Vm]\{v(m−1,2k +1)v(m,k),v(m−1,2k)v(m,k−1)}.
Then

H1∪P2∪P2k−1∪ (∪m−1
j=1 Pj,2)∪T

forms a linear forest. For 2 ≤ j ≤ m− 1, each H j ∪P2 j ∪P2k−2 j+1 forms a linear forest.
Finally,

M∪M′0∪M2k ∪Pm,2∪ (∪m
j=0P2 j+1)∪ (∪m−1

j=0 P2 j+k)

forms a linear forest. Thus, the edge set E(G) is partitioned into (k + 2)/2 linear forest.
Hence la(G)≤ (k +2)/2.

Subcase 2.2. k ≡ 2 (mod 4).
Similar to Subcase 2.1, let P0 = N0∪N′0, where

N0 = {v(2t,0)v(2t +1,0) | t = 0,1, . . . ,(k−6)/4},
and

N′0 = {v(2t +1,0)v(2t +2,0) | t = 0,1, . . . ,(k−6)/4}.
Let P2k = N2k ∪N′2k, where

N2k = {v(2t,2k)v(2t +1,2k) | t = 0,1, . . . ,(k−6)/4},
and

N′2k = {v(2t +1,2k)v(2t +2,2k) | t = 0,1, . . . ,(k−6)/4}.
Then it is not difficult to see that

H0∪N0∪N′2k ∪P2k+1∪ (∪m
j=1Pj,1)∪{v(m−1,0)v(m,0),v(m−1,2k +1)v(m,k)},

forms a Hamiltonian path of G. Let

T ′ = [Vm−1,Vm]\{v(m−1,0)v(m,0),v(m−1,2k +1)v(m,k)}.
Clearly,

H1∪P2∪P2k−1∪ (∪m−1
j=1 Pj,2)∪T ′

forms a linear forest, and for 2≤ j ≤ m−1, each H j ∪P2 j ∪P2k−2 j+1 forms a linear forest.
Finally, it is not difficult to verify that

M∪N′0∪N2k ∪Pm,2∪ (∪m
j=0P2 j+1)∪ (∪m−1

j=0 P2 j+k)

forms a linear forest. Thus, the edge set E(G) is partitioned into (k + 2)/2 linear forests.
Hence we have la(G)≤ (k +2)/2, too.

Up to now, we have shown that la(G)≤ d(k +2)/2e, and then the theorem holds.
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Therefore, the linear arboricity conjecture holds for Schrijver graph SG(2k + 2,k) for
k ≥ 2.

3. The vertex linear arboricity and vertex arboricity of Schrijver graph SG(2k +2,k)

In this section, we discuss the vertex linear arboricity and the vertex arboricity of the Schrij-
ver graph.

Theorem 3.1. The vertex linear arboricity for the Schrijver graph G = SG(2k +2,k), (k≥
2), is two.

Proof. The proof will be split into three cases. The main idea is to partition the vertex set
V (G) into two subsets such that every subset induces a linear forest.

Case 1. k ≥ 3 is odd.
Let

Q = {v( j, i) | 0≤ j ≤ m, i = 0,2, . . . ,2k},
and

R = {v( j, i) | 0≤ j ≤ m, i = 1,3, . . . ,2k +1}.
By Lemma 1.3,

G[Q] = {v(0, i)v(1, i) . . .v(m, i)v(m, i+ k +1)v(m−1, i+ k +1) · · ·v(0, i+ k +1)|
i = 0,2, . . . ,k−1}

and

G[R] = {v(0, i)v(1, i) · · ·v(m, i)v(m, i+ k +1)v(m−1, i+ k +1) · · ·v(0, i+ k +1)|
i = 1,3, . . . ,k}

are two linear forests in which every component is a k-path.

Case 2. k ≥ 4 is even.
Let

Q′ = {v( j, i) | 0≤ j ≤ m−1, i = 0,2, . . . ,2k}∪{v(m, i) | i = 0,2, . . . ,k},

and

R′ = {v( j, i) | 0≤ j ≤ m−1, i = 1,3, . . . ,2k +1}∪{v(m, i) | i = 1,3, . . . ,k−1}.

By Lemma 1.3,

G[Q′] = {v(0,0)v(1,0) · · ·v(m,0)v(m,k)v(m−1,k) · · ·v(0,k)}
∪{v(0, i)v(1, i) · · ·v(m, i) | i = 2,4, . . . ,k−2}
∪{v(0, i)v(1, i) · · ·v(m−1, i) | i = k +2,k +4, . . . ,2k}

and

G[R′] = {v(0, i)v(1, i) · · ·v(m, i) | i = 1,3, . . . ,k−1}
∪{v(0, i)v(1, i) · · ·v(m−1, i) | i = k +1,k +3, . . . ,2k +1}

are two linear forests.

Case 3. k = 2.
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One can partition the vertex set V (G) into two subsets

{v(0,0),v(0,2),v(0,4),v(1,0),v(1,2)} and {v(0,1),v(0,3),v(0,5),v(1,1)}.
It is easy to verify that every subset induces a linear forest.

The following result follows from the fact that the Schrijver graph G = SG(2k + 2,k)
contains a cycle for k ≥ 2.

Corollary 3.1. The vertex arboricity for the Schrijver graph SG(2k +2,k), (k ≥ 2), is 2.
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