BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Weak Annihilator over Extension Rings

¹LUNQUN OUYANG AND ²GARY F. BIRKENMEIER

¹Department of Mathematics, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
²Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010 USA
¹ouyanglqtxy@163.com, ²gfb1127@louisiana.edu

Abstract. Let *R* be a ring and nil(*R*) the set of all nilpotent elements of *R*. For a subset *X* of a ring *R*, we define $N_R(X) = \{a \in R \mid xa \in nil(R) \text{ for all } x \in X\}$, which is called the weak annihilator of *X* in *R*. In this paper we mainly investigate the properties of the weak annihilator over extension rings.

2010 Mathematics Subject Classification: Primary: 13B25; Secondary: 16N60

Keywords and phrases: Weak annihilator, nilpotent associated prime, nilpotent good polynomial.

1. Introduction

Throughout this paper *R* denotes an associative ring with unity, $\alpha : R \longrightarrow R$ is an endomorphism, and δ an α -derivation of *R*, that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for $a, b \in R$. We denote by $R[x; \alpha, \delta]$ the Ore extension whose elements are the polynomials over *R*, the addition is defined as usual and the multiplication subject to the relation $xa = \alpha(a)x + \delta(a)$ for any $a \in R$. We use P(R) and nil(*R*) to represent the prime radical and the set of all nilpotent elements of *R* respectively. Due to Birkenmeier *et al.* [3], a ring *R* is called 2-*primal* if P(R) = nil(R). Every reduced ring (i.e. nil(R) = 0) is obviously a 2-*primal* ring. Other examples and properties of 2-*primal* rings can be founded in [4, 5, 6]. Let α be an endomorphism and δ an α -derivation of a ring *R*. Following E. Hashemi and A. Moussavi [11], a ring *R* is said to be α -*compatible* if for each $a, b \in R, ab = 0 \Rightarrow a\delta(b) = 0$. If *R* is both α -*compatible* and δ -*compatible*, then *R* is said to be (α, δ) -*compatible*.

For a subset *X* of a ring *R*, $r_R(X) = \{a \in R \mid Xa = 0\}$ and $l_R(X) = \{a \in R \mid aX = 0\}$ will stand for the right and left annihilator of *X* in *R*, respectively. Properties of the right (left) annihilator of a subset in a ring *R* are studied by many authors (see [2, 8, 9, 14, 15]). As a generalization of the right (left) annihilator, in this paper we introduce the notion of a weak

Communicated by Shum Kar Ping.

Received: May 4, 2010; Revised: August 25, 2010.

annihilator of a subset in a ring, and investigate the weak annihilator properties over the Ore extension ring $R[x; \alpha, \delta]$.

In this paper all subsets are nonempty. Let $f(x) = a_0 + a_1x + \dots + a_nx^n \in R[x; \alpha, \delta]$. We say that $f(x) \in \operatorname{nil}(R)[x; \alpha, \delta]$ if and only if $a_i \in \operatorname{nil}(R)$ for all $0 \le i \le n$. Let *I* be a subset of *R*, $I[x; \alpha, \delta]$ means $\{u_0 + u_1x + \dots + u_nx^n \in R[x; \alpha, \delta] \mid u_i \in I\}$, that is, for any skew polynomial $f(x) = a_0 + a_1x + \dots + a_nx^n \in R[x; \alpha, \delta]$, $f(x) \in I[x; \alpha, \delta]$ if and only if $a_i \in I$ for all $0 \le i \le n$. If $f(x) \in R[x; \alpha, \delta]$ is a nilpotent element of $R[x; \alpha, \delta]$, then we say that $f(x) \in \operatorname{nil}(R[x; \alpha, \delta])$. For $f(x) = a_0 + a_1x + \dots + a_nx^n \in R[x; \alpha, \delta]$, we denote by $\{a_0, a_1, \dots, a_n\}$ or C_f the set comprised of the coefficients of f(x), and for a subset $U \subseteq R[x; \alpha, \delta]$, $C_U = \bigcup_{f \in U} C_f$.

2. Weak annihilator

Definition 2.1. Let R be a ring. For a subset X of a ring R, we define $N_R(X) = \{a \in R \mid xa \in nil(R) \text{ for all } x \in X\}$, which is called the weak annihilator of X in R. If X is singleton, say $X = \{r\}$, we use $N_R(r)$ in place of $N_R(\{r\})$.

Obviously, for any subset X of a ring R, $N_R(X) = \{a \in R \mid xa \in nil(R) \text{ for all } x \in X\} = \{b \in R \mid bx \in nil(R) \text{ for all } x \in X\}$, and $r_R(X) \subseteq N_R(X)$ and $l_R(X) \subseteq N_R(X)$. If R is reduced, then $r_R(X) = N_R(X) = l_R(X)$ for any subset X of R. It is easy to see that for any subset $X \subseteq R$, $N_R(X)$ is an ideal of R in case nil(R) is an ideal.

Example 2.1. Let *Z* be the ring of integers and $T_2(Z)$ the 2 × 2 upper triangular matrix ring over *Z*. We consider the subset $X = \{ \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \}$. Clearly, $r_{T_2(Z)}(X) = 0$, and $N_{T_2(Z)}(X) = \{ \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix}, | m \in Z \}$. Thus $r_{T_2(Z)}(X) \neq N_{T_2(Z)}(X)$. Hence a weak annihilator is not a trivial generalization of a annihilator.

Proposition 2.1. Let X, Y be subsets of R. Then we have the following:

- (1) $X \subseteq Y$ implies $N_R(X) \supseteq N_R(Y)$.
- (2) $X \subseteq N_R(N_R(X))$.
- (3) $N_R(X) = N_R(N_R(N_R(X))).$

Proof. (1) and (2) are really easy.

(3) Applying (2) to $N_R(X)$, we obtain $N_R(X) \subseteq N_R(N_R(N_R(X)))$. Since $X \subseteq N_R(N_R(X))$, we have $N_R(X) \supseteq N_R(N_R(N_R(X)))$ by (1). Therefore we have $N_R(X) = N_R(N_R(N_R(X)))$.

Let δ be an α -derivation of R. For integers i, j with $0 \le i \le j, f_i^j \in End(R, +)$ will denote the map which is the sum of all possible words in α, δ built with i letters α and j - i letters δ . For instance, $f_0^0 = 1, f_j^j = \alpha^j, f_0^j = \delta^j$ and $f_{j-1}^j = \alpha^{j-1}\delta + \alpha^{j-2}\delta\alpha + \dots + \delta\alpha^{j-1}$. The next Lemma appears in [12. Lemma 4.1].

Lemma 2.1. For any positive integer n and $r \in R$, we have $x^n r = \sum_{i=0}^n f_i^n(r) x^i$ in the ring $R[x; \alpha, \delta]$.

For the proof of the next lemma, see [11].

Lemma 2.2. Let R be an (α, δ) -compatible ring. Then we have the following:

- (1) If ab = 0, then $a\alpha^n(b) = \alpha^n(a)b = 0$ for all positive integers n.
- (2) If $\alpha^k(a)b = 0$ for some positive integer k, then ab = 0.
- (3) If ab = 0, then $\alpha^n(a)\delta^m(b) = 0 = \delta^m(a)\alpha^n(b)$ for all positive integers m,n.

Lemma 2.3. Let δ be an α -derivation of R. If R is (α, δ) -compatible, then abc = 0 implies $abf_i^j(c) = 0$ and $af_i^j(b)c = 0$ for all $0 \le i \le j$ and a, b, $c \in R$.

Proof. Let abc = 0 for $a, b, c \in R$. Then $ab\alpha(c) = ab\delta(c) = 0$ since R is (α, δ) -compatible. Thus $abf_i^j(c) = 0$ is clear. To see $af_i^j(b)c = 0$, it suffices to show that if abc = 0, then $a\alpha(b)c = 0$ and $a\delta(b)c = 0$. Take $a, b, c \in R$ such that abc = 0. Then because R is (α, δ) -compatible,

$$abc = 0 \Rightarrow a\alpha(bc) = a\alpha(b)\alpha(c) = 0 \Rightarrow a\alpha(b)c = 0,$$

and

$$a\alpha(b)c = 0 \Rightarrow a\alpha(b)\delta(c) = 0$$

Moreover,

$$abc = 0 \Rightarrow a\delta(bc) = a\alpha(b)\delta(c) + a\delta(b)c = 0 \Rightarrow a\delta(b)c = 0.$$

Therefore we obtain $af_i^j(b)c = 0$.

Corollary 2.1. Let *R* be an (α, δ) -compatible ring. Then $a_1a_2 \cdots a_n = 0$ implies

$$f_{s_1}^{t_1}(a_1)f_{s_2}^{t_2}(a_2)\cdots f_{s_n}^{t_n}(a_n)=0$$

for all $t_i \ge s_i \ge 0$ and $a_i \in R$, $i = 1, 2, \dots, n$.

Proof. It follows from Lemma 2.3.

Lemma 2.4. Let δ be an α -derivation of R. If R is (α, δ) -compatible, then $ab \in nil(R)$ implies $af_i^j(b) \in nil(R)$ for all $j \ge i \ge 0$ and $a, b \in R$.

Proof. Since $ab \in nil(R)$, there exists some positive integer k such that $(ab)^k = abab \cdots ab = 0$. Then by Corollary 2.1, it is easy to see that $af_i^j(b) \in nil(R)$.

Lemma 2.5. Let *R* be an (α, δ) -compatible ring. If $a\alpha^m(b) \in nil(R)$ for $a, b \in R$, and *m* is a positive integer, then $ab \in nil(R)$.

Proof. Since $a\alpha^m(b) \in \operatorname{nil}(R)$, there exists some positive integer *n* such that $(a\alpha^m(b))^n = 0$. In the following computations, we use freely the condition that *R* is (α, δ) -compatible:

$$(a\alpha^{m}(b))^{n} = \underbrace{a\alpha^{m}(b)a\alpha^{m}(b)\cdots a\alpha^{m}(b)}_{n} = 0$$

$$\Rightarrow a\alpha^{m}(b)a\alpha^{m}(b)\cdots a\alpha^{m}(b)ab = 0$$

$$\Rightarrow a\alpha^{m}(b)a\alpha^{m}(b)\cdots a\alpha^{m}(b)\alpha^{m}(ab) = 0$$

$$\Rightarrow a\alpha^{m}(b)a\alpha^{m}(b)\cdots a\alpha^{m}(b)aab = 0$$

$$\Rightarrow a\alpha^{m}(b)a\alpha^{m}(b)\cdots a\alpha^{m}(b)abab = 0$$

$$\Rightarrow \cdots \Rightarrow ab \in \operatorname{nil}(R).$$

Lemma 2.6. Let *R* be an (α, δ) -compatible 2-primal ring and $f(x) = a_0 + a_1x + \dots + a_nx^n \in R[x; \alpha, \delta]$. Then $f(x) \in nil(R[x; \alpha, \delta])$ if and only if $a_i \in nil(R)$ for all $0 \le i \le n$.

Proof. (\Longrightarrow) Suppose $f(x) \in \operatorname{nil}(R[x; \alpha, \delta])$. There exists some positive integer k such that $f(x)^k = (a_0 + a_1x + \dots + a_nx^n)^k = 0$. Then

$$0 = f(x)^{k} = \text{``lower terms''} + a_{n}\alpha^{n}(a_{n})\alpha^{2n}(a_{n})\cdots\alpha^{(k-1)n}(a_{n})x^{nk}$$

Hence $a_n \alpha^n(a_n) \alpha^{2n}(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0$, and α -compatibility of R gives $a_n \in \operatorname{nil}(R)$. So by Lemma 2.4, $a_n = 1 \cdot a_n \in \operatorname{nil}(R)$ implies $1 \cdot f_i^j(a_n) = f_i^j(a_n) \in \operatorname{nil}(R)$ for all $0 \le i \le j$. Let $Q = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$. Then we have

$$0 = (Q + a_n x^n)^k$$

= $(Q + a_n x^n)(Q + a_n x^n) \cdots (Q + a_n x^n)$
= $(Q^2 + Q \cdot a_n x^n + a_n x^n \cdot Q + a_n x^n \cdot a_n x^n)(Q + a_n x^n) \cdots (Q + a_n x^n)$
= $\cdots = Q^k + \Delta$,

where $\Delta \in R[x; \alpha, \delta]$. Note that the coefficients of Δ can be written as sums of monomials in a_i and $f_u^v(a_j)$ where $a_i, a_j \in \{a_0, a_1, \dots, a_n\}$ and $v \ge u \ge 0$ are positive integers, and each monomial has a_n or $f_s^v(a_n)$. Since nil(R) of a 2-primal ring R is an ideal, we obtain that each monomial is in nil(R), and so $\Delta \in nil(R)[x; \alpha, \delta]$. Thus we obtain

$$(a_0 + a_1 x + \dots + a_{n-1} x^{n-1})^k$$

= "lower terms" + $a_{n-1} \alpha^{n-1} (a_{n-1}) \cdots \alpha^{(n-1)(k-1)} (a_{n-1}) x^{(n-1)k} \in \operatorname{nil}(R)[x; \alpha, \delta]$

since nil(R) is an ideal of R. Hence

$$a_{n-1}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(k-1)(n-1)}(a_{n-1})\in nil(R)$$

and so $a_{n-1} \in \operatorname{nil}(R)$ by Lemma 2.5. Using induction on *n* we obtain $a_i \in \operatorname{nil}(R)$ for all $0 \le i \le n$.

(\Leftarrow) Consider the finite subset $S = \{a_0, a_1, \dots, a_n\} \subseteq \operatorname{nil}(R)$. Since *R* is a 2-*primal* ring, there exists an integer *k* such that any product of *k* elements $a_{i1}a_{i2}\cdots a_{ik}$ from $\{a_0, a_1, \dots, a_n\}$ is zero. Then by Corollary 2.1, we obtain

$$a_{i1}f_{s_{i2}}^{t_{i2}}(a_{i2})f_{s_{i3}}^{t_{i3}}(a_{i3})\cdots f_{s_{ik}}^{t_{ik}}(a_{ik})=0$$

Now we claim that

$$f(x)^k = (a_0 + a_1x + \dots + a_nx^n)^k = 0.$$

From

$$(\sum_{i=0}^{n} a_i x^i)^2 = \sum_{k=0}^{2n} \left(\sum_{s+t=k} (\sum_{i=s}^{n} a_i f_s^i(a_t)) \right) x^k,$$

it is easy to check that the coefficients of $(\sum_{i=0}^{n} a_i x^i)^k$ can be written as sums of monomials of length *k* in a_i and $f_u^v(a_j)$, where $a_i, a_j \in \{a_0, a_1, \dots, a_n\}$ and $v \ge u \ge 0$ are positive integers. Since each monomial $a_{i1}f_{s_{i2}}^{t_{i2}}(a_{i2})\cdots f_{s_{ik}}^{t_{ik}}(a_{ik}) = 0$, where $a_{i1}, a_{i2}, \dots, a_{ik} \in \{a_0, a_1, \dots, a_n\}$ and s_{ip}, t_{ip} are nonnegative integers for all $2 \le p \le k$. We obtain $f(x)^k = 0$. Hence f(x) is a nilpotent element of $R[x; \alpha, \delta]$.

Corollary 2.2. Let *R* be an (α, δ) -compatible 2-primal. Then we have the following:

- (1) $\operatorname{nil}(R[x; \alpha, \delta])$ is an ideal.
- (2) $\operatorname{nil}(R[x; \alpha, \delta]) = \operatorname{nil}(R)[x; \alpha, \delta].$

In particular, if *R* is an α -compatible ring, then $\operatorname{nil}(R[x; \alpha])$ is an ideal and $\operatorname{nil}(R[x; \alpha]) = \operatorname{nil}(R)[x; \alpha]$.

Theorem 2.1. Let R be an (α, δ) -compatible 2-primal ring. If for each subset $X \not\subseteq$ nil(R), $N_R(X)$ is generated as an ideal by a nilpotent element, then for each subset $U \not\subseteq$ nil $(R[x; \alpha, \delta])$, $N_{R[x;\alpha,\delta]}(U)$ is generated as an ideal by a nilpotent element.

Proof. Let *U* be a subset of $R[x; \alpha, \delta]$ with $U \not\subseteq \operatorname{nil}(R[x; \alpha, \delta])$. Then by Corollary 2.2, we have $C_U \not\subseteq \operatorname{nil}(R)$. So there exists $c \in \operatorname{nil}(R)$ such that $N_R(C_U) = c \cdot R$. Now we show that $N_{R[x;\alpha,\delta]}(U) = c \cdot R[x;\alpha,\delta]$. For any $d(x) = d_0 + d_1x + \cdots + d_ux^u \in U$ and $h(x) = h_0 + h_1x + \cdots + h_vx^v \in R[x;\alpha,\delta]$, we have

$$d(x) \cdot ch(x) = \sum_{k=0}^{u+v} \left(\sum_{s+t=k} \left(\sum_{i=s}^{u} d_i f_s^i(ch_t) \right) \right) x^k.$$

Since $c \in \operatorname{nil}(R)$ and $\operatorname{nil}(R)$ of a 2-*primal* ring is an ideal, we obtain $d_i ch_t \in \operatorname{nil}(R)$, and so $d_i f_s^i(ch_t) \in \operatorname{nil}(R)$ by Lemma 2.4. Hence $\sum_{s+t=k} (\sum_{i=s}^u d_i f_s^i(ch_t)) \in \operatorname{nil}(R)$, and so $d(x) \cdot ch(x) \in \operatorname{nil}(R[x; \alpha, \delta])$ by Lemma 2.6, and so $N_{R[x; \alpha, \delta]}(U) \supseteq c \cdot R[x; \alpha, \delta]$. Let $g(x) = b_0 + b_1 x + \cdots + b_n x^n \in N_{R[x; \alpha, \delta]}(U)$, then $f(x)g(x) \in \operatorname{nil}(R[x; \alpha, \delta])$ for any $f(x) = a_0 + a_1 x + \cdots + a_m x^m \in U$. Then

$$f(x)g(x) = \sum_{k=0}^{m+n} \left(\sum_{s+t=k} \left(\sum_{i=s}^m a_i f_s^i(b_t) \right) \right) x^k = \sum_{k=0}^{m+n} \Delta_k x^k \in \operatorname{nil}(R[x;\alpha,\delta]).$$

Then we have the following equations by Lemma 2.6:

:

(2.1)
$$\Delta_{m+n} = a_m \alpha^m(b_n),$$

(2.2)
$$\Delta_{m+n-1} = a_m \alpha^m (b_{n-1}) + a_{m-1} \alpha^{m-1} (b_n) + a_m f_{m-1}^m (b_n),$$

(2.3)
$$\Delta_{m+n-2} = a_m \alpha^m(b_{n-2}) + \sum_{i=m-1}^m a_i f_{m-1}^i(b_{n-1}) + \sum_{i=m-2}^m a_i f_{m-2}^i(b_n),$$

(2.4)
$$\Delta_k = \sum_{s+t=k} (\sum_{i=s}^m a_i f_s^i(b_t)),$$

with $\Delta_i \in \operatorname{nil}(R)$ for all $0 \le i \le m+n$. From Lemma 2.5 and Equation (2.1), we obtain $a_m b_n \in \operatorname{nil}(R)$, and so $b_n a_m \in \operatorname{nil}(R)$. Now we show that $a_i b_n \in \operatorname{nil}(R)$ for all $0 \le i \le m$. If we multiply Equation (2.2) on the left side by b_n , then $b_n a_{m-1} \alpha^{m-1}(b_n) = b_n \Delta_{m+n-1} - (b_n a_m \alpha^m (b_{n-1}) + b_n a_m f_{m-1}^m (b_n)) \in \operatorname{nil}(R)$ since the nil(R) of a 2-primal ring is an ideal. Thus by Lemma 2.5, we obtain $b_n a_{m-1} b_n \in \operatorname{nil}(R)$, and so $b_n a_{m-1} \in \operatorname{nil}(R), a_{m-1} b_n \in \operatorname{nil}(R)$. If we multiply Equation (2.3) on the left side by b_n , then we obtain $b_n a_{m-2} f_{m-2}^{m-2} (b_n) = b_n a_{m-2} \alpha^{m-2} (b_n) = b_n \Delta_{m+n-2} - b_n a_m \alpha^m (b_{n-2}) - b_n a_{m-1} f_{m-1}^{m-1} (b_{n-1}) - b_n a_m f_{m-1}^m (b_{n-1}) - b_n a_m f_{m-1}^m (b_{n-1}) - (b_n a_m) f_{m-2}^m (b_n) = b_n \Delta_{m+n-2} - (b_n a_m) \alpha^m (b_{n-2}) - (b_n a_{m-1}) f_{m-1}^{m-1} (b_{n-1}) - (b_n a_m) f_{m-1}^m (b_{n-1}) - (b_n a_{m-1}) f_{m-2}^{m-1} (b_n) - (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-1}^m (b_{n-1}) - (b_n a_{m-1}) f_{m-2}^{m-1} (b_n) - (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-1}^m (b_{n-1}) - (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-1}^m (b_{n-1}) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-1}^m (b_{n-1}) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-1}^m (b_{n-1}) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-1}^m (b_{n-1}) + (b_n a_m) f_{m-1}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-1}^m (b_n) + (b_n a_m) f_{m-1}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n) + (b_n a_m) f_{m-2}^m (b_n)$

Corollary 2.3. Let *R* be an (α, δ) -compatible 2-primal ring, and $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{i=0}^{n} b_j x^j \in R[x; \alpha, \delta]$. Then $f(x)g(x) \in \operatorname{nil}(R[x; \alpha, \delta])$ if and only if $a_i b_j \in \operatorname{nil}(R)$ for all *i*, *j*.

Proof. (\Leftarrow) Suppose $a_i b_j \in \operatorname{nil}(R)$ for all i, j. Then $a_i f_s^i(b_j) \in \operatorname{nil}(R)$ for all i, j and all positive integer $i \ge s \ge 0$ by Lemma 2.4. Thus

$$\sum_{t+t=k} \left(\sum_{i=s}^{m} a_i f_s^i(b_t) \right) \in \operatorname{nil}(R), k = 0, 1, 2, \cdots m + n.$$

Hence $f(x)g(x) = \sum_{k=0}^{m+n} (\sum_{s+t=k} (\sum_{i=s}^{m} a_i f_s^i(b_t))) x^k \in \operatorname{nil}(R[x; \alpha, \delta])$ by Lemma 2.6.

 (\Rightarrow) By analogy with the proof of Theorem 2.1, we complete the proof.

Theorem 2.2. Let *R* be an α -compatible 2-primal ring. Then the following statements are equivalent:

- (1) For each subset $X \not\subseteq nil(R)$, $N_R(X)$ is generated as an ideal by a nilpotent element.
- (2) For each subset $U \not\subseteq \operatorname{nil}(R[x; \alpha])$, $N_{R[x; \alpha]}(U)$ is generated as an ideal by a nilpotent element.

Proof. By Theorem 2.1, it suffices to show $(2) \Rightarrow (1)$. Let *X* be a subset of *R* with $X \not\subseteq$ nil(*R*). Then $X \not\subseteq$ nil(*R*[*x*; α]). So there exists $f(x) = a_0 + a_1x + \cdots + a_mx^m \in$ nil(*R*[*x*; α]) such that $N_{R[x;\alpha]}(X) = f(x) \cdot R[x; \alpha]$. Note that $f(x) = a_0 + a_1x + \cdots + a_mx^m \in$ nil(*R*[*x*; α]), we have $a_i \in$ nil(*R*) for all $0 \le i \le m$ by Corollary 2.2. Clearly, we may assume that $a_0 \ne 0$. Now we show that $N_R(X) = a_0R$. Since $a_0 \in$ nil(*R*) and nil(*R*) is an ideal of *R*, we obtain $p \cdot a_0R \subseteq$ nil(*R*) for each $p \in X$. So $N_R(X) \supseteq a_0R$. If $m \in N_R(X)$, then $m \in N_{R[x;\alpha]}(X)$. Thus there exists $h(x) = h_0 + h_1x + \cdots + h_qx^q \in R[x; \alpha]$ such that

$$m = f(x)h(x) = \sum_{s=0}^{m+q} \left(\sum_{i+j=s} a_i \alpha^i(h_j)\right) x^s.$$

Thus we have $m = a_0 h_0 \in a_0 R$, and so $N_R(X) \subseteq a_0 R$. Hence $N_R(X) = a_0 R$ where $a_0 \in nil(R)$.

For any $p \in R$, we denote by $p \cdot R$ the principal right ideal of R generated by p. Then we have the following results.

Theorem 2.3. Let R be an (α, δ) -compatible 2-primal ring. If for each principal right ideal $p \cdot R \not\subseteq \operatorname{nil}(R)$, $N_R(p \cdot R)$ is generated as an ideal by a nilpotent element, then for each principal right ideal $f(x) \cdot R[x; \alpha, \delta] \not\subseteq \operatorname{nil}(R[x; \alpha, \delta])$, $N_{R[x; \alpha, \delta]}(f(x) \cdot R[x; \alpha, \delta])$ is generated as an ideal by a nilpotent element.

Proof. Let $f(x) = a_0 + a_1x + \dots + a_mx^m \in R[x; \alpha, \delta]$) with $f(x) \cdot R[x; \alpha, \delta] \not\subseteq \operatorname{nil}(R[x; \alpha, \delta])$. We show that $N_{R[x;\alpha,\delta]}(f(x) \cdot R[x; \alpha, \delta])$ is generated as an ideal by a nilpotent element. If $a_i R \subseteq \operatorname{nil}(R)$ for all $0 \le i \le m$, then by Corollary 2.2, it is easy to see that $f(x) \cdot R[x; \alpha, \delta] \subseteq \operatorname{nil}(R[x; \alpha, \delta])$, a contradiction. So there exists $0 \le i \le m$ such that $a_i R \not\subseteq \operatorname{nil}(R)$. Thus there exists $c \in \operatorname{nil}(R)$ such that $N_R(a_i R) = c \cdot R$. Now we show that $N_{R[x;\alpha,\delta]}(f(x) \cdot R[x; \alpha, \delta]) = c \cdot R[x; \alpha, \delta]$. For any $u(x) = u_0 + u_1 x + \dots + u_t x^t \in R[x; \alpha, \delta]$ and $v(x) = v_0 + v_1 x + \dots + v_q x^q \in R[x; \alpha, \delta]$, we have $a_i u_j c v_k \in \operatorname{nil}(R)$ for each i, j, k, since $c \in \operatorname{nil}(R)$ and $\operatorname{nil}(R)$ is an ideal of R. Thus $a_i f_s^i(u_j) c v_k \in \operatorname{nil}(R)$ for all i, j, k and $s \le i$ by Lemma 2.4, and so it is easy to see that $(f(x)u(x)) \cdot cv(x) \in \operatorname{nil}(R[x; \alpha, \delta])$ for all $u(x) \in R[x; \alpha, \delta]$ and $v(x) \in R[x; \alpha, \delta]$ by Corollary 2.3. Hence $cv(x) \in N_{R[x;\alpha,\delta]}(f(x) \cdot R[x; \alpha, \delta])$ and so $N_{R[x;\alpha,\delta]}(f(x) \cdot R[x; \alpha, \delta]) \supseteq c \cdot R[x; \alpha, \delta]$. On the other hand, assume that $p(x) = p_0 + p_1 x + \dots + p_s x^s \in N_{R[x;\alpha,\delta]}(f(x) \cdot R[x; \alpha, \delta])$. Then $f(x) \cdot R[x; \alpha, \delta] \cdot p(x) \subseteq \operatorname{nil}(R[x; \alpha, \delta])$ and so $f(x) \cdot R$.

 $p(x) \subseteq \operatorname{nil}(R[x; \alpha, \delta])$. Thus we obtain $a_i R \cdot p_j \subseteq \operatorname{nil}(R)$ for all $0 \le j \le s$. So $p_j \in N_R(a_i R) = cR$. Thus there exists $r_j \in R$ such that $p_j = cr_j$ for all $0 \le j \le s$. Hence $p(x) = p_0 + p_1 x + \cdots + p_s x^s = c(r_0 + r_1 x + \cdots + r_s x^s) \in c \cdot R[x; \alpha, \delta]$. Hence $N_{R[x;\alpha,\delta]}(f(x) \cdot R[x; \alpha, \delta]) \subseteq c \cdot R[x; \alpha, \delta]$. Therefore $N_{R[x;\alpha,\delta]}(f(x) \cdot R[x; \alpha, \delta]) = c \cdot R[x; \alpha, \delta]$.

Theorem 2.4. Let *R* be an α -compatible 2-primal ring. Then the following statements are equivalent:

- (1) For each principal right ideal $p \cdot R \not\subseteq nil(R)$, $N_R(p \cdot R)$ is generated as an ideal by a nilpotent element.
- (2) For each principal right ideal $f(x) \cdot R[x; \alpha] \not\subseteq \operatorname{nil}(R[x; \alpha]), N_{R[x; \alpha]}(f(x) \cdot R[x; \alpha])$ is generated as an ideal by a nilpotent element.

Proof. It follows by the same method of proof as in Theorem 2.2.

Using the same way as above, we also obtain the next two theorems:

Theorem 2.5. Let *R* be an (α, δ) -compatible 2-primal ring. If for each $p \notin \operatorname{nil}(R)$, $N_R(p)$ is generated as an ideal by a nilpotent element, then for each $f(x) \notin \operatorname{nil}(R[x; \alpha, \delta])$, $N_{R[x; \alpha, \delta]}(f(x))$ is generated as an ideal by a nilpotent element.

Theorem 2.6. Let R be an α -compatible 2-primal ring. Then the following statements are equivalent:

- (1) For each $p \notin nil(R)$, $N_R(p)$ is generated as an ideal by a nilpotent element.
- (2) for each skew polynomial $f(x) \notin \operatorname{nil}(R[x; \alpha]), N_{R[x; \alpha]}(f(x))$ is generated as an ideal by a nilpotent element.

Example 2.2. Let *R* be a domain and let

$$R_3 = \left\{ \left(\begin{array}{rrr} a_1 & a_2 & a_3 \\ 0 & a_1 & a_2 \\ 0 & 0 & a_1 \end{array} \right) \mid a_i \in R \right\}$$

be the subring of 3×3 upper triangular matrix ring. Let X be any subset of R_3 with $X \not\subseteq$ nil(R_3). We show that $N_{R_3}(X)$ is generated as a ideal by a nilpotent element. Let

$$U = \left\{ x \in R \mid \left(\begin{array}{ccc} x & y & z \\ 0 & x & y \\ 0 & 0 & x \end{array} \right) \in X \right\}.$$

If $U = \{0\}$, then $X \subseteq nil(R_3)$. This is contrary to the fact that $X \not\subseteq nil(R_3)$. Thus we have $U \neq \{0\}$. In this case, we have

$$N_{R_3}(X) = \left\{ \begin{pmatrix} 0 & u & v \\ 0 & 0 & u \\ 0 & 0 & 0 \end{pmatrix} \mid u, v \in R \right\} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot R_3,$$

where $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \operatorname{nil}(R_3)$ by a routine computations. Therefore $N_{R_3}(X)$ is generated as an ideal by a nilpotent element.

Example 2.3. Let Z be the ring of integers, and $T(Z,Z) = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in Z \}$ the trivial extension of Z by Z. Let $p = \begin{pmatrix} a & m \\ 0 & a \end{pmatrix} \in T(Z,Z)$. If a = 0, then we have $p \cdot T(Z,Z) \subseteq nil(T(Z,Z))$. So we assume that $a \neq 0$. By a routine computations, we obtain

$$N_{T(Z,Z)}(p \cdot T(Z,Z)) = \left\{ \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \mid m \in Z \right\} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot T(Z,Z),$$

where $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is a nilpotent element.

3. Nilpotent associated primes

Given a right *R*-module N_R , the right annihilator of N_R is denoted by $r_R(N_R) = \{a \in R \mid Na =$ 0}. We say that N_R is prime if $N_R \neq 0$, and $r_R(N_R) = r_R(N_R')$ for every nonzero submodule $N'_R \subseteq N_R$ (see [1]). Let M_R be a right *R*-module, an ideal \wp of *R* is called an associated prime of M_R if there exists a prime submodule $N_R \subseteq M_R$ such that $\mathcal{D} = r_R(N_R)$. The set of associated primes of M_R is denoted by $Ass(M_R)$ (see [1]). Associated primes are wellknown in commutative algebra for their important role in the primary decomposition, and has attracted a lot of attention in recent years. In [7], Brewer and Heinzer used localization theory to prove that, over a commutative ring R, the associated primes of the polynomial ring R[x] (viewed as a module over itself) are all extended: that is, every $\mathcal{Q} \in \operatorname{Ass}(R[x])$ may be expressed as $\wp = \wp_0[x]$, where $\wp_0 = \wp \cap R \in Ass(R)$. Using results of Shock in [13] on good polynomials, C. Faith has provided a new proof in [10] of the same result which does not rely on localization or other tools from commutative algebra. In [1], Scott Annin showed that Brewer and Heinzer's result still holds in the more general setting of a polynomial module M[x] over a skew polynomial ring $R[x;\alpha]$, with possibly noncommutative base R. So the properties of associated primes over a commutative ring can be profitably generalized to noncommutative setting as well.

Motivated by the results in [1], [7], [10], in this section, we continue the study of nilpotent associated primes over Ore extension rings. We first introduce the notion of nilpotent associated primes, which are a generalization of associated primes. We next describe all nilpotent associated primes of the Ore extension ring $R[x; \alpha, \delta]$ in terms of the nilpotent associated primes of the ring R.

Definition 3.1. Let I be a right ideal of a nonzero ring R. We say that I is a right quasi-prime ideal if $I \not\subseteq \operatorname{nil}(R)$ and $N_R(I) = N_R(I')$ for every right ideal $I' \subseteq I$ and $I' \not\subseteq \operatorname{nil}(R)$.

Let R be a domain and Let

$$R_n = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\}$$

be the subring of $n \times n$ upper triangular matrix ring. Then nil(R_n) is an ideal of R_n and

$$\operatorname{nil}(R_n) = \left\{ \begin{pmatrix} 0 & x_{12} & \cdots & x_{1n} \\ 0 & 0 & \cdots & x_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \mid x_{ij} \in R \right\}.$$

By a routine computations, we know that each right ideal $I \not\subseteq nil(R_n)$ is a right quasi-prime ideal.

Definition 3.2. Let nil(R) be an ideal of a ring R. An ideal \mathcal{P} of R is called a nilpotent associated prime of R if there exists a right quasi-prime ideal I such that $\mathcal{P} = N_R(I)$. The set of nilpotent associated primes of R is denoted by NAss(R).

Recall that an ideal \wp in a ring *R* is said to be a prime ideal if $\wp \neq R$, and for $a, b \in R$, $aRb \subseteq \wp$ implies that $a \in \wp$ or $b \in \wp$. Suppose nil(*R*) is an ideal. Then it is easy to see that if *I* is a right quasi-prime ideal, then $\wp = N_R(I)$ is a prime ideal of *R*.

Example 3.1. We now provide the following examples:

(a) Let

$$R_n = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\}$$

be the subring of $n \times n$ upper triangular matrix ring. Then it is easy to see that NAss $(R_n) = {nil(R_n)}$.

(b) Let *k* be any field, and consider the ring $R = \begin{pmatrix} k & 0 \\ k & k \end{pmatrix}$ of 2×2 lower triangular matrices over *k*. One easily checks that $\begin{pmatrix} k & 0 \\ k & k \end{pmatrix} \supseteq \begin{pmatrix} k & 0 \\ k & 0 \end{pmatrix} \supseteq \begin{pmatrix} k & 0 \\ 0 & 0 \end{pmatrix} \supseteq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is a composition series for R_R . In particular, R_R has finite length.

Next we shall determine the set Ass(R). By an easy ad hoc calculation, we can write down all of the proper nonzero ideals of R:

$$\left\{m_1 = \begin{pmatrix} 0 & 0 \\ k & k \end{pmatrix}, m_2 = \begin{pmatrix} k & 0 \\ k & 0 \end{pmatrix}, \alpha = \begin{pmatrix} 0 & 0 \\ k & 0 \end{pmatrix}\right\}.$$

Now since $\alpha^2 = 0$, 0 is not a prime ideal. Moreover, since $m_1 R m_2 \subseteq \alpha$, α is not a prime ideal. So the only candidates for the associated primes of *R* are the maximal ideals m_1 and m_2 .

We claim that $m_2 \notin \operatorname{Ass}(R)$. Otherwise, there would exists a right ideal $I \supseteq 0$ of R with $m_2 = r_R(I)$. So $I \cdot m_2 = 0$. Now, given $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in I$, we have $0 = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$, so a = b = 0. Also, $0 = \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$ implies that c = 0. Thus I = 0, a contradiction. Hence $m_2 \notin \operatorname{Ass}(R)$.

By virtue of R_R being noetherian, we know that $Ass(R) \neq 0$. Hence $Ass(R) = \{m_1\}$.

Finally, we should determine the set of NAss(*R*). Clearly, nil(*R*) = α . Thus nil(*R*) is an ideal. Now we show that $m_1 = N_R(m_2)$ and m_2 is a right quasi-prime ideal. Clearly, $m_1 \subseteq N_R(m_2)$ since $m_2m_1 = 0$. Given $\binom{a \ 0}{b \ c} \in N_R(m_2)$, we have $\binom{1 \ 0}{0 \ 0} \binom{a \ 0}{b \ c} = \binom{a \ 0}{0 \ 0} \in \text{nil}(R)$. Then a = 0 and so $\binom{a \ 0}{b \ c} \in m_1$. Hence $m_1 = N_R(m_2)$. Next we see that m_2 is a right quasi-prime ideal. Let $n \not\subseteq \text{nil}(R)$ and $n \subseteq m_2$. Since $N_R(n) \supseteq N_R(m_2)$ is clear, we now assume that $\binom{a \ 0}{b \ c} \in N_R(n)$, and find $\binom{h \ 0}{k \ 0} \in n$ with $h \neq 0$. Then we have $\binom{h \ 0}{b \ c} = \binom{ha \ 0}{ka \ 0} \in \text{nil}(R)$. Thus a = 0 and so $\binom{a \ 0}{b \ c} \in N_R(m_2)$. Hence we obtain $N_R(n) = N_R(m_2)$ and so m_2 is a right quasi-prime ideal. Thus we obtain $m_1 \in \text{NAss}(R)$. Similarly, we have $m_2 \in \text{NAss}(R)$. Therefore NAss(R) = $\{m_1, m_2\} \neq \text{Ass}(R)$.

If *R* is reduced, then \mathscr{P} is a nilpotent associated prime of *R* if and only if \mathscr{P} is an associated prime of *R*. So NAss(R) = Ass(R) in case *R* is reduced.

Given a polynomial $f(x) \in R[x]$. If the polynomial f(x) has the property that each nonzero coefficient has the same right annihilator in R, then we say that such a polynomial is a good polynomial. Shock showed in [13] that, given any nonzero polynomial $f(x) \in R[x]$, one can find $r \in R$ such that f(x)r is good. In order to prove the main result of this section, we will need a generalized version of Shock's result which applies in our skew polynomial setting.

Let $m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n \notin \operatorname{nil}(R)[x; \alpha, \delta]$. If $m_k \notin \operatorname{nil}(R)$, and $m_i \in \operatorname{nil}(R)$ for all i > k, then we say that the nilpotent degree of m(x) is k. To simplify notations, we write $\operatorname{Ndeg}(m(x))$ for the nilpotent degree of m(x). If $m(x) \in \operatorname{nil}(R)[x; \alpha, \delta]$, then we define $\operatorname{Ndeg}(m(x)) = -1$.

Definition 3.3. Let $m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n \notin nil(R)[x; \alpha, \delta]$ and the nilpotent degree of m(x) be k. If $N_R(m_k) \subseteq N_R(m_i)$ for all $i \leq k$, then we say that m(x) is a nilpotent good polynomial.

Lemma 3.1. Let R be an (α, δ) -compatible 2-primal ring. For any $m(x) = m_0 + m_1 x + \cdots + m_k x^k + \cdots + m_n x^n \notin nil(R)[x; \alpha, \delta]$, there exists $r \in R$ such that m(x)r is a nilpotent good polynomial.

Proof. Assume the result is false, and let $m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n \notin$ nil $(R)[x; \alpha, \delta]$ be a counterexample of minimal nilpotent degree Ndeg $(m(x)) = k \ge 1$. In particular, m(x) is not a nilpotent good polynomial. Hence there exists i < k such that $N_R(m_k) \not\subseteq N_R(m_i)$. So we can find $b \in R$ with $m_i b \notin nil(R)$, and $m_k b \in nil(R)$. Note that the degree k coefficient of m(x)b is $m_k \alpha^k(b) + \sum_{i=k+1}^n m_i f_k^i(b)$ and $m_k \alpha^k(b) \in nil(R)$ due to the (α, δ) -compatibility of R. On the other hand, we have Ndeg(m(x)) = k, so $m_i \in nil(R)$ for all i > k. Since nil(R) of a 2-primal ring is an ideal, $m_i f_k^i(b) \in nil(R)$ for all i > k. Hence it is easy to see that m(x)b has nilpotent degree at most k - 1. Since $m_i b \notin nil(R)$, by Corollary 2.3, we have $m(x)b \notin nil(R)[x; \alpha, \delta]$. By the minimality of k, we know that there exists $c \in R$ with m(x)bc nilpotent good. But this contradicts the fact that m(x) is a counterexample to the statement.

Theorem 3.1. Let *R* be an (α, δ) -compatible 2-primal ring. Then

$$NAss(R[x; \alpha, \delta]) = \{ \wp[x; \alpha, \delta] \mid \wp \in NAss(R) \}.$$

Proof. We first prove \supseteq . Let $\wp \in NAss(R)$. By definition, there exists a right ideal $I \not\subseteq$ nil(R) with I a right quasi-prime ideal of R and $\wp = N_R(I)$. It suffices to prove

(3.1)
$$\mathscr{P}[x;\alpha,\delta] = N_{R[x;\alpha,\delta]}(I[x;\alpha,\delta])$$

and

(3.2)
$$I[x; \alpha, \delta]$$
 is quasi-prime.

For Equation (3.1), let $f(x) = a_0 + a_1x + \dots + a_lx^l \in \mathscr{D}[x; \alpha, \delta]$, and let $i(x) = i_0 + i_1x + \dots + i_mx^m \in I[x; \alpha, \delta]$. Since $i_k a_j \in \operatorname{nil}(R)$ for each k, j, applying Corollary 2.3 yields that $i(x)f(x) \in \operatorname{nil}(R[x; \alpha, \delta])$. Hence $\mathscr{D}[x; \alpha, \delta] \subseteq N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta])$.

Conversely, if $f(x) = a_0 + a_1 x + \dots + a_l x^l \in N_{R[x;\alpha,\delta]}(I[x;\alpha,\delta])$, then $i(x)f(x) \in \operatorname{nil}(R[x;\alpha,\delta])$ for all $i(x) = i_0 + i_1 x + \dots + i_m x^m \in I[x;\alpha,\delta]$. Using Corollary 2.3 again, we obtain that $i_k a_j \in \operatorname{nil}(R)$ for each k, j. Thus for all $0 \le j \le l, a_j \in N_R(I) = \emptyset$, and so $f(x) \in \mathfrak{S}[x;\alpha,\delta]$. Hence $N_{R[x;\alpha,\delta]}(I[x;\alpha,\delta]) \subseteq \mathfrak{S}[x;\alpha,\delta]$. Therefore $\mathfrak{S}[x;\alpha,\delta] = N_{R[x;\alpha,\delta]}(I[x;\alpha,\delta])$.

Note that the right ideal *I* is a right quasi-prime ideal. Then we have $I \not\subseteq nil(R)$. Thus

$$I[x; \alpha, \delta] \not\subseteq \operatorname{nil}(R)[x; \alpha, \delta] = \operatorname{nil}(R[x; \alpha, \delta])$$

To see (3.2), we must show that if a right ideal $\Im \not\subseteq \operatorname{nil}(R[x; \alpha, \delta])$ and $\Im \subseteq I[x; \alpha, \delta]$, then

$$N_{R[x;\alpha,\delta]}(\mho) = N_{R[x;\alpha,\delta]}(I[x;\alpha,\delta]).$$

To this end, let *D* be a subset of *R* consisting of all coefficients of elements of \mathcal{V} . Then let \mathcal{P}_0 denote the right ideal of *R* generated by *D*. Since $\mathcal{V} \not\subseteq \operatorname{nil}(R[x; \alpha, \delta]) = \operatorname{nil}(R)[x; \alpha, \delta]$, $D \not\subseteq \operatorname{nil}(R)$, and hence $\mathcal{P}_0 \subseteq I$, $\mathcal{P}_0 \not\subseteq \operatorname{nil}(R)$. So we have $N_R(\mathcal{P}_0) = N_R(I) = \mathcal{P}$ because *I* is a right quasi-prime ideal. Since $N_{R[x;\alpha,\delta]}(\mathcal{V}) \supseteq N_{R[x;\alpha,\delta]}(I[x; \alpha, \delta])$ is clear, we now assume that

$$h(x) = h_0 + h_1 x + \dots + h_u x^u \in N_{R[x;\alpha,\delta]}(\mho),$$

and

$$s(x) = s_0 + s_1 x + \dots + s_\nu x^\nu \in \mathcal{O}.$$

Then we have $s(x)h(x) \in \operatorname{nil}(R[x; \alpha, \delta])$. By Corollary 2.3, we obtain

$$s_i h_j \in \operatorname{nil}(R)$$
 for all $0 \le i \le v, 0 \le j \le u$

Since nil(*R*) of a 2-*primal* ring is an ideal, $s_ih_j \in nil(R)$ implies $h_js_i \in nil(R)$ and so $s_iRh_js_iRh_j = (s_iRh_j)^2 \in nil(R)$. Hence $s_iRh_j \in nil(R)$. Thus we obtain

$$h_j \in N_R(\mathcal{O}_0) = N_R(I) = \mathcal{O}$$
 for all $0 \le j \le u$.

Let $i(x) = i_0 + i_1 x + \dots + i_p x^p \in I[x; \alpha, \delta]$, we have $i_m h_j \in \operatorname{nil}(R)$ for all $0 \le m \le p, 0 \le j \le u$. Then $i(x)h(x) \in \operatorname{nil}(R[x; \alpha, \delta])$ by Corollary 2.3. Hence $N_{R[x; \alpha, \delta]}(\mathfrak{O}) \subseteq N_{R[x; \alpha, \delta]}(I[x; \alpha, \delta])$ is proved, and so is \supseteq in Theorem 3.1.

Now we turn our attention to proving \subseteq in Theorem 3.1. Let $I \in NAss(R[x; \alpha, \delta])$. By definition, we have a right quasi-prime ideal \pounds of $R[x; \alpha, \delta]$ with $I = N_{R[x;\alpha,\delta]}(\pounds)$. Pick any

$$m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n \notin \operatorname{nil}(R)[x; \alpha, \delta]$$

in £. By $\pounds \not\subseteq \operatorname{nil}(R[x; \alpha, \delta])$ and Lemma 3.1, we may assume that m(x) is nilpotent good, and Ndeg(m(x)) = k. Set $\pounds_0 = m(x) \cdot R[x; \alpha, \delta]$. Note that $m(x) \notin \operatorname{nil}(R)[x; \alpha, \delta]$, so we get

$$\pounds_0 = m(x)R[x;\alpha,\delta] \not\subseteq \operatorname{nil}(R)[x;\alpha,\delta] = \operatorname{nil}(R[x;\alpha,\delta])$$

Then we have

$$N_{R[x;\alpha,\delta]}(\pounds) = N_{R[x;\alpha,\delta]}(\pounds_0) = N_{R[x;\alpha,\delta]}(m(x) \cdot R[x;\alpha,\delta]) = I$$

because \pounds is quasi-prime. Consider the right ideal $m_k R$, and assume that $U = N_R(m_k R)$. We wish to claim that $I = U[x; \alpha, \delta]$. Let

$$g(x) = b_0 + b_1 x + \dots + b_l x^l \in U[x; \alpha, \delta].$$

Then

$$m_k Rb_i \in \operatorname{nil}(R)$$
 for all $0 \leq j \leq l$.

Since m(x) is nilpotent good, and Ndeg(m(x)) = k, $m_i R b_j \in nil(R)$ for all $0 \le i \le k$, and $0 \le j \le l$. On the other hand, for all i > k, $m_i \in nil(R)$. Thus we have $m_i R b_j \in nil(R)$ for all $0 \le i \le n$, $0 \le j \le l$. Choose any

$$h(x) = h_0 + h_1 x + \dots + h_p x^p \in R[x; \alpha, \delta].$$

From $m_i h_d b_j \in \operatorname{nil}(R)$ for all $0 \le i \le n$, $0 \le d \le p$ and $0 \le j \le l$ and (α, δ) -compatibility of R, we obtain $m(x)h(x)g(x) \in \operatorname{nil}(R[x; \alpha, \delta])$ by a routine computations. Hence $g(x) \in N_{R[x;\alpha,\delta]}(m(x)R[x;\alpha,\delta]) = I$, and so $U[x;\alpha,\delta] \subseteq I$. Conversely, let $g(x) = b_0 + b_1 x + \cdots + b_l x^l \in I$. Then

$$m(x)Rg(x) \in \operatorname{nil}(R[x; \alpha, \delta]).$$

By Corollary 2.3, we get $m_i R b_j \in nil(R)$ for all $0 \le i \le n$, and $0 \le j \le l$. Thus $b_j \in N_R(m_k R)$ for all $0 \le j \le l$, and so $g(x) \in U[x; \alpha, \delta]$. Hence $I \subseteq U[x; \alpha, \delta]$. Therefore $I = U[x; \alpha, \delta]$.

We are now to check that $m_k R$ is quasi-prime. Since $m_k \notin \operatorname{nil}(R)$, $m_k R \not\subseteq \operatorname{nil}(R)$. Assume that a right ideal $Q \subseteq m_k R$, and $Q \not\subseteq \operatorname{nil}(R)$. Then $N_R(Q) \supseteq N_R(m_k R)$ is clear. Now we show that

$$N_R(Q) \subseteq N_R(m_k R).$$

Set $W = \{m(x)r \mid r \in Q\}$, and let $WR[x; \alpha, \delta]$ be the right ideal of $R[x; \alpha, \delta]$ generated by W. It is obvious that $WR[x; \alpha, \delta] \subseteq m(x)R[x; \alpha, \delta]$. Since $Q \not\subseteq nil(R)$, there exists $a \in R$ such that $m_k a \in Q$ and $m_k a \notin nil(R)$. If $m_k \cdot m_k a \in nil(R)$, then we have $m_k a \in nil(R)$. This contradicts to the fact that $m_k a \notin nil(R)$. Thus $m_k \cdot m_k a \notin nil(R)$ and so $m(x) \cdot m_k a \notin nil(R[x; \alpha, \delta])$ by Corollary 2.3, and this implies that $WR[x; \alpha, \delta] \not\subseteq nil(R[x; \alpha, \delta])$. Since \pounds is quasi-prime, we obtain

$$N_{R[x;\alpha,\delta]}(WR[x;\alpha,\delta]) = N_{R[x;\alpha,\delta]}(m(x)R[x;\alpha,\delta]) = I.$$

Suppose $q \in N_R(Q)$. Then $rq \in nil(R)$ for each $r \in Q$. For any $m(x)rf(x) \in WR[x;\alpha,\delta]$ where $f(x) = a_0 + a_1x + \dots + a_lx^l \in R[x;\alpha,\delta]$. The typical term of m(x)rf(x) is $m_ix^ira_jx^j$. From $rq \in nil(R)$ and nil(R) of a 2-primal ring is an ideal, we have

$$rq \in \operatorname{nil}(R) \Rightarrow qr \in \operatorname{nil}(R) \Rightarrow ra_j qra_j q \in \operatorname{nil}(R) \Rightarrow ra_j q \in \operatorname{nil}(R) \Rightarrow m_i ra_j q \in \operatorname{nil}(R).$$

Thus $m_i x^i r a_j x^j q \in \operatorname{nil}(R)[x; \alpha, \delta]$ due to the (α, δ) -compatibility of *R*, and so

 $m(x)rf(x)q \in \operatorname{nil}(R)[x; \alpha, \delta] = \operatorname{nil}(R[x; \alpha, \delta]).$

Thus for any

$$\sum m(x)r_if_i(x)\in WR[x;\alpha,\delta],$$

it is easy to see that

$$\left(\sum m(x)r_if_i(x)\right)q \in \operatorname{nil}(R[x;\alpha,\delta])$$

Hence $q \in N_{R[x;\alpha,\delta]}(WR[x;\alpha,\overline{\delta}]) = I = U[x;\alpha,\delta]$, and so $q \in U = N_R(m_kR)$. So $N_R(Q) \subseteq N_R(m_kR)$, and this inplies that $N_R(Q) = N_R(m_kR)$. Thus m_kR is quasi-prime.

Assembling the above results, we finish the proof of Theorem 3.1.

Corollary 3.1. Let *R* be a 2-primal ring. Then $NAss(R[x]) = \{ \mathcal{P}[x] \mid \mathcal{P} \in NAss(R) \}$.

Proof. Take $\alpha = id$ and $\delta = 0$ in Theorem 3.1.

Acknowledgement. The authors are indebted to the referees for their valuable comments and suggestions.

References

- [1] S. Annin, Associated primes over skew polynomial rings, Comm. Algebra 30 (2002), no. 5, 2511–2528.
- [2] J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, *Pacific J. Math.* 58 (1975), no. 1, 1–13.
- [3] G. F. Birkenmeier, H. E. Heatherly and E. K. Lee, Completely prime ideals and associated radicals, in *Ring theory (Granville, OH, 1992)*, 102–129, World Sci. Publ., River Edge, NJ.
- [4] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), no. 3, 213–230.
- [5] G. F. Birkenmeier, J. Y. Kim and J. K. Park, A characterization of minimal prime ideals, *Glasgow Math. J.* 40 (1998), no. 2, 223–236.
- [6] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Prime ideals of principally quasi-Baer rings, Acta Math. Hungar. 98 (2003), no. 3, 217–225.
- [7] J. W. Brewer and W. J. Heinzer, Associated primes of principal ideals, Duke Math. J. 41 (1974), 1-7.
- [8] C. Faith, Rings with zero intersection property on annihilators: ZIP rings, Publ. Mat. 33 (1989), no. 2, 329– 338.

- [9] C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, *Comm. Algebra* 19 (1991), no. 7, 1867–1892.
- [10] C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra 28 (2000), no. 8, 3983–3986.
- [11] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207–224.
- [12] T. Y. Lam, A. Leroy and J. Matczuk, Primeness, semiprimeness and prime radical of Ore extensions, *Comm. Algebra* 25 (1997), no. 8, 2459–2506.
- [13] R. C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42 (1972), 251-257.
- [14] W. Cortes, Skew polynomial extensions over zip rings, Int. J. Math. Math. Sci. 2008, Art. ID 496720, 9 pp.
- [15] J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213–216.