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Abstract. Let R be a ring and nil(R) the set of all nilpotent elements of R. For a subset
X of a ring R, we define NR(X) = {a ∈ R | xa ∈ nil(R) for all x ∈ X}, which is called the
weak annihilator of X in R. In this paper we mainly investigate the properties of the weak
annihilator over extension rings.
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1. Introduction

Throughout this paper R denotes an associative ring with unity, α : R −→ R is an endo-
morphism, and δ an α-derivation of R, that is, δ is an additive map such that δ (ab) =
δ (a)b+α(a)δ (b), for a,b ∈ R. We denote by R[x;α,δ ] the Ore extension whose elements
are the polynomials over R, the addition is defined as usual and the multiplication subject to
the relation xa = α(a)x+δ (a) for any a∈ R. We use P(R) and nil(R) to represent the prime
radical and the set of all nilpotent elements of R respectively. Due to Birkenmeier et al. [3], a
ring R is called 2-primal if P(R) = nil(R). Every reduced ring (i.e. nil(R) = 0) is obviously
a 2-primal ring. Other examples and properties of 2-primal rings can be founded in [4, 5, 6].
Let α be an endomorphism and δ an α-derivation of a ring R. Following E. Hashemi and A.
Moussavi [11], a ring R is said to be α-compatible if for each a,b∈ R,ab = 0⇔ aα(b) = 0.
Moreover, R is called to be δ -compatible if for each a,b ∈ R,ab = 0⇒ aδ (b) = 0. If R is
both α-compatible and δ -compatible, then R is said to be (α,δ )-compatible.

For a subset X of a ring R, rR(X) = {a ∈ R | Xa = 0} and lR(X) = {a ∈ R | aX = 0} will
stand for the right and left annihilator of X in R, respectively. Properties of the right (left)
annihilator of a subset in a ring R are studied by many authors (see [2, 8, 9, 14, 15]). As a
generalization of the right (left) annihilator, in this paper we introduce the notion of a weak
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annihilator of a subset in a ring, and investigate the weak annihilator properties over the Ore
extension ring R[x;α,δ ].

In this paper all subsets are nonempty. Let f (x) = a0 + a1x + · · ·+ anxn ∈ R[x;α,δ ].
We say that f (x) ∈ nil(R)[x;α,δ ] if and only if ai ∈ nil(R) for all 0 ≤ i ≤ n. Let I be a
subset of R, I[x;α,δ ] means {u0 + u1x + · · ·+ unxn ∈ R[x;α,δ ] | ui ∈ I}, that is, for any
skew polynomial f (x) = a0 + a1x + · · ·+ anxn ∈ R[x;α,δ ], f (x) ∈ I[x;α,δ ] if and only if
ai ∈ I for all 0 ≤ i ≤ n. If f (x) ∈ R[x;α,δ ] is a nilpotent element of R[x;α,δ ], then we
say that f (x) ∈ nil(R[x;α,δ ]). For f (x) = a0 + a1x + · · ·+ anxn ∈ R[x;α,δ ], we denote
by {a0,a1, · · · ,an} or C f the set comprised of the coefficients of f (x), and for a subset
U ⊆ R[x;α,δ ], CU =

⋃
f∈U C f .

2. Weak annihilator

Definition 2.1. Let R be a ring. For a subset X of a ring R, we define NR(X) = {a ∈ R |
xa ∈ nil(R) for all x ∈ X}, which is called the weak annihilator of X in R. If X is singleton,
say X = {r}, we use NR(r) in place of NR({r}).

Obviously, for any subset X of a ring R, NR(X) = {a ∈ R | xa ∈ nil(R) for all x ∈ X} =
{b ∈ R | bx ∈ nil(R) for all x ∈ X}, and rR(X)⊆ NR(X) and lR(X)⊆ NR(X). If R is reduced,
then rR(X) = NR(X) = lR(X) for any subset X of R. It is easy to see that for any subset
X ⊆ R, NR(X) is an ideal of R in case nil(R) is an ideal.

Example 2.1. Let Z be the ring of integers and T2(Z) the 2× 2 upper triangular matrix
ring over Z. We consider the subset X =

{(
2 0
0 2

)}
. Clearly, rT2(Z)(X) = 0, and NT2(Z)(X) ={(

0 m
0 0

)
, | m ∈ Z

}
. Thus rT2(Z)(X) 6= NT2(Z)(X). Hence a weak annihilator is not a trivial

generalization of a annihilator.

Proposition 2.1. Let X , Y be subsets of R. Then we have the following:
(1) X ⊆ Y implies NR(X)⊇ NR(Y ).
(2) X ⊆ NR(NR(X)).
(3) NR(X) = NR(NR(NR(X))).

Proof. (1) and (2) are really easy.
(3) Applying (2) to NR(X), we obtain NR(X)⊆ NR(NR(NR(X))). Since X ⊆ NR(NR(X)),

we have NR(X)⊇ NR(NR(NR(X))) by (1). Therefore we have NR(X) = NR(NR(NR(X))).
Let δ be an α-derivation of R. For integers i, j with 0≤ i≤ j, f j

i ∈End(R,+) will denote
the map which is the sum of all possible words in α,δ built with i letters α and j− i letters
δ . For instance, f 0

0 = 1, f j
j = α j, f j

0 = δ j and f j
j−1 = α j−1δ +α j−2δα + · · ·+δα j−1. The

next Lemma appears in [12. Lemma 4.1].

Lemma 2.1. For any positive integer n and r ∈ R, we have xnr = ∑
n
i=0 f n

i (r)xi in the ring
R[x;α,δ ].

For the proof of the next lemma, see [11].

Lemma 2.2. Let R be an (α,δ )-compatible ring. Then we have the following:
(1) If ab = 0, then aαn(b) = αn(a)b = 0 for all positive integers n.
(2) If αk(a)b = 0 for some positive integer k, then ab = 0.
(3) If ab = 0, then αn(a)δ m(b) = 0 = δ m(a)αn(b) for all positive integers m,n.
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Lemma 2.3. Let δ be an α-derivation of R. If R is (α,δ )-compatible, then abc = 0 implies
ab f j

i (c) = 0 and a f j
i (b)c = 0 for all 0≤ i≤ j and a, b, c ∈ R.

Proof. Let abc = 0 for a, b, c∈ R. Then abα(c) = abδ (c) = 0 since R is (α,δ )-compatible.
Thus ab f j

i (c) = 0 is clear. To see a f j
i (b)c = 0, it suffices to show that if abc = 0, then

aα(b)c = 0 and aδ (b)c = 0. Take a, b, c ∈ R such that abc = 0. Then because R is (α,δ )-
compatible,

abc = 0⇒ aα(bc) = aα(b)α(c) = 0⇒ aα(b)c = 0,

and
aα(b)c = 0⇒ aα(b)δ (c) = 0.

Moreover,

abc = 0⇒ aδ (bc) = aα(b)δ (c)+aδ (b)c = 0⇒ aδ (b)c = 0.

Therefore we obtain a f j
i (b)c = 0.

Corollary 2.1. Let R be an (α,δ )-compatible ring. Then a1a2 · · ·an = 0 implies

f t1
s1

(a1) f t2
s2

(a2) · · · f tn
sn (an) = 0

for all ti ≥ si ≥ 0 and ai ∈ R, i = 1,2, · · · ,n.

Proof. It follows from Lemma 2.3.

Lemma 2.4. Let δ be an α-derivation of R. If R is (α,δ )-compatible, then ab ∈ nil(R)
implies a f j

i (b) ∈ nil(R) for all j ≥ i≥ 0 and a,b ∈ R.

Proof. Since ab∈ nil(R), there exists some positive integer k such that (ab)k = abab · · ·ab =
0. Then by Corollary 2.1, it is easy to see that a f j

i (b) ∈ nil(R).

Lemma 2.5. Let R be an (α,δ )-compatible ring. If aαm(b) ∈ nil(R) for a,b ∈ R, and m is
a positive integer, then ab ∈ nil(R).

Proof. Since aαm(b)∈ nil(R), there exists some positive integer n such that (aαm(b))n = 0.
In the following computations, we use freely the condition that R is (α,δ )-compatible:

(aα
m(b))n = aα

m(b)aα
m(b) · · ·aα

m(b)︸ ︷︷ ︸
n

= 0

⇒aα
m(b)aα

m(b) · · ·aα
m(b)ab = 0

⇒aα
m(b)aα

m(b) · · ·aα
m(b)αm(ab) = 0

⇒aα
m(b)aα

m(b) · · ·aα
m(b)aα

m(bab) = 0

⇒aα
m(b)aα

m(b) · · ·aα
m(b)abab = 0

⇒·· · ⇒ ab ∈ nil(R).

Lemma 2.6. Let R be an (α,δ )-compatible 2-primal ring and f (x) = a0 + a1x + · · ·+
anxn ∈ R[x;α,δ ]. Then f (x) ∈ nil(R[x;α,δ ]) if and only if ai ∈ nil(R) for all 0≤ i≤ n.

Proof. (=⇒) Suppose f (x) ∈ nil(R[x;α,δ ]). There exists some positive integer k such that
f (x)k = (a0 +a1x+ · · ·+anxn)k = 0. Then

0 = f (x)k = “lower terms”+anα
n(an)α2n(an) · · ·α(k−1)n(an)xnk.
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Hence anαn(an)α2n(an) · · ·α(k−1)n(an) = 0, and α-compatibility of R gives an ∈ nil(R). So
by Lemma 2.4, an = 1 · an ∈ nil(R) implies 1 · f j

i (an) = f j
i (an) ∈ nil(R) for all 0 ≤ i ≤ j.

Let Q = a0 +a1x+ · · ·+an−1xn−1. Then we have

0 = (Q+anxn)k

= (Q+anxn)(Q+anxn) · · ·(Q+anxn)

= (Q2 +Q ·anxn +anxn ·Q+anxn ·anxn)(Q+anxn) · · ·(Q+anxn)

= · · ·= Qk +∆,

where ∆ ∈ R[x;α,δ ]. Note that the coefficients of ∆ can be written as sums of monomials
in ai and f v

u (a j) where ai,a j ∈ {a0,a1, · · · ,an} and v≥ u≥ 0 are positive integers, and each
monomial has an or f t

s (an). Since nil(R) of a 2-primal ring R is an ideal, we obtain that
each monomial is in nil(R), and so ∆ ∈ nil(R)[x;α,δ ]. Thus we obtain

(a0 +a1x+ · · ·+an−1xn−1)k

= “lower terms”+an−1αn−1(an−1) · · ·α(n−1)(k−1)(an−1)x(n−1)k ∈ nil(R)[x;α,δ ]

since nil(R) is an ideal of R. Hence

an−1α
n−1(an−1) · · ·α(k−1)(n−1)(an−1) ∈ nil(R)

and so an−1 ∈ nil(R) by Lemma 2.5. Using induction on n we obtain ai ∈ nil(R) for all
0≤ i≤ n.

(⇐=) Consider the finite subset S = {a0,a1, · · · ,an}⊆ nil(R). Since R is a 2-primal ring,
there exists an integer k such that any product of k elements ai1ai2 · · ·aik from {a0,a1, · · · ,an}
is zero. Then by Corollary 2.1, we obtain

ai1 f ti2
si2

(ai2) f ti3
si3

(ai3) · · · f tik
sik

(aik) = 0.

Now we claim that
f (x)k = (a0 +a1x+ · · ·+anxn)k = 0.

From

(
n

∑
i=0

aixi)2 =
2n

∑
k=0

(
∑

s+t=k
(

n

∑
i=s

ai f i
s(at))

)
xk,

it is easy to check that the coefficients of (∑n
i=0 aixi)k can be written as sums of monomials of

length k in ai and f v
u (a j), where ai,a j ∈ {a0,a1, · · · ,an} and v≥ u≥ 0 are positive integers.

Since each monomial ai1 f ti2
si2 (ai2) · · · f tik

sik (aik) = 0, where ai1, ai2, · · · , aik ∈ {a0,a1, · · · ,an}
and sip, tip are nonnegative integers for all 2≤ p≤ k. We obtain f (x)k = 0. Hence f (x) is a
nilpotent element of R[x;α,δ ].

Corollary 2.2. Let R be an (α,δ )-compatible 2-primal. Then we have the following:
(1) nil(R[x;α,δ ]) is an ideal.
(2) nil(R[x;α,δ ]) = nil(R)[x;α,δ ].

In particular, if R is an α-compatible ring, then nil(R[x;α]) is an ideal and nil(R[x;α]) =
nil(R)[x;α].

Theorem 2.1. Let R be an (α,δ )-compatible 2-primal ring. If for each subset X 6⊆
nil(R), NR(X) is generated as an ideal by a nilpotent element, then for each subset U 6⊆
nil(R[x;α,δ ]), NR[x;α,δ ](U) is generated as an ideal by a nilpotent element.
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Proof. Let U be a subset of R[x;α,δ ] with U 6⊆ nil(R[x;α,δ ]). Then by Corollary 2.2, we
have CU 6⊆ nil(R). So there exists c ∈ nil(R) such that NR(CU ) = c ·R. Now we show that
NR[x;α,δ ](U) = c ·R[x;α,δ ]. For any d(x) = d0 +d1x+ · · ·+duxu ∈U and h(x) = h0 +h1x+
· · ·+hvxv ∈ R[x;α,δ ], we have

d(x) · ch(x) =
u+v

∑
k=0

(
∑

s+t=k
(

u

∑
i=s

di f i
s(cht))

)
xk.

Since c ∈ nil(R) and nil(R) of a 2-primal ring is an ideal, we obtain dicht ∈ nil(R), and
so di f i

s(cht) ∈ nil(R) by Lemma 2.4. Hence ∑s+t=k(∑u
i=s di f i

s(cht)) ∈ nil(R), and so d(x) ·
ch(x) ∈ nil(R[x;α,δ ]) by Lemma 2.6, and so NR[x;α,δ ](U) ⊇ c ·R[x;α,δ ]. Let g(x) = b0 +
b1x + · · ·+ bnxn ∈ NR[x;α,δ ](U), then f (x)g(x) ∈ nil(R[x;α,δ ]) for any f (x) = a0 + a1x +
· · ·+amxm ∈U . Then

f (x)g(x) =
m+n

∑
k=0

(
∑

s+t=k
(

m

∑
i=s

ai f i
s(bt))

)
xk =

m+n

∑
k=0

∆kxk ∈ nil(R[x;α,δ ]).

Then we have the following equations by Lemma 2.6:

∆m+n = amα
m(bn),(2.1)

∆m+n−1 = amα
m(bn−1)+am−1α

m−1(bn)+am f m
m−1(bn),(2.2)

∆m+n−2 = amα
m(bn−2)+

m

∑
i=m−1

ai f i
m−1(bn−1)+

m

∑
i=m−2

ai f i
m−2(bn),(2.3)

...

∆k = ∑
s+t=k

(
m

∑
i=s

ai f i
s(bt)),(2.4)

with ∆i ∈ nil(R) for all 0 ≤ i ≤ m + n. From Lemma 2.5 and Equation (2.1), we obtain
ambn ∈ nil(R), and so bnam ∈ nil(R). Now we show that aibn ∈ nil(R) for all 0 ≤ i ≤ m.
If we multiply Equation (2.2) on the left side by bn, then bnam−1αm−1(bn) = bn∆m+n−1−
(bnamαm(bn−1)+ bnam f m

m−1(bn)) ∈ nil(R) since the nil(R) of a 2-primal ring is an ideal.
Thus by Lemma 2.5, we obtain bnam−1bn ∈ nil(R), and so bnam−1 ∈ nil(R),am−1bn ∈ nil(R).
If we multiply Equation (2.3) on the left side by bn, then we obtain bnam−2 f m−2

m−2 (bn) =
bnam−2αm−2(bn) = bn∆m+n−2−bnamαm(bn−2)−bnam−1 f m−1

m−1 (bn−1)−bnam f m
m−1(bn−1)−

bnam−1 f m−1
m−2 (bn)− bnam f m

m−2(bn) = bn∆m+n−2 − (bnam)αm(bn−2)− (bnam−1) f m−1
m−1 (bn−1)

−(bnam) f m
m−1(bn−1)− (bnam−1) f m−1

m−2 (bn)− (bnam) f m
m−2(bn) ∈ nil(R) since nil(R) is an

ideal of R. Thus we obtain am−2bn ∈ nil(R) and bnam−2 ∈ nil(R). Continuing this procedure
yields that aibn ∈ nil(R) for all 0≤ i≤m, and so ai f t

s (bn)∈ nil(R) for any t ≥ s≥ 0 and 0≤
i ≤ m by Lemma 2.4. Thus it is easy to verify that (∑m

i=0 aixi)(∑n−1
j=0 b jx j) ∈ nil(R)[x;α,δ ].

Applying the preceding method repeatedly, we obtain aib j ∈ nil(R) for all 0 ≤ i ≤ m and
0 ≤ j ≤ n. Thus b j ∈ NR(CU ) = c · R for all 0 ≤ j ≤ n. Thus there exists r j ∈ R such
that b j = cr j. Hence g(x) = b0 + b1x + · · ·+ bnxn = c(r0 + r1x + · · ·+ rnxn) ∈ c ·R[x;α,δ ].
Therefore NR[x;α,δ (U) = c ·R[x;α,δ ] where c ∈ nil(R[x;α,δ ]).

Corollary 2.3. Let R be an (α,δ )-compatible 2-primal ring, and f (x) = ∑
m
i=0 aixi, g(x) =

∑
n
j=0 b jx j ∈ R[x;α,δ ]. Then f (x)g(x)∈ nil(R[x;α,δ ]) if and only if aib j ∈ nil(R) for all i, j.
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Proof. (⇐) Suppose aib j ∈ nil(R) for all i, j. Then ai f i
s(b j) ∈ nil(R) for all i, j and all

positive integer i≥ s≥ 0 by Lemma 2.4. Thus

∑
s+t=k

(
m

∑
i=s

ai f i
s(bt)

)
∈ nil(R),k = 0,1,2, · · ·m+n.

Hence f (x)g(x) =
m+n
∑

k=0
( ∑

s+t=k
(

m
∑
i=s

ai f i
s(bt)))xk ∈ nil(R[x;α,δ ]) by Lemma 2.6.

(⇒) By analogy with the proof of Theorem 2.1, we complete the proof.

Theorem 2.2. Let R be an α-compatible 2-primal ring. Then the following statements are
equivalent:

(1) For each subset X 6⊆ nil(R), NR(X) is generated as an ideal by a nilpotent element.
(2) For each subset U 6⊆ nil(R[x;α]), NR[x;α](U) is generated as an ideal by a nilpotent

element.

Proof. By Theorem 2.1, it suffices to show (2)⇒ (1). Let X be a subset of R with X 6⊆
nil(R). Then X 6⊆ nil(R[x;α]). So there exists f (x) = a0 + a1x + · · ·+ amxm ∈ nil(R[x;α])
such that NR[x;α](X) = f (x) ·R[x;α]. Note that f (x) = a0 +a1x + · · ·+amxm ∈ nil(R[x;α]),
we have ai ∈ nil(R) for all 0≤ i≤m by Corollary 2.2. Clearly, we may assume that a0 6= 0.
Now we show that NR(X) = a0R. Since a0 ∈ nil(R) and nil(R) is an ideal of R, we obtain
p ·a0R⊆ nil(R) for each p ∈ X . So NR(X)⊇ a0R. If m ∈ NR(X), then m ∈ NR[x;α](X). Thus
there exists h(x) = h0 +h1x+ · · ·+hqxq ∈ R[x;α] such that

m = f (x)h(x) =
m+q

∑
s=0

(
∑

i+ j=s
aiα

i(h j)

)
xs.

Thus we have m = a0h0 ∈ a0R, and so NR(X)⊆ a0R. Hence NR(X) = a0R where a0 ∈ nil(R).

For any p ∈ R, we denote by p ·R the principal right ideal of R generated by p. Then we
have the following results.

Theorem 2.3. Let R be an (α,δ )-compatible 2-primal ring. If for each principal right
ideal p ·R 6⊆ nil(R), NR(p ·R) is generated as an ideal by a nilpotent element, then for each
principal right ideal f (x) ·R[x;α,δ ] 6⊆ nil(R[x;α,δ ]), NR[x;α,δ ]( f (x) ·R[x;α,δ ]) is generated
as an ideal by a nilpotent element.

Proof. Let f (x) = a0 +a1x+ · · ·+amxm ∈ R[x;α,δ ]) with f (x) ·R[x;α,δ ] 6⊆ nil(R[x;α,δ ]).
We show that NR[x;α,δ ]( f (x) ·R[x;α,δ ]) is generated as an ideal by a nilpotent element. If
aiR⊆ nil(R) for all 0≤ i≤m, then by Corollary 2.2, it is easy to see that f (x) ·R[x;α,δ ]⊆
nil(R[x;α,δ ]), a contradiction. So there exists 0≤ i≤ m such that aiR 6⊆ nil(R). Thus there
exists c ∈ nil(R) such that NR(aiR) = c ·R. Now we show that NR[x;α,δ ]( f (x) ·R[x;α,δ ]) =
c ·R[x;α,δ ]. For any u(x) = u0 + u1x + · · ·+ utxt ∈ R[x;α,δ ] and v(x) = v0 + v1x + · · ·+
vqxq ∈ R[x;α,δ ], we have aiu jcvk ∈ nil(R) for each i, j,k, since c ∈ nil(R) and nil(R) is
an ideal of R. Thus ai f i

s(u j)cvk ∈ nil(R) for all i, j,k and s ≤ i by Lemma 2.4, and so it
is easy to see that ( f (x)u(x)) · cv(x) ∈ nil(R[x;α,δ ]) for all u(x) ∈ R[x;α,δ ] and v(x) ∈
R[x;α,δ ] by Corollary 2.3. Hence cv(x) ∈ NR[x;α,δ ]( f (x) ·R[x;α,δ ]) and so NR[x;α,δ ]( f (x) ·
R[x;α,δ ]) ⊇ c ·R[x;α,δ ]. On the other hand, assume that p(x) = p0 + p1x + · · ·+ psxs ∈
NR[x;α,δ ]( f (x) · R[x;α,δ ]). Then f (x) · R[x;α,δ ] · p(x) ⊆ nil(R[x;α,δ ]) and so f (x) · R ·
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p(x)⊆ nil(R[x;α,δ ]). Thus we obtain aiR · p j ⊆ nil(R) for all 0≤ j≤ s. So p j ∈NR(aiR) =
cR. Thus there exists r j ∈ R such that p j = cr j for all 0 ≤ j ≤ s. Hence p(x) = p0 +
p1x+ · · ·+ psxs = c(r0 +r1x+ · · ·+rsxs)∈ c ·R[x;α,δ ]. Hence NR[x;α,δ ]( f (x) ·R[x;α,δ ])⊆
c ·R[x;α,δ ]. Therefore NR[x;α,δ ]( f (x) ·R[x;α,δ ]) = c ·R[x;α,δ ].

Theorem 2.4. Let R be an α-compatible 2-primal ring. Then the following statements are
equivalent:

(1) For each principal right ideal p ·R 6⊆ nil(R), NR(p ·R) is generated as an ideal by
a nilpotent element.

(2) For each principal right ideal f (x) ·R[x;α] 6⊆ nil(R[x;α]), NR[x;α]( f (x) ·R[x;α]) is
generated as an ideal by a nilpotent element.

Proof. It follows by the same method of proof as in Theorem 2.2.
Using the same way as above, we also obtain the next two theorems:

Theorem 2.5. Let R be an (α,δ )-compatible 2-primal ring. If for each p 6∈ nil(R), NR(p) is
generated as an ideal by a nilpotent element, then for each f (x) 6∈ nil(R[x;α,δ ]), NR[x;α,δ ]( f (x))
is generated as an ideal by a nilpotent element.

Theorem 2.6. Let R be an α-compatible 2-primal ring. Then the following statements are
equivalent:

(1) For each p 6∈ nil(R), NR(p) is generated as an ideal by a nilpotent element.
(2) for each skew polynomial f (x) 6∈ nil(R[x;α]), NR[x;α]( f (x)) is generated as an ideal

by a nilpotent element.

Example 2.2. Let R be a domain and let

R3 =


 a1 a2 a3

0 a1 a2
0 0 a1

 | ai ∈ R


be the subring of 3× 3 upper triangular matrix ring. Let X be any subset of R3 with X 6⊆
nil(R3). We show that NR3(X) is generated as a ideal by a nilpotent element. Let

U =

x ∈ R |

 x y z
0 x y
0 0 x

 ∈ X

 .

If U = {0}, then X ⊆ nil(R3). This is contrary to the fact that X 6⊆ nil(R3). Thus we have
U 6= {0}. In this case, we have

NR3(X) =


 0 u v

0 0 u
0 0 0

 | u,v ∈ R

=

 0 1 0
0 0 1
0 0 0

 ·R3,

where
(0 1 0

0 0 1
0 0 0

)
∈ nil(R3) by a routine computations. Therefore NR3(X) is generated as an

ideal by a nilpotent element.

Example 2.3. Let Z be the ring of integers, and T (Z,Z) =
{(

a b
0 a

)
| a,b ∈ Z

}
the trivial

extension of Z by Z. Let p =
(a m

0 a
)
∈ T (Z,Z). If a = 0, then we have p · T (Z,Z) ⊆

nil(T (Z,Z)). So we assume that a 6= 0. By a routine computations, we obtain

NT (Z,Z)(p ·T (Z,Z)) =
{(

0 m
0 0

)
| m ∈ Z

}
=
(

0 1
0 0

)
·T (Z,Z),
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where
(

0 1
0 0

)
is a nilpotent element.

3. Nilpotent associated primes

Given a right R-module NR, the right annihilator of NR is denoted by rR(NR) = {a∈R |Na =
0}. We say that NR is prime if NR 6= 0, and rR(NR) = rR(N′R) for every nonzero submodule
N′R ⊆ NR (see [1]). Let MR be a right R-module, an ideal ℘ of R is called an associated
prime of MR if there exists a prime submodule NR ⊆ MR such that ℘ = rR(NR). The set
of associated primes of MR is denoted by Ass(MR) (see [1]). Associated primes are well-
known in commutative algebra for their important role in the primary decomposition, and
has attracted a lot of attention in recent years. In [7], Brewer and Heinzer used localization
theory to prove that, over a commutative ring R, the associated primes of the polynomial ring
R[x] (viewed as a module over itself) are all extended: that is, every ℘∈ Ass(R[x]) may be
expressed as℘=℘0[x], where℘0 =℘∩R∈Ass(R). Using results of Shock in [13] on good
polynomials, C. Faith has provided a new proof in [10] of the same result which does not
rely on localization or other tools from commutative algebra. In [1], Scott Annin showed
that Brewer and Heinzer’s result still holds in the more general setting of a polynomial
module M[x] over a skew polynomial ring R[x;α], with possibly noncommutative base R.
So the properties of associated primes over a commutative ring can be profitably generalized
to noncommutative setting as well.

Motivated by the results in [1], [7], [10], in this section, we continue the study of nilpo-
tent associated primes over Ore extension rings. We first introduce the notion of nilpotent
associated primes, which are a generalization of associated primes. We next describe all
nilpotent associated primes of the Ore extension ring R[x;α,δ ] in terms of the nilpotent
associated primes of the ring R.

Definition 3.1. Let I be a right ideal of a nonzero ring R. We say that I is a right quasi-prime
ideal if I 6⊆ nil(R) and NR(I) = NR(I′) for every right ideal I′ ⊆ I and I′ 6⊆ nil(R).

Let R be a domain and Let

Rn =




a a12 · · · a1n
0 a · · · a2n
· · · · · · · · · · · ·
0 0 · · · a

 | a,ai j ∈ R


be the subring of n×n upper triangular matrix ring. Then nil(Rn) is an ideal of Rn and

nil(Rn) =




0 x12 · · · x1n
0 0 · · · x2n
· · · · · · · · · · · ·
0 0 · · · 0

 | xi j ∈ R

 .

By a routine computations, we know that each right ideal I 6⊆ nil(Rn) is a right quasi-prime
ideal.

Definition 3.2. Let nil(R) be an ideal of a ring R. An ideal ℘ of R is called a nilpotent
associated prime of R if there exists a right quasi-prime ideal I such that ℘= NR(I). The
set of nilpotent associated primes of R is denoted by NAss(R).
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Recall that an ideal ℘ in a ring R is said to be a prime ideal if ℘ 6= R, and for a, b ∈ R,
aRb⊆℘ implies that a ∈℘ or b ∈℘. Suppose nil(R) is an ideal. Then it is easy to see that
if I is a right quasi-prime ideal, then ℘= NR(I) is a prime ideal of R.

Example 3.1. We now provide the following examples:

(a) Let

Rn =




a a12 · · · a1n
0 a · · · a2n
· · · · · · · · · · · ·
0 0 · · · a

 | a,ai j ∈ R


be the subring of n× n upper triangular matrix ring. Then it is easy to see that
NAss(Rn) = {nil(Rn)}.

(b) Let k be any field, and consider the ring R =
(

k 0
k k

)
of 2×2 lower triangular matrices

over k. One easily checks that
(

k 0
k k

)
)
(

k 0
k 0

)
)
(

k 0
0 0

)
)
(

0 0
0 0

)
is a composition series

for RR. In particular, RR has finite length.

Next we shall determine the set Ass(R). By an easy ad hoc calculation, we can write
down all of the proper nonzero ideals of R :{

m1 =
(

0 0
k k

)
, m2 =

(
k 0
k 0

)
,α =

(
0 0
k 0

)}
.

Now since α2 = 0, 0 is not a prime ideal. Moreover, since m1Rm2 ⊆ α , α is not a prime
ideal. So the only candidates for the associated primes of R are the maximal ideals m1 and
m2.

We claim that m2 6∈ Ass(R). Otherwise, there would exists a right ideal I ) 0 of R with
m2 = rR(I). So I ·m2 = 0. Now, given

(
a 0
b c

)
∈ I, we have 0 =

(
a 0
b c

)
·
(

1 0
0 0

)
=
(

a 0
b 0

)
, so

a = b = 0. Also, 0 =
(

0 0
0 c

)
·
(

0 0
1 0

)
=
(

0 0
c 0

)
implies that c = 0. Thus I = 0, a contradiction.

Hence m2 6∈ Ass(R).
By virtue of RR being noetherian, we know that Ass(R) 6= 0. Hence Ass(R) = {m1}.
Finally, we should determine the set of NAss(R). Clearly, nil(R) = α . Thus nil(R)

is an ideal. Now we show that m1 = NR(m2) and m2 is a right quasi-prime ideal. Clearly,
m1 ⊆NR(m2) since m2m1 = 0. Given

(
a 0
b c

)
∈NR(m2), we have

(
1 0
0 0

)(
a 0
b c

)
=
(

a 0
0 0

)
∈ nil(R).

Then a = 0 and so
(

a 0
b c

)
∈ m1. Hence m1 = NR(m2). Next we see that m2 is a right quasi-

prime ideal. Let n 6⊆ nil(R) and n⊆m2. Since NR(n)⊇NR(m2) is clear, we now assume that(
a 0
b c

)
∈ NR(n), and find

(
h 0
k 0

)
∈ n with h 6= 0. Then we have

(
h 0
k 0

)(
a 0
b c

)
=
(

ha 0
ka 0

)
∈ nil(R).

Thus a = 0 and so
(

a 0
b c

)
∈ NR(m2). Hence we obtain NR(n) = NR(m2) and so m2 is a

right quasi-prime ideal. Thus we obtain m1 ∈ NAss(R). Similarly, we have m2 ∈ NAss(R).
Therefore NAss(R) = {m1,m2} 6= Ass(R).

If R is reduced, then℘ is a nilpotent associated prime of R if and only if℘ is an associated
prime of R. So NAss(R) = Ass(R) in case R is reduced.

Given a polynomial f (x) ∈ R[x]. If the polynomial f (x) has the property that each
nonzero coefficient has the same right annihilator in R, then we say that such a polynomial is
a good polynomial. Shock showed in [13] that, given any nonzero polynomial f (x) ∈ R[x],
one can find r ∈ R such that f (x)r is good. In order to prove the main result of this section,
we will need a generalized version of Shock’s result which applies in our skew polynomial
setting.
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Let m(x) = m0 + m1x + · · ·+ mkxk + · · ·+ mnxn 6∈ nil(R)[x;α,δ ]. If mk 6∈ nil(R), and
mi ∈ nil(R) for all i > k, then we say that the nilpotent degree of m(x) is k. To simplify
notations, we write Ndeg(m(x)) for the nilpotent degree of m(x). If m(x) ∈ nil(R)[x;α,δ ],
then we define Ndeg(m(x)) =−1.

Definition 3.3. Let m(x) = m0 + m1x + · · ·+ mkxk + · · ·+ mnxn 6∈ nil(R)[x;α,δ ] and the
nilpotent degree of m(x) be k. If NR(mk) ⊆ NR(mi) for all i ≤ k, then we say that m(x) is a
nilpotent good polynomial.

Lemma 3.1. Let R be an (α,δ )-compatible 2-primal ring. For any m(x) = m0 + m1x +
· · ·+ mkxk + · · ·+ mnxn 6∈ nil(R)[x;α,δ ], there exists r ∈ R such that m(x)r is a nilpotent
good polynomial.

Proof. Assume the result is false, and let m(x) = m0 + m1x + · · ·+ mkxk + · · ·+ mnxn 6∈
nil(R)[x;α,δ ] be a counterexample of minimal nilpotent degree Ndeg(m(x)) = k ≥ 1. In
particular, m(x) is not a nilpotent good polynomial. Hence there exists i < k such that
NR(mk) 6⊆ NR(mi). So we can find b ∈ R with mib 6∈ nil(R), and mkb ∈ nil(R). Note that the

degree k coefficient of m(x)b is mkαk(b)+
n
∑

i=k+1
mi f i

k(b) and mkαk(b) ∈ nil(R) due to the

(α,δ )-compatibility of R. On the other hand, we have Ndeg(m(x)) = k, so mi ∈ nil(R) for
all i > k. Since nil(R) of a 2-primal ring is an ideal, mi f i

k(b) ∈ nil(R) for all i > k. Hence it
is easy to see that m(x)b has nilpotent degree at most k−1. Since mib 6∈ nil(R), by Corollary
2.3, we have m(x)b 6∈ nil(R)[x;α,δ ]. By the minimality of k, we know that there exists c∈ R
with m(x)bc nilpotent good. But this contradicts the fact that m(x) is a counterexample to
the statement.

Theorem 3.1. Let R be an (α,δ )-compatible 2-primal ring. Then

NAss(R[x;α,δ ]) = {℘[x;α,δ ] |℘∈ NAss(R)}.

Proof. We first prove ⊇. Let ℘∈ NAss(R). By definition, there exists a right ideal I 6⊆
nil(R) with I a right quasi-prime ideal of R and ℘= NR(I). It suffices to prove

(3.1) ℘[x;α,δ ] = NR[x;α,δ ](I[x;α,δ ])

and

(3.2) I[x;α,δ ] is quasi-prime.

For Equation (3.1), let f (x) = a0 + a1x + · · ·+ alxl ∈℘[x;α,δ ], and let i(x) = i0 + i1x +
· · ·+ imxm ∈ I[x;α,δ ]. Since ika j ∈ nil(R) for each k, j, applying Corollary 2.3 yields that
i(x) f (x) ∈ nil(R[x;α,δ ]). Hence ℘[x;α,δ ]⊆ NR[x;α,δ ](I[x;α,δ ]).

Conversely, if f (x)= a0 +a1x+· · ·+alxl ∈NR[x;α,δ ](I[x;α,δ ]), then i(x) f (x)∈ nil(R[x;α,δ ])
for all i(x) = i0 + i1x + · · ·+ imxm ∈ I[x;α,δ ]. Using Corollary 2.3 again, we obtain that
ika j ∈ nil(R) for each k, j. Thus for all 0≤ j ≤ l, a j ∈ NR(I) =℘, and so f (x) ∈℘[x;α,δ ].
Hence NR[x;α,δ ](I[x;α,δ ])⊆℘[x;α,δ ]. Therefore ℘[x;α,δ ] = NR[x;α,δ ](I[x;α,δ ]).

Note that the right ideal I is a right quasi-prime ideal. Then we have I 6⊆ nil(R). Thus

I[x;α,δ ] 6⊆ nil(R)[x;α,δ ] = nil(R[x;α,δ ]).

To see (3.2), we must show that if a right ideal f 6⊆ nil(R[x;α,δ ]) and f⊆ I[x;α,δ ], then

NR[x;α,δ ](f) = NR[x;α,δ ](I[x;α,δ ]).
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To this end, let D be a subset of R consisting of all coefficients of elements of f. Then let
℘0 denote the right ideal of R generated by D. Since f 6⊆ nil(R[x;α,δ ]) = nil(R)[x;α,δ ],
D 6⊆ nil(R), and hence ℘0 ⊆ I, ℘0 6⊆ nil(R). So we have NR(℘0) = NR(I) =℘ because I is
a right quasi-prime ideal. Since NR[x;α,δ ](f)⊇ NR[x;α,δ ](I[x;α,δ ]) is clear, we now assume
that

h(x) = h0 +h1x+ · · ·+huxu ∈ NR[x;α,δ ](f),
and

s(x) = s0 + s1x+ · · ·+ svxv ∈ f.

Then we have s(x)h(x) ∈ nil(R[x;α,δ ]). By Corollary 2.3, we obtain
sih j ∈ nil(R) for all 0≤ i≤ v, 0≤ j ≤ u.

Since nil(R) of a 2-primal ring is an ideal, sih j ∈ nil(R) implies h jsi ∈ nil(R) and so
siRh jsiRh j = (siRh j)2 ∈ nil(R). Hence siRh j ∈ nil(R). Thus we obtain

h j ∈ NR(℘0) = NR(I) =℘ for all 0≤ j ≤ u.
Let i(x) = i0 + i1x+ · · ·+ ipxp ∈ I[x;α,δ ], we have imh j ∈ nil(R) for all 0≤m≤ p, 0≤ j≤ u.
Then i(x)h(x) ∈ nil(R[x;α,δ ]) by Corollary 2.3. Hence NR[x;α,δ ](f) ⊆ NR[x;α,δ ](I[x;α,δ ])
is proved, and so is ⊇ in Theorem 3.1.

Now we turn our attention to proving ⊆ in Theorem 3.1. Let I ∈ NAss(R[x;α,δ ]). By
definition, we have a right quasi-prime ideal £ of R[x;α,δ ] with I = NR[x;α,δ ](£). Pick any

m(x) = m0 +m1x+ · · ·+mkxk + · · ·+mnxn 6∈ nil(R)[x;α,δ ]
in £. By £ 6⊆ nil(R[x;α,δ ]) and Lemma 3.1, we may assume that m(x) is nilpotent good,
and Ndeg(m(x)) = k. Set £0 = m(x) ·R[x;α,δ ]. Note that m(x) 6∈ nil(R)[x;α,δ ]), so we get

£0 = m(x)R[x;α,δ ] 6⊆ nil(R)[x;α,δ ] = nil(R[x;α,δ ]).

Then we have

NR[x;α,δ ](£) = NR[x;α,δ ](£0) = NR[x;α,δ ](m(x) ·R[x;α,δ ]) = I

because £ is quasi-prime. Consider the right ideal mkR, and assume that U = NR(mkR). We
wish to claim that I = U [x;α,δ ]. Let

g(x) = b0 +b1x+ · · ·+blxl ∈U [x;α,δ ].

Then
mkRb j ∈ nil(R) for all 0≤ j ≤ l.

Since m(x) is nilpotent good, and Ndeg(m(x)) = k, miRb j ∈ nil(R) for all 0 ≤ i ≤ k, and
0≤ j ≤ l. On the other hand, for all i > k, mi ∈ nil(R). Thus we have miRb j ∈ nil(R) for all
0≤ i≤ n, 0≤ j ≤ l. Choose any

h(x) = h0 +h1x+ · · ·+hpxp ∈ R[x;α,δ ].

From mihdb j ∈ nil(R) for all 0 ≤ i ≤ n, 0 ≤ d ≤ p and 0 ≤ j ≤ l and (α,δ )-compatibility
of R, we obtain m(x)h(x)g(x) ∈ nil(R[x;α,δ ]) by a routine computations. Hence g(x) ∈
NR[x;α,δ ](m(x)R[x;α,δ ]) = I, and so U [x;α,δ ]⊆ I. Conversely, let g(x) = b0 +b1x + · · ·+
blxl ∈ I. Then

m(x)Rg(x) ∈ nil(R[x;α,δ ]).
By Corollary 2.3, we get miRb j ∈ nil(R) for all 0≤ i≤ n, and 0≤ j≤ l. Thus b j ∈NR(mkR)
for all 0≤ j ≤ l, and so g(x) ∈U [x;α,δ ]. Hence I ⊆U [x;α,δ ]. Therefore I = U [x;α,δ ].
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We are now to check that mkR is quasi-prime. Since mk 6∈ nil(R), mkR 6⊆ nil(R). Assume
that a right ideal Q⊆mkR, and Q 6⊆ nil(R). Then NR(Q)⊇ NR(mkR) is clear. Now we show
that

NR(Q)⊆ NR(mkR).
Set W = {m(x)r | r ∈Q}, and let WR[x;α,δ ] be the right ideal of R[x;α,δ ] generated by W .
It is obvious that WR[x;α,δ ]⊆m(x)R[x;α,δ ]. Since Q 6⊆ nil(R), there exists a∈R such that
mka∈Q and mka 6∈ nil(R). If mk ·mka∈ nil(R), then we have mka∈ nil(R). This contradicts
to the fact that mka 6∈ nil(R). Thus mk ·mka 6∈ nil(R) and so m(x) ·mka 6⊆ nil(R[x;α,δ ]) by
Corollary 2.3, and this implies that WR[x;α,δ ] 6⊆ nil(R[x;α,δ ]). Since £ is quasi-prime, we
obtain

NR[x;α,δ ](WR[x;α,δ ]) = NR[x;α,δ ](m(x)R[x;α,δ ]) = I.
Suppose q ∈ NR(Q). Then rq ∈ nil(R) for each r ∈ Q. For any m(x)r f (x) ∈WR[x;α,δ ]
where f (x) = a0 +a1x+ · · ·+alxl ∈ R[x;α,δ ]. The typical term of m(x)r f (x) is mixira jx j.
From rq ∈ nil(R) and nil(R) of a 2-primal ring is an ideal, we have

rq ∈ nil(R)⇒ qr ∈ nil(R)⇒ ra jqra jq ∈ nil(R)⇒ ra jq ∈ nil(R)⇒ mira jq ∈ nil(R).

Thus mixira jx jq ∈ nil(R)[x;α,δ ] due to the (α,δ )−compatibility of R, and so

m(x)r f (x)q ∈ nil(R)[x;α,δ ] = nil(R[x;α,δ ]).

Thus for any
∑m(x)ri fi(x) ∈WR[x;α,δ ],

it is easy to see that (
∑m(x)ri fi(x)

)
q ∈ nil(R[x;α,δ ]).

Hence q ∈ NR[x;α,δ ](WR[x;α,δ ]) = I = U [x;α,δ ], and so q ∈U = NR(mkR). So NR(Q) ⊆
NR(mkR), and this implies that NR(Q) = NR(mkR). Thus mkR is quasi-prime.

Assembling the above results, we finish the proof of Theorem 3.1.

Corollary 3.1. Let R be a 2-primal ring. Then NAss(R[x]) = {℘[x] |℘∈ NAss(R)}.

Proof. Take α = id and δ = 0 in Theorem 3.1.
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