Weak Annihilator over Extension Rings

${ }^{1}$ Lunqun Ouyang and ${ }^{2}$ Gary F. Birkenmeier
${ }^{1}$ Department of Mathematics, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
${ }^{2}$ Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010 USA
${ }^{1}$ ouyanglqtxy@163.com, ${ }^{2}$ gfb $1127 @$ louisiana.edu

Abstract

Let R be a ring and $\operatorname{nil}(R)$ the set of all nilpotent elements of R. For a subset X of a ring R, we define $N_{R}(X)=\{a \in R \mid x a \in \operatorname{nil}(R)$ for all $x \in X\}$, which is called the weak annihilator of X in R. In this paper we mainly investigate the properties of the weak annihilator over extension rings.

2010 Mathematics Subject Classification: Primary: 13B25; Secondary: 16N60
Keywords and phrases: Weak annihilator, nilpotent associated prime, nilpotent good polynomial.

1. Introduction

Throughout this paper R denotes an associative ring with unity, $\alpha: R \longrightarrow R$ is an endomorphism, and δ an α-derivation of R, that is, δ is an additive map such that $\delta(a b)=$ $\delta(a) b+\alpha(a) \delta(b)$, for $a, b \in R$. We denote by $R[x ; \alpha, \delta]$ the Ore extension whose elements are the polynomials over R, the addition is defined as usual and the multiplication subject to the relation $x a=\alpha(a) x+\delta(a)$ for any $a \in R$. We use $P(R)$ and nil (R) to represent the prime radical and the set of all nilpotent elements of R respectively. Due to Birkenmeier et al. [3], a ring R is called 2-primal if $P(R)=\operatorname{nil}(R)$. Every reduced ring (i.e. $\operatorname{nil}(R)=0$) is obviously a 2-primal ring. Other examples and properties of 2-primal rings can be founded in [4, 5, 6]. Let α be an endomorphism and δ an α-derivation of a ring R. Following E. Hashemi and A. Moussavi [11], a ring R is said to be α-compatible if for each $a, b \in R, a b=0 \Leftrightarrow a \alpha(b)=0$. Moreover, R is called to be δ-compatible if for each $a, b \in R, a b=0 \Rightarrow a \delta(b)=0$. If R is both α-compatible and δ-compatible, then R is said to be (α, δ)-compatible.

For a subset X of a ring $R, r_{R}(X)=\{a \in R \mid X a=0\}$ and $l_{R}(X)=\{a \in R \mid a X=0\}$ will stand for the right and left annihilator of X in R, respectively. Properties of the right (left) annihilator of a subset in a ring R are studied by many authors (see [2, 8, 9, 14, 15]). As a generalization of the right (left) annihilator, in this paper we introduce the notion of a weak

[^0]annihilator of a subset in a ring, and investigate the weak annihilator properties over the Ore extension ring $R[x ; \alpha, \delta]$.

In this paper all subsets are nonempty. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \alpha, \delta]$. We say that $f(x) \in \operatorname{nil}(R)[x ; \alpha, \delta]$ if and only if $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$. Let I be a subset of $R, I[x ; \alpha, \delta]$ means $\left\{u_{0}+u_{1} x+\cdots+u_{n} x^{n} \in R[x ; \alpha, \delta] \mid u_{i} \in I\right\}$, that is, for any skew polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \alpha, \delta], f(x) \in I[x ; \alpha, \delta]$ if and only if $a_{i} \in I$ for all $0 \leq i \leq n$. If $f(x) \in R[x ; \alpha, \delta]$ is a nilpotent element of $R[x ; \alpha, \delta]$, then we say that $f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$. For $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \alpha, \delta]$, we denote by $\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$ or C_{f} the set comprised of the coefficients of $f(x)$, and for a subset $U \subseteq R[x ; \alpha, \delta], C_{U}=\bigcup_{f \in U} C_{f}$.

2. Weak annihilator

Definition 2.1. Let R be a ring. For a subset X of a ring R, we define $N_{R}(X)=\{a \in R \mid$ $x a \in \operatorname{nil}(R)$ for all $x \in X\}$, which is called the weak annihilator of X in R. If X is singleton, say $X=\{r\}$, we use $N_{R}(r)$ in place of $N_{R}(\{r\})$.

Obviously, for any subset X of a ring $R, N_{R}(X)=\{a \in R \mid x a \in \operatorname{nil}(R)$ for all $x \in X\}=$ $\{b \in R \mid b x \in \operatorname{nil}(R)$ for all $x \in X\}$, and $r_{R}(X) \subseteq N_{R}(X)$ and $l_{R}(X) \subseteq N_{R}(X)$. If R is reduced, then $r_{R}(X)=N_{R}(X)=l_{R}(X)$ for any subset X of R. It is easy to see that for any subset $X \subseteq R, N_{R}(X)$ is an ideal of R in case $\operatorname{nil}(R)$ is an ideal.

Example 2.1. Let Z be the ring of integers and $T_{2}(Z)$ the 2×2 upper triangular matrix ring over Z. We consider the subset $X=\left\{\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\right\}$. Clearly, $r_{T_{2}(Z)}(X)=0$, and $N_{T_{2}(Z)}(X)=$ $\left\{\left(\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right), \mid m \in Z\right\}$. Thus $r_{T_{2}(Z)}(X) \neq N_{T_{2}(Z)}(X)$. Hence a weak annihilator is not a trivial generalization of a annihilator.

Proposition 2.1. Let X, Y be subsets of R. Then we have the following:
(1) $X \subseteq Y$ implies $N_{R}(X) \supseteq N_{R}(Y)$.
(2) $X \subseteq N_{R}\left(N_{R}(X)\right)$.
(3) $N_{R}(X)=N_{R}\left(N_{R}\left(N_{R}(X)\right)\right)$.

Proof. (1) and (2) are really easy.
(3) Applying (2) to $N_{R}(X)$, we obtain $N_{R}(X) \subseteq N_{R}\left(N_{R}\left(N_{R}(X)\right)\right)$. Since $X \subseteq N_{R}\left(N_{R}(X)\right)$, we have $N_{R}(X) \supseteq N_{R}\left(N_{R}\left(N_{R}(X)\right)\right)$ by (1). Therefore we have $N_{R}(X)=N_{R}\left(N_{R}\left(N_{R}(X)\right)\right)$.

Let δ be an α-derivation of R. For integers i, j with $0 \leq i \leq j, f_{i}^{j} \in \operatorname{End}(R,+)$ will denote the map which is the sum of all possible words in α, δ built with i letters α and $j-i$ letters δ. For instance, $f_{0}^{0}=1, f_{j}^{j}=\alpha^{j}, f_{0}^{j}=\delta^{j}$ and $f_{j-1}^{j}=\alpha^{j-1} \delta+\alpha^{j-2} \delta \alpha+\cdots+\delta \alpha^{j-1}$. The next Lemma appears in [12. Lemma 4.1].

Lemma 2.1. For any positive integer n and $r \in R$, we have $x^{n} r=\sum_{i=0}^{n} f_{i}^{n}(r) x^{i}$ in the ring $R[x ; \alpha, \delta]$.

For the proof of the next lemma, see [11].
Lemma 2.2. Let R be an (α, δ)-compatible ring. Then we have the following:
(1) If $a b=0$, then $a \alpha^{n}(b)=\alpha^{n}(a) b=0$ for all positive integers n.
(2) If $\alpha^{k}(a) b=0$ for some positive integer k, then $a b=0$.
(3) If $a b=0$, then $\alpha^{n}(a) \delta^{m}(b)=0=\delta^{m}(a) \alpha^{n}(b)$ for all positive integers m, n.

Lemma 2.3. Let δ be an α-derivation of R. If R is (α, δ)-compatible, then abc $=0$ implies $a b f_{i}^{j}(c)=0$ and $a f_{i}^{j}(b) c=0$ for all $0 \leq i \leq j$ and $a, b, c \in R$.
Proof. Let $a b c=0$ for $a, b, c \in R$. Then $a b \alpha(c)=a b \delta(c)=0$ since R is (α, δ)-compatible. Thus $a b f_{i}^{j}(c)=0$ is clear. To see $a f_{i}^{j}(b) c=0$, it suffices to show that if $a b c=0$, then $a \alpha(b) c=0$ and $a \boldsymbol{\delta}(b) c=0$. Take $a, b, c \in R$ such that $a b c=0$. Then because R is (α, δ) compatible,

$$
a b c=0 \Rightarrow a \alpha(b c)=a \alpha(b) \alpha(c)=0 \Rightarrow a \alpha(b) c=0
$$

and

$$
a \alpha(b) c=0 \Rightarrow a \alpha(b) \delta(c)=0
$$

Moreover,

$$
a b c=0 \Rightarrow a \boldsymbol{\delta}(b c)=a \boldsymbol{\alpha}(b) \boldsymbol{\delta}(c)+a \boldsymbol{\delta}(b) c=0 \Rightarrow a \boldsymbol{\delta}(b) c=0 .
$$

Therefore we obtain $a f_{i}^{j}(b) c=0$.
Corollary 2.1. Let R be an (α, δ)-compatible ring. Then $a_{1} a_{2} \cdots a_{n}=0$ implies

$$
f_{s_{1}}^{t_{1}}\left(a_{1}\right) f_{s_{2}}^{t_{2}}\left(a_{2}\right) \cdots f_{s_{n}}^{t_{n}}\left(a_{n}\right)=0
$$

for all $t_{i} \geq s_{i} \geq 0$ and $a_{i} \in R, i=1,2, \cdots, n$.
Proof. It follows from Lemma 2.3.
Lemma 2.4. Let δ be an α-derivation of R. If R is (α, δ)-compatible, then $a b \in \operatorname{nil}(R)$ implies $a f_{i}^{j}(b) \in \operatorname{nil}(R)$ for all $j \geq i \geq 0$ and $a, b \in R$.
Proof. Since $a b \in \operatorname{nil}(R)$, there exists some positive integer k such that $(a b)^{k}=a b a b \cdots a b=$ 0 . Then by Corollary 2.1, it is easy to see that $a f_{i}^{j}(b) \in \operatorname{nil}(R)$.
Lemma 2.5. Let R be an (α, δ)-compatible ring. If $a \alpha^{m}(b) \in \operatorname{nil}(R)$ for $a, b \in R$, and m is a positive integer, then $a b \in \operatorname{nil}(R)$.
Proof. Since $a \alpha^{m}(b) \in \operatorname{nil}(R)$, there exists some positive integer n such that $\left(a \alpha^{m}(b)\right)^{n}=0$. In the following computations, we use freely the condition that R is (α, δ)-compatible:

$$
\begin{aligned}
& \left(a \alpha^{m}(b)\right)^{n}=\underbrace{a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b)}_{n}=0 \\
\Rightarrow & a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b) a b=0 \\
\Rightarrow & a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b) \alpha^{m}(a b)=0 \\
\Rightarrow & a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b) a \alpha^{m}(b a b)=0 \\
\Rightarrow & a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b) a b a b=0 \\
\Rightarrow & \cdots \Rightarrow a b \in \operatorname{nil}(R) .
\end{aligned}
$$

Lemma 2.6. Let R be an (α, δ)-compatible 2-primal ring and $f(x)=a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n} \in R[x ; \alpha, \delta]$. Then $f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$ if and only if $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$.

Proof. (\Longrightarrow) Suppose $f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$. There exists some positive integer k such that $f(x)^{k}=\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)^{k}=0$. Then

$$
0=f(x)^{k}=\text { "lower terms" }+a_{n} \alpha^{n}\left(a_{n}\right) \alpha^{2 n}\left(a_{n}\right) \cdots \alpha^{(k-1) n}\left(a_{n}\right) x^{n k}
$$

Hence $a_{n} \alpha^{n}\left(a_{n}\right) \alpha^{2 n}\left(a_{n}\right) \cdots \alpha^{(k-1) n}\left(a_{n}\right)=0$, and α-compatibility of R gives $a_{n} \in \operatorname{nil}(R)$. So by Lemma 2.4, $a_{n}=1 \cdot a_{n} \in \operatorname{nil}(R)$ implies $1 \cdot f_{i}^{j}\left(a_{n}\right)=f_{i}^{j}\left(a_{n}\right) \in \operatorname{nil}(R)$ for all $0 \leq i \leq j$. Let $Q=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$. Then we have

$$
\begin{aligned}
0 & =\left(Q+a_{n} x^{n}\right)^{k} \\
& =\left(Q+a_{n} x^{n}\right)\left(Q+a_{n} x^{n}\right) \cdots\left(Q+a_{n} x^{n}\right) \\
& =\left(Q^{2}+Q \cdot a_{n} x^{n}+a_{n} x^{n} \cdot Q+a_{n} x^{n} \cdot a_{n} x^{n}\right)\left(Q+a_{n} x^{n}\right) \cdots\left(Q+a_{n} x^{n}\right) \\
& =\cdots=Q^{k}+\Delta,
\end{aligned}
$$

where $\Delta \in R[x ; \alpha, \delta]$. Note that the coefficients of Δ can be written as sums of monomials in a_{i} and $f_{u}^{v}\left(a_{j}\right)$ where $a_{i}, a_{j} \in\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$ and $v \geq u \geq 0$ are positive integers, and each monomial has a_{n} or $f_{s}^{t}\left(a_{n}\right)$. Since $\operatorname{nil}(R)$ of a 2-primal ring R is an ideal, we obtain that each monomial is in $\operatorname{nil}(R)$, and so $\Delta \in \operatorname{nil}(R)[x ; \alpha, \delta]$. Thus we obtain

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}\right)^{k} \\
= & \text { "lowerterms" }+a_{n-1} \alpha^{n-1}\left(a_{n-1}\right) \cdots \alpha^{(n-1)(k-1)}\left(a_{n-1}\right) x^{(n-1) k} \in \operatorname{nil}(R)[x ; \alpha, \delta]
\end{aligned}
$$

since $\operatorname{nil}(R)$ is an ideal of R. Hence

$$
a_{n-1} \alpha^{n-1}\left(a_{n-1}\right) \cdots \alpha^{(k-1)(n-1)}\left(a_{n-1}\right) \in \operatorname{nil}(R)
$$

and so $a_{n-1} \in \operatorname{nil}(R)$ by Lemma 2.5. Using induction on n we obtain $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$.
(\Longleftarrow) Consider the finite subset $S=\left\{a_{0}, a_{1}, \cdots, a_{n}\right\} \subseteq \operatorname{nil}(R)$. Since R is a 2-primal ring, there exists an integer k such that any product of k elements $a_{i 1} a_{i 2} \cdots a_{i k}$ from $\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$ is zero. Then by Corollary 2.1, we obtain

$$
a_{i 1} f_{s_{i 2}}^{t_{i 2}}\left(a_{i 2}\right) f_{s_{i 3}}^{t_{i 3}}\left(a_{i 3}\right) \cdots f_{s_{i k}}^{t_{i k}}\left(a_{i k}\right)=0
$$

Now we claim that

$$
f(x)^{k}=\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)^{k}=0
$$

From

$$
\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{2}=\sum_{k=0}^{2 n}\left(\sum_{s+t=k}\left(\sum_{i=s}^{n} a_{i} f_{s}^{i}\left(a_{t}\right)\right)\right) x^{k},
$$

it is easy to check that the coefficients of $\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{k}$ can be written as sums of monomials of length k in a_{i} and $f_{u}^{v}\left(a_{j}\right)$, where $a_{i}, a_{j} \in\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$ and $v \geq u \geq 0$ are positive integers. Since each monomial $a_{i 1} f_{s_{i 2}}^{t_{i 2}}\left(a_{i 2}\right) \cdots f_{s i k}^{t_{i k}}\left(a_{i k}\right)=0$, where $a_{i 1}, a_{i 2}, \cdots, a_{i k} \in\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$ and $s_{i p}, t_{i p}$ are nonnegative integers for all $2 \leq p \leq k$. We obtain $f(x)^{k}=0$. Hence $f(x)$ is a nilpotent element of $R[x ; \alpha, \delta]$.
Corollary 2.2. Let R be an (α, δ)-compatible 2-primal. Then we have the following:
(1) $\operatorname{nil}(R[x ; \alpha, \delta])$ is an ideal.
(2) $\operatorname{nil}(R[x ; \alpha, \delta])=\operatorname{nil}(R)[x ; \alpha, \delta]$.

In particular, if R is an α-compatible ring, then $\operatorname{nil}(R[x ; \alpha])$ is an ideal and $\operatorname{nil}(R[x ; \alpha])=$ $\operatorname{nil}(R)[x ; \boldsymbol{\alpha}]$.

Theorem 2.1. Let R be an (α, δ)-compatible 2-primal ring. If for each subset $X \nsubseteq$ $\operatorname{nil}(R), N_{R}(X)$ is generated as an ideal by a nilpotent element, then for each subset $U \nsubseteq$ $\operatorname{nil}(R[x ; \alpha, \delta]), N_{R[x ; \alpha, \delta]}(U)$ is generated as an ideal by a nilpotent element.

Proof. Let U be a subset of $R[x ; \alpha, \delta]$ with $U \nsubseteq \operatorname{nil}(R[x ; \alpha, \delta])$. Then by Corollary 2.2, we have $C_{U} \nsubseteq \operatorname{nil}(R)$. So there exists $c \in \operatorname{nil}(R)$ such that $N_{R}\left(C_{U}\right)=c \cdot R$. Now we show that $N_{R[x ; \alpha, \delta]}(U)=c \cdot R[x ; \alpha, \delta]$. For any $d(x)=d_{0}+d_{1} x+\cdots+d_{u} x^{u} \in U$ and $h(x)=h_{0}+h_{1} x+$ $\cdots+h_{\nu} x^{\nu} \in R[x ; \alpha, \delta]$, we have

$$
d(x) \cdot \operatorname{ch}(x)=\sum_{k=0}^{u+v}\left(\sum_{s+t=k}\left(\sum_{i=s}^{u} d_{i} f_{s}^{i}\left(c h_{t}\right)\right)\right) x^{k} .
$$

Since $c \in \operatorname{nil}(R)$ and $\operatorname{nil}(R)$ of a 2-primal ring is an ideal, we obtain $d_{i} c h_{t} \in \operatorname{nil}(R)$, and so $d_{i} f_{s}^{i}\left(c h_{t}\right) \in \operatorname{nil}(R)$ by Lemma 2.4. Hence $\sum_{s+t=k}\left(\sum_{i=s}^{u} d_{i} f_{s}^{i}\left(c h_{t}\right)\right) \in \operatorname{nil}(R)$, and so $d(x)$. $\operatorname{ch}(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$ by Lemma 2.6, and so $N_{R[x ; \alpha, \delta]}(U) \supseteq c \cdot R[x ; \alpha, \delta]$. Let $g(x)=b_{0}+$ $b_{1} x+\cdots+b_{n} x^{n} \in N_{R[x ; \alpha, \delta]}(U)$, then $f(x) g(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$ for any $f(x)=a_{0}+a_{1} x+$ $\cdots+a_{m} x^{m} \in U$. Then

$$
f(x) g(x)=\sum_{k=0}^{m+n}\left(\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)\right) x^{k}=\sum_{k=0}^{m+n} \Delta_{k} x^{k} \in \operatorname{nil}(R[x ; \alpha, \delta]) .
$$

Then we have the following equations by Lemma 2.6:

$$
\begin{align*}
\Delta_{m+n}= & a_{m} \alpha^{m}\left(b_{n}\right) \tag{2.1}\\
\Delta_{m+n-1}= & a_{m} \alpha^{m}\left(b_{n-1}\right)+a_{m-1} \alpha^{m-1}\left(b_{n}\right)+a_{m} f_{m-1}^{m}\left(b_{n}\right), \tag{2.2}\\
\Delta_{m+n-2}= & a_{m} \alpha^{m}\left(b_{n-2}\right)+\sum_{i=m-1}^{m} a_{i} f_{m-1}^{i}\left(b_{n-1}\right)+\sum_{i=m-2}^{m} a_{i} f_{m-2}^{i}\left(b_{n}\right), \tag{2.3}\\
& \vdots \\
\Delta_{k}= & \sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)
\end{align*}
$$

with $\Delta_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m+n$. From Lemma 2.5 and Equation (2.1), we obtain $a_{m} b_{n} \in \operatorname{nil}(R)$, and so $b_{n} a_{m} \in \operatorname{nil}(R)$. Now we show that $a_{i} b_{n} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$. If we multiply Equation (2.2) on the left side by b_{n}, then $b_{n} a_{m-1} \alpha^{m-1}\left(b_{n}\right)=b_{n} \Delta_{m+n-1}-$ $\left(b_{n} a_{m} \alpha^{m}\left(b_{n-1}\right)+b_{n} a_{m} f_{m-1}^{m}\left(b_{n}\right)\right) \in \operatorname{nil}(R)$ since the $\operatorname{nil}(R)$ of a 2-primal ring is an ideal. Thus by Lemma 2.5, we obtain $b_{n} a_{m-1} b_{n} \in \operatorname{nil}(R)$, and so $b_{n} a_{m-1} \in \operatorname{nil}(R), a_{m-1} b_{n} \in \operatorname{nil}(R)$. If we multiply Equation (2.3) on the left side by b_{n}, then we obtain $b_{n} a_{m-2} f_{m-2}^{m-2}\left(b_{n}\right)=$ $b_{n} a_{m-2} \alpha^{m-2}\left(b_{n}\right)=b_{n} \Delta_{m+n-2}-b_{n} a_{m} \alpha^{m}\left(b_{n-2}\right)-b_{n} a_{m-1} f_{m-1}^{m-1}\left(b_{n-1}\right)-b_{n} a_{m} f_{m-1}^{m}\left(b_{n-1}\right)-$ $b_{n} a_{m-1} f_{m-2}^{m-1}\left(b_{n}\right)-b_{n} a_{m} f_{m-2}^{m}\left(b_{n}\right)=b_{n} \Delta_{m+n-2}-\left(b_{n} a_{m}\right) \alpha^{m}\left(b_{n-2}\right)-\left(b_{n} a_{m-1}\right) f_{m-1}^{m-1}\left(b_{n-1}\right)$ $-\left(b_{n} a_{m}\right) f_{m-1}^{m}\left(b_{n-1}\right)-\left(b_{n} a_{m-1}\right) f_{m-2}^{m-1}\left(b_{n}\right)-\left(b_{n} a_{m}\right) f_{m-2}^{m}\left(b_{n}\right) \in \operatorname{nil}(R)$ since $\operatorname{nil}(R)$ is an ideal of R. Thus we obtain $a_{m-2} b_{n} \in \operatorname{nil}(R)$ and $b_{n} a_{m-2} \in \operatorname{nil}(R)$. Continuing this procedure yields that $a_{i} b_{n} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$, and so $a_{i} f_{s}^{t}\left(b_{n}\right) \in \operatorname{nil}(R)$ for any $t \geq s \geq 0$ and $0 \leq$ $i \leq m$ by Lemma 2.4. Thus it is easy to verify that $\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n-1} b_{j} x^{j}\right) \in \operatorname{nil}(R)[x ; \alpha, \delta]$. Applying the preceding method repeatedly, we obtain $a_{i} b_{j} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$. Thus $b_{j} \in N_{R}\left(C_{U}\right)=c \cdot R$ for all $0 \leq j \leq n$. Thus there exists $r_{j} \in R$ such that $b_{j}=c r_{j}$. Hence $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}=c\left(r_{0}+r_{1} x+\cdots+r_{n} x^{n}\right) \in c \cdot R[x ; \alpha, \delta]$. Therefore $N_{R[x ; \alpha, \delta}(U)=c \cdot R[x ; \alpha, \delta]$ where $c \in \operatorname{nil}(R[x ; \alpha, \delta])$.
Corollary 2.3. Let R be an (α, δ)-compatible 2-primal ring, and $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=$ $\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \alpha, \delta]$. Then $f(x) g(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$ if and only if $a_{i} b_{j} \in \operatorname{nil}(R)$ for all i, j.

Proof. (\Leftarrow) Suppose $a_{i} b_{j} \in \operatorname{nil}(R)$ for all i, j. Then $a_{i} f_{s}^{i}\left(b_{j}\right) \in \operatorname{nil}(R)$ for all i, j and all positive integer $i \geq s \geq 0$ by Lemma 2.4. Thus

$$
\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right) \in \operatorname{nil}(R), k=0,1,2, \cdots m+n
$$

Hence $f(x) g(x)=\sum_{k=0}^{m+n}\left(\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)\right) x^{k} \in \operatorname{nil}(R[x ; \boldsymbol{\alpha}, \delta])$ by Lemma 2.6.
(\Rightarrow) By analogy with the proof of Theorem 2.1, we complete the proof.
Theorem 2.2. Let R be an α-compatible 2-primal ring. Then the following statements are equivalent:
(1) For each subset $X \nsubseteq \operatorname{nil}(R), N_{R}(X)$ is generated as an ideal by a nilpotent element.
(2) For each subset $U \nsubseteq \operatorname{nil}(R[x ; \alpha]), N_{R[x ; \alpha]}(U)$ is generated as an ideal by a nilpotent element.

Proof. By Theorem 2.1, it suffices to show (2) \Rightarrow (1). Let X be a subset of R with $X \nsubseteq$ $\operatorname{nil}(R)$. Then $X \nsubseteq \operatorname{nil}(R[x ; \alpha])$. So there exists $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in \operatorname{nil}(R[x ; \alpha])$ such that $N_{R[x ; \alpha]}(X)=f(x) \cdot R[x ; \alpha]$. Note that $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in \operatorname{nil}(R[x ; \alpha])$, we have $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ by Corollary 2.2. Clearly, we may assume that $a_{0} \neq 0$. Now we show that $N_{R}(X)=a_{0} R$. Since $a_{0} \in \operatorname{nil}(R)$ and nil (R) is an ideal of R, we obtain $p \cdot a_{0} R \subseteq \operatorname{nil}(R)$ for each $p \in X$. So $N_{R}(X) \supseteq a_{0} R$. If $m \in N_{R}(X)$, then $m \in N_{R[x ; \alpha]}(X)$. Thus there exists $h(x)=h_{0}+h_{1} x+\cdots+h_{q} x^{q} \in R[x ; \alpha]$ such that

$$
m=f(x) h(x)=\sum_{s=0}^{m+q}\left(\sum_{i+j=s} a_{i} \alpha^{i}\left(h_{j}\right)\right) x^{s} .
$$

Thus we have $m=a_{0} h_{0} \in a_{0} R$, and so $N_{R}(X) \subseteq a_{0} R$. Hence $N_{R}(X)=a_{0} R$ where $a_{0} \in \operatorname{nil}(R)$.

For any $p \in R$, we denote by $p \cdot R$ the principal right ideal of R generated by p. Then we have the following results.

Theorem 2.3. Let R be an (α, δ)-compatible 2-primal ring. If for each principal right ideal $p \cdot R \nsubseteq \operatorname{nil}(R), N_{R}(p \cdot R)$ is generated as an ideal by a nilpotent element, then for each principal right ideal $f(x) \cdot R[x ; \alpha, \delta] \nsubseteq \operatorname{nil}(R[x ; \alpha, \delta]), N_{R[x ; \alpha, \delta]}(f(x) \cdot R[x ; \alpha, \delta])$ is generated as an ideal by a nilpotent element.

Proof. Let $\left.f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in R[x ; \alpha, \delta]\right)$ with $f(x) \cdot R[x ; \alpha, \delta] \nsubseteq \operatorname{nil}(R[x ; \alpha, \delta])$. We show that $N_{R[x ; \alpha, \delta]}(f(x) \cdot R[x ; \alpha, \delta])$ is generated as an ideal by a nilpotent element. If $a_{i} R \subseteq \operatorname{nil}(R)$ for all $0 \leq i \leq m$, then by Corollary 2.2, it is easy to see that $f(x) \cdot R[x ; \alpha, \delta] \subseteq$ $\operatorname{nil}(R[x ; \alpha, \delta])$, a contradiction. So there exists $0 \leq i \leq m$ such that $a_{i} R \nsubseteq \operatorname{nil}(R)$. Thus there exists $c \in \operatorname{nil}(R)$ such that $N_{R}\left(a_{i} R\right)=c \cdot R$. Now we show that $N_{R[x ; \alpha, \delta]}(f(x) \cdot R[x ; \alpha, \delta])=$ $c \cdot R[x ; \alpha, \boldsymbol{\delta}]$. For any $u(x)=u_{0}+u_{1} x+\cdots+u_{t} x^{t} \in R[x ; \alpha, \boldsymbol{\delta}]$ and $v(x)=v_{0}+v_{1} x+\cdots+$ $v_{q} x^{q} \in R[x ; \alpha, \delta]$, we have $a_{i} u_{j} c v_{k} \in \operatorname{nil}(R)$ for each i, j, k, since $c \in \operatorname{nil}(R)$ and $\operatorname{nil}(R)$ is an ideal of R. Thus $a_{i} f_{s}^{i}\left(u_{j}\right) c v_{k} \in \operatorname{nil}(R)$ for all i, j, k and $s \leq i$ by Lemma 2.4, and so it is easy to see that $(f(x) u(x)) \cdot c v(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$ for all $u(x) \in R[x ; \alpha, \delta]$ and $v(x) \in$ $R[x ; \alpha, \delta]$ by Corollary 2.3. Hence $c v(x) \in N_{R[x ; \alpha, \delta]}(f(x) \cdot R[x ; \alpha, \delta])$ and so $N_{R[x ; \alpha, \delta]}(f(x)$. $R[x ; \alpha, \delta]) \supseteq c \cdot R[x ; \alpha, \delta]$. On the other hand, assume that $p(x)=p_{0}+p_{1} x+\cdots+p_{s} x^{s} \in$ $N_{R[x ; \alpha, \delta]}(f(x) \cdot R[x ; \alpha, \delta])$. Then $f(x) \cdot R[x ; \alpha, \delta] \cdot p(x) \subseteq \operatorname{nil}(R[x ; \alpha, \delta])$ and so $f(x) \cdot R$.
$p(x) \subseteq \operatorname{nil}(R[x ; \alpha, \delta])$. Thus we obtain $a_{i} R \cdot p_{j} \subseteq \operatorname{nil}(R)$ for all $0 \leq j \leq s$. So $p_{j} \in N_{R}\left(a_{i} R\right)=$ $c R$. Thus there exists $r_{j} \in R$ such that $p_{j}=c r_{j}$ for all $0 \leq j \leq s$. Hence $p(x)=p_{0}+$ $p_{1} x+\cdots+p_{s} x^{s}=c\left(r_{0}+r_{1} x+\cdots+r_{s} x^{s}\right) \in c \cdot R[x ; \alpha, \delta]$. Hence $N_{R[x ; \alpha, \delta]}(f(x) \cdot R[x ; \boldsymbol{\alpha}, \boldsymbol{\delta}]) \subseteq$ $c \cdot R[x ; \alpha, \delta]$. Therefore $N_{R[x ; \alpha, \delta]}(f(x) \cdot R[x ; \alpha, \delta])=c \cdot R[x ; \alpha, \delta]$.
Theorem 2.4. Let R be an α-compatible 2-primal ring. Then the following statements are equivalent:
(1) For each principal right ideal $p \cdot R \nsubseteq \operatorname{nil}(R), N_{R}(p \cdot R)$ is generated as an ideal by a nilpotent element.
(2) For each principal right ideal $f(x) \cdot R[x ; \alpha] \nsubseteq \operatorname{nil}(R[x ; \alpha]), N_{R[x ; \alpha]}(f(x) \cdot R[x ; \alpha])$ is generated as an ideal by a nilpotent element.
Proof. It follows by the same method of proof as in Theorem 2.2.
Using the same way as above, we also obtain the next two theorems:
Theorem 2.5. Let R be an (α, δ)-compatible 2-primal ring. Iffor each $p \notin \operatorname{nil}(R), N_{R}(p)$ is generated as an ideal by a nilpotent element, then for each $f(x) \notin \operatorname{nil}(R[x ; \alpha, \delta]), N_{R[x ; \alpha, \delta]}(f(x))$ is generated as an ideal by a nilpotent element.

Theorem 2.6. Let R be an α-compatible 2-primal ring. Then the following statements are equivalent:
(1) For each $p \notin \operatorname{nil}(R), N_{R}(p)$ is generated as an ideal by a nilpotent element.
(2) for each skew polynomial $f(x) \notin \operatorname{nil}(R[x ; \alpha]), N_{R[x ; \alpha]}(f(x))$ is generated as an ideal by a nilpotent element.
Example 2.2. Let R be a domain and let

$$
R_{3}=\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & a_{1} & a_{2} \\
0 & 0 & a_{1}
\end{array}\right) \right\rvert\, a_{i} \in R\right\}
$$

be the subring of 3×3 upper triangular matrix ring. Let X be any subset of R_{3} with $X \nsubseteq$ $\operatorname{nil}\left(R_{3}\right)$. We show that $N_{R_{3}}(X)$ is generated as a ideal by a nilpotent element. Let

$$
U=\left\{x \in R \left\lvert\,\left(\begin{array}{ccc}
x & y & z \\
0 & x & y \\
0 & 0 & x
\end{array}\right) \in X\right.\right\} .
$$

If $U=\{0\}$, then $X \subseteq \operatorname{nil}\left(R_{3}\right)$. This is contrary to the fact that $X \nsubseteq \operatorname{nil}\left(R_{3}\right)$. Thus we have $U \neq\{0\}$. In this case, we have

$$
N_{R_{3}}(X)=\left\{\left.\left(\begin{array}{ccc}
0 & u & v \\
0 & 0 & u \\
0 & 0 & 0
\end{array}\right) \right\rvert\, u, v \in R\right\}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \cdot R_{3},
$$

where $\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0\end{array}\right) \in \operatorname{nil}\left(R_{3}\right)$ by a routine computations. Therefore $N_{R_{3}}(X)$ is generated as an ideal by a nilpotent element.
Example 2.3. Let Z be the ring of integers, and $T(Z, Z)=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in Z\right\}$ the trivial extension of Z by Z. Let $p=\left(\begin{array}{cc}a & m \\ 0 & a\end{array}\right) \in T(Z, Z)$. If $a=0$, then we have $p \cdot T(Z, Z) \subseteq$ $\operatorname{nil}(T(Z, Z))$. So we assume that $a \neq 0$. By a routine computations, we obtain

$$
N_{T(Z, Z)}(p \cdot T(Z, Z))=\left\{\left.\left(\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right) \right\rvert\, m \in Z\right\}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \cdot T(Z, Z),
$$

where $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is a nilpotent element.

3. Nilpotent associated primes

Given a right R-module N_{R}, the right annihilator of N_{R} is denoted by $r_{R}\left(N_{R}\right)=\{a \in R \mid N a=$ $0\}$. We say that N_{R} is prime if $N_{R} \neq 0$, and $r_{R}\left(N_{R}\right)=r_{R}\left(N_{R}^{\prime}\right)$ for every nonzero submodule $N_{R}^{\prime} \subseteq N_{R}$ (see [1]). Let M_{R} be a right R-module, an ideal \wp of R is called an associated prime of M_{R} if there exists a prime submodule $N_{R} \subseteq M_{R}$ such that $\wp=r_{R}\left(N_{R}\right)$. The set of associated primes of M_{R} is denoted by $\operatorname{Ass}\left(M_{R}\right)$ (see [1]). Associated primes are wellknown in commutative algebra for their important role in the primary decomposition, and has attracted a lot of attention in recent years. In [7], Brewer and Heinzer used localization theory to prove that, over a commutative ring R, the associated primes of the polynomial ring $R[x]$ (viewed as a module over itself) are all extended: that is, every $\wp \in \operatorname{Ass}(R[x])$ may be expressed as $\wp=\wp_{0}[x]$, where $\wp_{0}=\wp_{\Omega} \cap R \in \operatorname{Ass}(R)$. Using results of Shock in [13] on good polynomials, C. Faith has provided a new proof in [10] of the same result which does not rely on localization or other tools from commutative algebra. In [1], Scott Annin showed that Brewer and Heinzer's result still holds in the more general setting of a polynomial module $M[x]$ over a skew polynomial ring $R[x ; \alpha]$, with possibly noncommutative base R. So the properties of associated primes over a commutative ring can be profitably generalized to noncommutative setting as well.

Motivated by the results in [1], [7], [10], in this section, we continue the study of nilpotent associated primes over Ore extension rings. We first introduce the notion of nilpotent associated primes, which are a generalization of associated primes. We next describe all nilpotent associated primes of the Ore extension ring $R[x ; \alpha, \delta]$ in terms of the nilpotent associated primes of the ring R.

Definition 3.1. Let I be a right ideal of a nonzero ring R. We say that I is a right quasi-prime ideal if $I \nsubseteq \operatorname{nil}(R)$ and $N_{R}(I)=N_{R}\left(I^{\prime}\right)$ for every right ideal $I^{\prime} \subseteq I$ and $I^{\prime} \nsubseteq \operatorname{nil}(R)$.

Let R be a domain and Let

$$
R_{n}=\left\{\left.\left(\begin{array}{llll}
a & a_{12} & \cdots & a_{1 n} \\
0 & a & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}
$$

be the subring of $n \times n$ upper triangular matrix ring. Then nil $\left(R_{n}\right)$ is an ideal of R_{n} and

$$
\operatorname{nil}\left(R_{n}\right)=\left\{\left.\left(\begin{array}{llll}
0 & x_{12} & \cdots & x_{1 n} \\
0 & 0 & \cdots & x_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right) \right\rvert\, x_{i j} \in R\right\}
$$

By a routine computations, we know that each right ideal $I \nsubseteq \operatorname{nil}\left(R_{n}\right)$ is a right quasi-prime ideal.

Definition 3.2. Let $\operatorname{nil}(R)$ be an ideal of a ring R. An ideal \wp of R is called a nilpotent associated prime of R if there exists a right quasi-prime ideal I such that $\wp=N_{R}(I)$. The set of nilpotent associated primes of R is denoted by $\operatorname{NAss}(R)$.

Recall that an ideal \wp in a ring R is said to be a prime ideal if $\wp \neq R$, and for $a, b \in R$, $a R b \subseteq \wp$ implies that $a \in \wp$ or $b \in \wp$. Suppose $\operatorname{nil}(R)$ is an ideal. Then it is easy to see that if I is a right quasi-prime ideal, then $\wp=N_{R}(I)$ is a prime ideal of R.

Example 3.1. We now provide the following examples:
(a) Let

$$
R_{n}=\left\{\left.\left(\begin{array}{llll}
a & a_{12} & \cdots & a_{1 n} \\
0 & a & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}
$$

be the subring of $n \times n$ upper triangular matrix ring. Then it is easy to see that $\operatorname{NAss}\left(R_{n}\right)=\left\{\operatorname{nil}\left(R_{n}\right)\right\}$.
(b) Let k be any field, and consider the ring $R=\binom{k 0}{k}$ of 2×2 lower triangular matrices over k. One easily checks that $\binom{k}{k} \supsetneq\left(\begin{array}{ll}k & 0 \\ k & 0\end{array}\right) \supsetneq\left(\begin{array}{ll}k & 0 \\ 0 & 0\end{array}\right) \supsetneq\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is a composition series for R_{R}. In particular, R_{R} has finite length.

Next we shall determine the set $\operatorname{Ass}(R)$. By an easy ad hoc calculation, we can write down all of the proper nonzero ideals of R :

$$
\left\{m_{1}=\left(\begin{array}{ll}
0 & 0 \\
k & k
\end{array}\right), m_{2}=\left(\begin{array}{cc}
k & 0 \\
k & 0
\end{array}\right), \alpha=\left(\begin{array}{ll}
0 & 0 \\
k & 0
\end{array}\right)\right\} .
$$

Now since $\alpha^{2}=0,0$ is not a prime ideal. Moreover, since $m_{1} R m_{2} \subseteq \alpha, \alpha$ is not a prime ideal. So the only candidates for the associated primes of R are the maximal ideals m_{1} and m_{2}.

We claim that $m_{2} \notin \operatorname{Ass}(R)$. Otherwise, there would exists a right ideal $I \supsetneq 0$ of R with $m_{2}=r_{R}(I)$. So $I \cdot m_{2}=0$. Now, given $\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right) \in I$, we have $0=\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right) \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right)$, so $a=b=0$. Also, $0=\left(\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right) \cdot\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ c & 0\end{array}\right)$ implies that $c=0$. Thus $I=0$, a contradiction. Hence $m_{2} \notin \operatorname{Ass}(R)$.

By virtue of R_{R} being noetherian, we know that $\operatorname{Ass}(R) \neq 0$. Hence $\operatorname{Ass}(R)=\left\{m_{1}\right\}$.
Finally, we should determine the set of $\operatorname{NAss}(R)$. Clearly, $\operatorname{nil}(R)=\alpha$. Thus nil (R) is an ideal. Now we show that $m_{1}=N_{R}\left(m_{2}\right)$ and m_{2} is a right quasi-prime ideal. Clearly, $m_{1} \subseteq N_{R}\left(m_{2}\right)$ since $m_{2} m_{1}=0$. Given $\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right) \in N_{R}\left(m_{2}\right)$, we have $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) \in \operatorname{nil}(R)$. Then $a=0$ and so $\left(\begin{array}{cc}a & 0 \\ b & c\end{array}\right) \in m_{1}$. Hence $m_{1}=N_{R}\left(m_{2}\right)$. Next we see that m_{2} is a right quasiprime ideal. Let $n \nsubseteq \operatorname{nil}(R)$ and $n \subseteq m_{2}$. Since $N_{R}(n) \supseteq N_{R}\left(m_{2}\right)$ is clear, we now assume that $\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right) \in N_{R}(n)$, and find $\left(\begin{array}{ll}h & 0 \\ k & 0\end{array}\right) \in n$ with $h \neq 0$. Then we have $\left(\begin{array}{ll}h & 0 \\ k & 0\end{array}\right)\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)=\left(\begin{array}{cc}h a & 0 \\ k a & 0\end{array}\right) \in \operatorname{nil}(R)$. Thus $a=0$ and so $\left(\begin{array}{cc}a & 0 \\ b & c\end{array}\right) \in N_{R}\left(m_{2}\right)$. Hence we obtain $N_{R}(n)=N_{R}\left(m_{2}\right)$ and so m_{2} is a right quasi-prime ideal. Thus we obtain $m_{1} \in \operatorname{NAss}(R)$. Similarly, we have $m_{2} \in \operatorname{NAss}(R)$. Therefore $\operatorname{NAss}(R)=\left\{m_{1}, m_{2}\right\} \neq \operatorname{Ass}(R)$.

If R is reduced, then \wp is a nilpotent associated prime of R if and only if \wp is an associated prime of R. So NAss $(R)=\operatorname{Ass}(R)$ in case R is reduced.

Given a polynomial $f(x) \in R[x]$. If the polynomial $f(x)$ has the property that each nonzero coefficient has the same right annihilator in R, then we say that such a polynomial is a good polynomial. Shock showed in [13] that, given any nonzero polynomial $f(x) \in R[x]$, one can find $r \in R$ such that $f(x) r$ is good. In order to prove the main result of this section, we will need a generalized version of Shock's result which applies in our skew polynomial setting.

Let $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k}+\cdots+m_{n} x^{n} \notin \operatorname{nil}(R)[x ; \alpha, \delta]$. If $m_{k} \notin \operatorname{nil}(R)$, and $m_{i} \in \operatorname{nil}(R)$ for all $i>k$, then we say that the nilpotent degree of $m(x)$ is k. To simplify notations, we write $\operatorname{Ndeg}(m(x))$ for the nilpotent degree of $m(x)$. If $m(x) \in \operatorname{nil}(R)[x ; \alpha, \delta]$, then we define $\operatorname{Ndeg}(m(x))=-1$.

Definition 3.3. Let $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k}+\cdots+m_{n} x^{n} \notin \operatorname{nil}(R)[x ; \boldsymbol{\alpha}, \delta]$ and the nilpotent degree of $m(x)$ be k. If $N_{R}\left(m_{k}\right) \subseteq N_{R}\left(m_{i}\right)$ for all $i \leq k$, then we say that $m(x)$ is a nilpotent good polynomial.

Lemma 3.1. Let R be an (α, δ)-compatible 2-primal ring. For any $m(x)=m_{0}+m_{1} x+$ $\cdots+m_{k} x^{k}+\cdots+m_{n} x^{n} \notin \operatorname{nil}(R)[x ; \alpha, \delta]$, there exists $r \in R$ such that $m(x) r$ is a nilpotent good polynomial.
Proof. Assume the result is false, and let $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k}+\cdots+m_{n} x^{n} \notin$ $\operatorname{nil}(R)[x ; \alpha, \delta]$ be a counterexample of minimal nilpotent degree $\operatorname{Ndeg}(m(x))=k \geq 1$. In particular, $m(x)$ is not a nilpotent good polynomial. Hence there exists $i<k$ such that $N_{R}\left(m_{k}\right) \nsubseteq N_{R}\left(m_{i}\right)$. So we can find $b \in R$ with $m_{i} b \notin \operatorname{nil}(R)$, and $m_{k} b \in \operatorname{nil}(R)$. Note that the degree k coefficient of $m(x) b$ is $m_{k} \alpha^{k}(b)+\sum_{i=k+1}^{n} m_{i} f_{k}^{i}(b)$ and $m_{k} \alpha^{k}(b) \in \operatorname{nil}(R)$ due to the (α, δ)-compatibility of R. On the other hand, we have $\operatorname{Ndeg}(m(x))=k$, so $m_{i} \in \operatorname{nil}(R)$ for all $i>k$. Since nil (R) of a 2-primal ring is an ideal, $m_{i} f_{k}^{i}(b) \in \operatorname{nil}(R)$ for all $i>k$. Hence it is easy to see that $m(x) b$ has nilpotent degree at most $k-1$. Since $m_{i} b \notin \operatorname{nil}(R)$, by Corollary 2.3, we have $m(x) b \notin \operatorname{nil}(R)[x ; \alpha, \delta]$. By the minimality of k, we know that there exists $c \in R$ with $m(x) b c$ nilpotent good. But this contradicts the fact that $m(x)$ is a counterexample to the statement.

Theorem 3.1. Let R be an (α, δ)-compatible 2-primal ring. Then

$$
\operatorname{NAss}(R[x ; \alpha, \delta])=\{\wp[x ; \alpha, \delta] \mid \wp \in \operatorname{NAss}(R)\}
$$

Proof. We first prove \supseteq. Let $\wp \in \operatorname{NAss}(R)$. By definition, there exists a right ideal $I \nsubseteq$ $\operatorname{nil}(R)$ with I a right quasi-prime ideal of R and $\wp=N_{R}(I)$. It suffices to prove

$$
\begin{equation*}
\wp[x ; \alpha, \delta]=N_{R[x ; \alpha, \delta]}(I[x ; \alpha, \delta]) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
I[x ; \alpha, \delta] \quad \text { is quasi-prime. } \tag{3.2}
\end{equation*}
$$

For Equation (3.1), let $f(x)=a_{0}+a_{1} x+\cdots+a_{l} x^{l} \in \wp[x ; \alpha, \delta]$, and let $i(x)=i_{0}+i_{1} x+$ $\cdots+i_{m} x^{m} \in I[x ; \alpha, \delta]$. Since $i_{k} a_{j} \in \operatorname{nil}(R)$ for each k, j, applying Corollary 2.3 yields that $i(x) f(x) \in \operatorname{nil}(R[x ; \boldsymbol{\alpha}, \delta])$. Hence $\wp[x ; \alpha, \delta] \subseteq N_{R[x ; \alpha, \delta]}(I[x ; \alpha, \delta])$.

Conversely, if $f(x)=a_{0}+a_{1} x+\cdots+a_{l} x^{l} \in N_{R[x ; \alpha, \delta]}(I[x ; \alpha, \delta])$, then $i(x) f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$ for all $i(x)=i_{0}+i_{1} x+\cdots+i_{m} x^{m} \in I[x ; \alpha, \delta]$. Using Corollary 2.3 again, we obtain that $i_{k} a_{j} \in \operatorname{nil}(R)$ for each k, j. Thus for all $0 \leq j \leq l, a_{j} \in N_{R}(I)=\wp$, and so $f(x) \in \wp[x ; \alpha, \delta]$. Hence $N_{R[x ; \alpha, \delta]}(I[x ; \alpha, \delta]) \subseteq \wp[x ; \alpha, \delta]$. Therefore $\wp[x ; \alpha, \delta]=N_{R[x ; \alpha, \delta]}(I[x ; \alpha, \delta])$.

Note that the right ideal I is a right quasi-prime ideal. Then we have $I \nsubseteq \operatorname{nil}(R)$. Thus

$$
I[x ; \alpha, \delta] \nsubseteq \operatorname{nil}(R)[x ; \alpha, \delta]=\operatorname{nil}(R[x ; \alpha, \delta])
$$

To see (3.2), we must show that if a right ideal $\mho \nsubseteq \operatorname{nil}(R[x ; \alpha, \delta])$ and $\mho \subseteq I[x ; \alpha, \delta]$, then

$$
N_{R[x ; \alpha, \delta]}(\mho)=N_{R[x ; \alpha, \delta]}(I[x ; \alpha, \delta]) .
$$

To this end, let D be a subset of R consisting of all coefficients of elements of \mho. Then let \wp_{0} denote the right ideal of R generated by D. Since $\mho \nsubseteq \operatorname{nil}(R[x ; \alpha, \delta])=\operatorname{nil}(R)[x ; \alpha, \delta]$, $D \nsubseteq \operatorname{nil}(R)$, and hence $\wp_{0} \subseteq I, \wp_{0} \nsubseteq \operatorname{nil}(R)$. So we have $N_{R}\left(\wp_{0}\right)=N_{R}(I)=\wp$ because I is a right quasi-prime ideal. Since $N_{R[x ; \alpha, \delta]}(\mho) \supseteq N_{R[x ; \alpha, \delta]}(I[x ; \alpha, \delta])$ is clear, we now assume that

$$
h(x)=h_{0}+h_{1} x+\cdots+h_{u} x^{u} \in N_{R[x ; \alpha, \delta]}(\mho),
$$

and

$$
s(x)=s_{0}+s_{1} x+\cdots+s_{v} x^{v} \in \mho .
$$

Then we have $s(x) h(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$. By Corollary 2.3, we obtain

$$
s_{i} h_{j} \in \operatorname{nil}(R) \text { for all } 0 \leq i \leq v, 0 \leq j \leq u .
$$

Since $\operatorname{nil}(R)$ of a 2-primal ring is an ideal, $s_{i} h_{j} \in \operatorname{nil}(R)$ implies $h_{j} s_{i} \in \operatorname{nil}(R)$ and so $s_{i} R h_{j} s_{i} R h_{j}=\left(s_{i} R h_{j}\right)^{2} \in \operatorname{nil}(R)$. Hence $s_{i} R h_{j} \in \operatorname{nil}(R)$. Thus we obtain

$$
h_{j} \in N_{R}\left(\wp_{0}\right)=N_{R}(I)=\wp \text { for all } 0 \leq j \leq u .
$$

Let $i(x)=i_{0}+i_{1} x+\cdots+i_{p} x^{p} \in I[x ; \alpha, \delta]$, we have $i_{m} h_{j} \in \operatorname{nil}(R)$ for all $0 \leq m \leq p, 0 \leq j \leq u$. Then $i(x) h(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$ by Corollary 2.3. Hence $N_{R[x ; \alpha, \delta]}(\mho) \subseteq N_{R[x ; \alpha, \delta]}(I[x ; \alpha, \delta])$ is proved, and so is \supseteq in Theorem 3.1.

Now we turn our attention to proving \subseteq in Theorem 3.1. Let $I \in \operatorname{NAss}(R[x ; \alpha, \delta])$. By definition, we have a right quasi-prime ideal $£$ of $R[x ; \alpha, \delta]$ with $I=N_{R[x ; \alpha, \delta]}(£)$. Pick any

$$
m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k}+\cdots+m_{n} x^{n} \notin \operatorname{nil}(R)[x ; \alpha, \delta]
$$

in $£$. By $£ \nsubseteq \operatorname{nil}(R[x ; \alpha, \delta])$ and Lemma 3.1, we may assume that $m(x)$ is nilpotent good, and $\operatorname{Ndeg}(m(x))=k$. Set $f_{0}=m(x) \cdot R[x ; \alpha, \delta]$. Note that $\left.m(x) \notin \operatorname{nil}(R)[x ; \alpha, \delta]\right)$, so we get

$$
£_{0}=m(x) R[x ; \alpha, \delta] \nsubseteq \operatorname{nil}(R)[x ; \alpha, \delta]=\operatorname{nil}(R[x ; \alpha, \delta]) .
$$

Then we have

$$
N_{R[x ; \alpha, \delta]}(£)=N_{R[x ; \alpha, \delta]}\left(£_{0}\right)=N_{R[x ; \alpha, \delta]}(m(x) \cdot R[x ; \alpha, \delta])=I
$$

because $£$ is quasi-prime. Consider the right ideal $m_{k} R$, and assume that $U=N_{R}\left(m_{k} R\right)$. We wish to claim that $I=U[x ; \alpha, \delta]$. Let

$$
g(x)=b_{0}+b_{1} x+\cdots+b_{l} x^{l} \in U[x ; \alpha, \delta] .
$$

Then

$$
m_{k} R b_{j} \in \operatorname{nil}(R) \text { for all } 0 \leq j \leq l .
$$

Since $m(x)$ is nilpotent good, and $\operatorname{Ndeg}(m(x))=k, m_{i} R b_{j} \in \operatorname{nil}(R)$ for all $0 \leq i \leq k$, and $0 \leq j \leq l$. On the other hand, for all $i>k, m_{i} \in \operatorname{nil}(R)$. Thus we have $m_{i} R b_{j} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n, 0 \leq j \leq l$. Choose any

$$
h(x)=h_{0}+h_{1} x+\cdots+h_{p} x^{p} \in R[x ; \alpha, \delta] .
$$

From $m_{i} h_{d} b_{j} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n, 0 \leq d \leq p$ and $0 \leq j \leq l$ and (α, δ)-compatibility of R, we obtain $m(x) h(x) g(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$ by a routine computations. Hence $g(x) \in$ $N_{R[x ; \alpha, \delta]}(m(x) R[x ; \alpha, \delta])=I$, and so $U[x ; \alpha, \delta] \subseteq I$. Conversely, let $g(x)=b_{0}+b_{1} x+\cdots+$ $b_{l} x^{l} \in I$. Then

$$
m(x) R g(x) \in \operatorname{nil}(R[x ; \alpha, \delta]) .
$$

By Corollary 2.3, we get $m_{i} R b_{j} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$, and $0 \leq j \leq l$. Thus $b_{j} \in N_{R}\left(m_{k} R\right)$ for all $0 \leq j \leq l$, and so $g(x) \in U[x ; \alpha, \delta]$. Hence $I \subseteq U[x ; \alpha, \delta]$. Therefore $I=U[x ; \alpha, \delta]$.

We are now to check that $m_{k} R$ is quasi-prime. Since $m_{k} \notin \operatorname{nil}(R), m_{k} R \nsubseteq \operatorname{nil}(R)$. Assume that a right ideal $Q \subseteq m_{k} R$, and $Q \nsubseteq \operatorname{nil}(R)$. Then $N_{R}(Q) \supseteq N_{R}\left(m_{k} R\right)$ is clear. Now we show that

$$
N_{R}(Q) \subseteq N_{R}\left(m_{k} R\right) .
$$

Set $W=\{m(x) r \mid r \in Q\}$, and let $W R[x ; \alpha, \delta]$ be the right ideal of $R[x ; \alpha, \delta]$ generated by W. It is obvious that $W R[x ; \alpha, \delta] \subseteq m(x) R[x ; \alpha, \delta]$. Since $Q \nsubseteq \operatorname{nil}(R)$, there exists $a \in R$ such that $m_{k} a \in Q$ and $m_{k} a \notin \operatorname{nil}(R)$. If $m_{k} \cdot m_{k} a \in \operatorname{nil}(R)$, then we have $m_{k} a \in \operatorname{nil}(R)$. This contradicts to the fact that $m_{k} a \notin \operatorname{nil}(R)$. Thus $m_{k} \cdot m_{k} a \notin \operatorname{nil}(R)$ and so $m(x) \cdot m_{k} a \nsubseteq \operatorname{nil}(R[x ; \alpha, \delta])$ by Corollary 2.3, and this implies that $W R[x ; \alpha, \delta] \nsubseteq \operatorname{nil}(R[x ; \alpha, \delta])$. Since $£$ is quasi-prime, we obtain

$$
N_{R[x ; \alpha, \delta]}(W R[x ; \alpha, \delta])=N_{R[x ; \alpha, \delta]}(m(x) R[x ; \alpha, \delta])=I .
$$

Suppose $q \in N_{R}(Q)$. Then $r q \in \operatorname{nil}(R)$ for each $r \in Q$. For any $m(x) r f(x) \in W R[x ; \alpha, \delta]$ where $f(x)=a_{0}+a_{1} x+\cdots+a_{l} x^{l} \in R[x ; \alpha, \delta]$. The typical term of $m(x) r f(x)$ is $m_{i} x^{i} r a_{j} x^{j}$. From $r q \in \operatorname{nil}(R)$ and $\operatorname{nil}(R)$ of a 2-primal ring is an ideal, we have

$$
r q \in \operatorname{nil}(R) \Rightarrow q r \in \operatorname{nil}(R) \Rightarrow r a_{j} q r a_{j} q \in \operatorname{nil}(R) \Rightarrow r a_{j} q \in \operatorname{nil}(R) \Rightarrow m_{i} r a_{j} q \in \operatorname{nil}(R) .
$$

Thus $m_{i} x^{i} r a_{j} x^{j} q \in \operatorname{nil}(R)[x ; \alpha, \delta]$ due to the (α, δ)-compatibility of R, and so

$$
m(x) r f(x) q \in \operatorname{nil}(R)[x ; \alpha, \delta]=\operatorname{nil}(R[x ; \alpha, \delta]) .
$$

Thus for any

$$
\sum m(x) r_{i} f_{i}(x) \in W R[x ; \alpha, \delta]
$$

it is easy to see that

$$
\left(\sum m(x) r_{i} f_{i}(x)\right) q \in \operatorname{nil}(R[x ; \alpha, \delta]) .
$$

Hence $q \in N_{R[x ; \alpha, \delta]}(W R[x ; \alpha, \delta])=I=U[x ; \alpha, \delta]$, and so $q \in U=N_{R}\left(m_{k} R\right)$. So $N_{R}(Q) \subseteq$ $N_{R}\left(m_{k} R\right)$, and this implies that $N_{R}(Q)=N_{R}\left(m_{k} R\right)$. Thus $m_{k} R$ is quasi-prime.

Assembling the above results, we finish the proof of Theorem 3.1.
Corollary 3.1. Let R be a 2-primal ring. Then $\operatorname{NAss}(R[x])=\{\wp[x] \mid \wp \in \operatorname{NAss}(R)\}$.
Proof. Take $\alpha=i d$ and $\delta=0$ in Theorem 3.1.

Acknowledgement. The authors are indebted to the referees for their valuable comments and suggestions.

References

[1] S. Annin, Associated primes over skew polynomial rings, Comm. Algebra 30 (2002), no. 5, 2511-2528.
[2] J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58 (1975), no. 1, 1-13.
[3] G. F. Birkenmeier, H. E. Heatherly and E. K. Lee, Completely prime ideals and associated radicals, in Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ.
[4] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), no. 3, 213-230.
[5] G. F. Birkenmeier, J. Y. Kim and J. K. Park, A characterization of minimal prime ideals, Glasgow Math. J. 40 (1998), no. 2, 223-236.
[6] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Prime ideals of principally quasi-Baer rings, Acta Math. Hungar. 98 (2003), no. 3, 217-225.
[7] J. W. Brewer and W. J. Heinzer, Associated primes of principal ideals, Duke Math. J. 41 (1974), 1-7.
[8] C. Faith, Rings with zero intersection property on annihilators: ZIP rings, Publ. Mat. 33 (1989), no. 2, 329338.
[9] C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1991), no. 7, 1867-1892.
[10] C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra 28 (2000), no. 8, 3983-3986.
[11] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224.
[12] T. Y. Lam, A. Leroy and J. Matczuk, Primeness, semiprimeness and prime radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459-2506.
[13] R. C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42 (1972), 251-257.
[14] W. Cortes, Skew polynomial extensions over zip rings, Int. J. Math. Math. Sci. 2008, Art. ID 496720, 9 pp.
[15] J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213-216.

[^0]: Communicated by Shum Kar Ping.
 Received: May 4, 2010; Revised: August 25, 2010.

