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Abstract. This paper is concerned with the integral type boundary value problems of the
second order differential equations with one-dimensional p-Laplacian

[ρ(t)Φ(x′(t))]′+ f (t,x(t),x′(t)) = 0, t ∈ (0,1),
φ1(x(0)) =

∫ 1
0 g(s)φ1(x(s))ds,

φ2(x′(1)) =
∫ 1

0 h(s)φ2(x′(s))ds.

Sufficient conditions to guarantee the existence of at least three positive solutions of this
BVP are established. An example is presented to illustrate the main results. The emphasis
is put on the one-dimensional p-Laplacian term [ρ(t)Φ(x′(t))]′ involved with the function
ρ , which makes the solutions un-concave.
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1. Introduction

The multi-point boundary-value problems for linear second order differential equations was
initiated by Il’in and Moiseev [8]. Since then, more general nonlinear multi-point boundary-
value problems (BVPs for short) were studied by several authors, see the text books [1, 3, 7]
and the survey papers [9, 10] and the references cited therein. For example, in [5], the
authors studied the following BVP [Φ(x′(t))]′+ f (t,x(t),x′(t)) = 0, t ∈ (0,1),

x′(0) = 0,
θ(x(1)) = ∑

n
i=1 θ(x(ξi))ai(x′(ξi)),

where Φ,θ are two increasing homeomorphisms from R onto R with Φ(0) = 0 and θ(0) = 0,
f is a Caratheodory function, ai : R→ R are continuous functions. By using Leray-Schauder
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fixed point theorem, the existence results to solutions of this BVP are established under the
assumption ∑

n
i=1 ai(0) = 1 (the resonant case).

In paper [4], the following BVP was studied [Φ(x′(t))]′+ f (t,x(t),x′(t)) = 0, t ∈ (a,b),
x(a) = 0,
θ(x′(b)) = ∑

n
i=1 αiθ(x′(ξi)),

where Φ,θ are two increasing homeomorphisms from R onto R with Φ(0) = 0 and θ(0) = 0,
f is a Caratheodory function, αi ∈ R and ξi ∈ (a,b). By using Leray-Schauder degree and
Brouwer degree theory, the existence results to solutions of this BVP are established.

To the author’s knowledge, there is no paper concerned with the existence of positive
solutions of the boundary value problems to the second order differential equation

[ρ(t)Φ(x′(t))]′+ f (t,x(t),x′(t)) = 0, t ∈ (0,1).

To fill this gap, we consider the more generalized BVP for second order differential
equation with p-Laplacian coupled with the integral type BCs, i.e. the BVP

(1.1)


[ρ(t)Φ(x′(t))]′+ f (t,x(t),x′(t)) = 0, t ∈ (0,1),
φ1(x(0)) =

∫ 1
0 g(s)φ1(x(s))ds,

φ2(x′(1)) =
∫ 1

0 h(s)φ2(x′(s))ds,

where f is a nonnegative Caratheodory function and f (t,0,0) 6≡ 0 on each subinterval of
[0,1], g,h : [0,1]→ [0,∞) satisfy g,h ∈ L1[0,1], ρ ∈C0([0,1],(0,∞)), the integrals in men-
tioned equations are meant in the sense of Riemann-Stieljes, Φ : R→ R with Φ ∈C1(R) and
Φ′(x) > 0 for all x > 0, Φ(xy) = Φ(x)Φ(y) and Φ(−x) = −Φ(x) for all x,y ∈ R, there
exists its inverse function denoted by Φ−1. It is easy to see that p-Laplacian function
φ(x) = |x|p−2x with p > 1 is such a function. φ1,φ2 are two increasing homeomorphisms
from R onto R with φ1(0) = 0 and φ2(0) = 0.

The purpose is to establish sufficient conditions for the existence of at least three positive
solutions of BVP (1.1). The result in this paper generalizes and improves some known
ones since the one-dimensional p-Laplacian term [ρ(t)Φ(x′(t))]′ involved with the function
ρ , which makes the solutions un-concave and there exists no paper concerned with the
existence of positive solutions of this kind of the BVPs. This paper fills the gap.

The remainder of this paper is organized as follows: the main result (Theorem 2.1) is
presented in Section 2, and the example to show the main result is given in Section 3.

2. Main results

In this section, we first present some background definitions in Banach spaces and state an
important three fixed point theorem. Then the main results are given and proved.

Definition 2.1. Let X be a real Banach space. The nonempty convex closed subset P of X
is called a cone in X if ax ∈ P for all x ∈ P and a≥ 0 and x ∈ X and −x ∈ X imply x = 0.

Definition 2.2. A map ψ : P→ [0,+∞) is a nonnegative continuous concave or convex
functional map provided ψ is nonnegative, continuous and satisfies ψ(tx + (1− t)y) ≥
tψ(x)+(1−t)ψ(y), or ψ(tx+(1−t)y)≤ tψ(x)+(1−t)ψ(y), for all x,y∈ P and t ∈ [0,1].

Definition 2.3. An operator T : X → X is completely continuous if it is continuous and
maps bounded sets into pre-compact sets.
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Definition 2.4. Let a,b,c,d,h > 0 be positive constants, α,ψ be two nonnegative contin-
uous concave functionals on the cone P, γ,β ,θ be three nonnegative continuous convex
functionals on the cone P. Define the convex sets as follows:

Pc = {x ∈ P : ||x||< c},
P(γ,α;a,c) = {x ∈ P : α(x)≥ a, γ(x)≤ c},

P(γ,θ ,α;a,b,c) = {x ∈ P : α(x)≥ a, θ(x)≤ b, γ(x)≤ c},
Q(γ,β ; ,d,c) = {x ∈ P : β (x)≤ d, γ(x)≤ c},

Q(γ,β ,ψ;h,d,c) = {x ∈ P : ψ(x)≥ h, β (x)≤ d, γ(x)≤ c}.

Lemma 2.1. [2] Let X be a real Banach space, P be a nonempty cone in X, α,ψ be two
nonnegative continuous concave functionals on the cone P, γ,β ,θ be three nonnegative
continuous convex functionals on the cone P. There exist constant M > 0 such that

α(x)≤ β (x), ||x|| ≤Mγ(x) for all x ∈ P.

Furthermore, Suppose that h,d,a,b,c > 0 are constants with d < a. Let T : Pc→ Pc be a
completely continuous operator. If

(C1) {y∈P(γ,θ ,α;a,b,c)|α(x)> a} 6= /0 and α(T x)> a for every x∈P(γ,θ ,α; a,b,c);
(C2) {y∈Q(γ,θ ,ψ;h,d,c)|β (x)< d} 6= /0 and β (T x)< d for every x∈Q(γ,θ ,ψ; h,d,c);
(C3) α(Ty) > a for y ∈ P(γ,α;a,c) with θ(Ty) > b;
(C4) β (T x) < d for each x ∈ Q(γ,β ; ,d,c) with ψ(T x) < h,

then T has at least three fixed points y1, y2 and y3 such that β (y1) < d, α(y2) > a, β (y3) >
d, α(y3) < a.

Let us list the assumptions:

(H1) g,h : [0,1]→ [0,∞) satisfy
∫ 1

0 g(s)ds < 1 and

φ2
(
Φ
−1 (ρ(1))

)∫ 1

0
h(s)φ2

(
Φ
−1
(

1
ρ(s)

))
ds < 1.

(H2) ρ ∈C0([0,1])∩C1(0,1),ρ(t) > 0 for t ∈ [0,1].
(H3) f is a Carathédory function, that is

(i) t→ f (t,x,y) is measurable for any (x,y) ∈ [0,∞)×R,
(ii) (x,y)→ f (t,x,y) is continuous for a.e. t ∈ (0,1),

(iii) for each r > 0, there exists nonnegative function φr ∈ L1(0,1) such that

max{|u|, |v|} ≤ r

implies

| f (t,u,v)| ≤ φr(t),a.e.t ∈ (0,1).

Choose X = C1[0,1]. Define its norm by

||x||= max
{

max
t∈[0,1]

|x(t)|, max
t∈[0,1]

|x′(t)|
}

.
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It is easy to see that X is a real Banach space. Let σ ∈ L1[0,1] be nonnegative. Consider the
following BVP

(2.1)


[ρ(t)Φ(y′(t))]′+σ(t) = 0, t ∈ (0,1),
φ1(x(0)) =

∫ 1
0 g(s)φ1(x(s))ds,

φ2(x′(1)) =
∫ 1

0 h(s)φ2(x′(s))ds.

Lemma 2.2. Suppose that (H1) and (H2) hold. If y ∈ X is a solution of BVP (2.1), then

(i) y is concave with respect to τ , where τ is defined by

τ = τ(t) =

∫ t
0 Φ−1

(
1

ρ(s)

)
ds∫ 1

0 Φ−1
(

1
ρ(s)

)
ds

;

(ii) y′(t)≥ 0 and y(t)≥ 0 for all t ∈ [0,1];
(iii) Let k ∈ (0,1), y satisfies that

min
t∈[k,1]

y(t) = y(k)≥ µ max
t∈[0,1]

y(t) = µy(1),

where µ is defined by

µ =

∫ k
0 Φ−1

(
1

ρ(s)

)
ds

2
∫ 1

0 Φ−1
(

1
ρ(s)

)
ds

;

(iv) there exist unique numbers Aσ ,Bσ such that

y(t) = Bσ +
∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)Φ(Aσ )+
∫ 1

s
σ(u)du

)
ds, t ∈ [0,1],

where Aσ ∈ [0,c0] satisfies

(2.2) φ2(Aσ ) =
∫ 1

0
h(t)φ2

(
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)φ(Aσ )+
∫ 1

s
σ(u)du

))
dt,

where c0 is defined by

c0 = Φ
−1

 Φ

(
φ
−1
2

(∫ 1
0 h(t)φ2

(
Φ−1

(
1

ρ(t)

)
dt
)))

1−Φ

(
φ
−1
2

(∫ 1
0 h(t)φ2

(
Φ−1

(
1

ρ(t)

)
dt
)))

ρ(1)

∫ 1

0
σ(u)du

 ,

and Bσ ∈ [0,d0] satisfies
(2.3)

φ1(Bσ ) =
∫ 1

0
g(t)Φ1

(
Bσ +

∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)φ(Aσ )+
∫ 1

s
σ(u)du

)
ds
)

dt,

where d0 is defined by

d0 =
Φ−1

(∫ 1
0 g(s)ds

)
1−Φ−1

(∫ 1
0 g(s)ds

) ∫ 1

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)Φ(c0)+
∫ 1

s
σ(u)du

)
ds.
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Proof. First we prove that y is concave with respect to τ . It is easy to see that τ ∈C0 ([0,1], [0,1])
and

dτ

dt
= Φ

−1
(

1
ρ(t)

)
1∫ 1

0 Φ−1
(

1
ρ(s)

)
ds

> 0.

Thus

(2.4)
dy
dt

=
dy
dτ

dτ

dt
=

dy
dτ

Φ
−1
(

1
ρ(t)

)
1∫ 1

0 Φ−1
(

1
ρ(s)

)
ds

.

It follows that

ρ(t)Φ
(

dy
dt

)
= Φ

(
dy
dτ

)
Φ

 1∫ 1
0 φ−1

(
1

ρ(s)

)
ds

 .

Hence [
ρ(t)φ

(
dy
dt

)]′
= Φ

′
(

dy
dτ

)
d2y
dτ2

dτ

dt
Φ

 1∫ 1
0 Φ−1

(
1

ρ(s)

)
ds

 .

So

d2y
dτ2 =

[
ρ(t)Φ

(
dy
dt

)]′
Φ′
(

dy
dτ

)
dτ

dt

Φ

(∫ 1

0
Φ
−1
(

1
ρ(s)

)
ds
)

.

Since [ρ(t)Φ(y′(t))]′ ≤ 0, Φ′(y) > 0(y > 0) and dτ

dt > 0, we get

Φ
′(−x) =−[Φ(−x)]′ =−[−Φ(x)]′ = Φ

′(x) > 0

for all x > 0. Then d2y
dτ2 ≤ 0. Hence y(t) is concave with respect to τ on [0,1].

Second, we prove that y is nonnegative. In fact, since [ρ(t)φ(y′(t))]′ ≤ 0, we have

φ2(y′(1)) =
∫ 1

0
h(s)φ2

(
Φ
−1
(

1
ρ(s)

))
φ2
(
Φ
−1 (

ρ(s)Φ(y′(s))
))

ds

≥
∫ 1

0
h(s)φ2

(
Φ
−1
(

1
ρ(s)

))
φ2
(
Φ
−1 (

ρ(1)Φ(y′(1))
))

ds

= φ2(y′(1))φ2
(
Φ
−1 (ρ(1))

)∫ 1

0
h(s)φ2

(
Φ
−1
(

1
ρ(s)

))
ds.

It follows from (H1) that φ2(y′(1)) ≥ 0. Hence y′(1) ≥ 0. Then ρ(1)Φ(y′(1)) ≥ 0. So
ρ(t)Φ(y′(t))≥ 0 for all t ∈ [0,1]. It follows that y′(t)≥ 0 for all t ∈ [0,1]. Now, we have

φ1(y(0)) =
∫ 1

0
g(s)φ1(y(s))ds≥ φ1(y(0))

∫ 1

0
g(s)ds.

From (H1), we get y(0)≥ 0. To gather with y′(t)≥ 0, we have y is nonnegative on [0,1].
Third, we prove that

(2.5) min
t∈[k,1]

y(t)≥ µ sup
t∈[0,1]

y(t).

It follows from the second step that y is nondecreasing on [0,1]. So

min
t∈[k,1]

y(t) = y(k), max
t∈[0,1]

y(t) = y(1).
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From step 1, we have y(t) is concave with respect to τ . Let t = τ(t) be the inverse function
of τ = τ(t). Then, one has

y(k) = y(t(τ(k)))

= y
(

t
(

1− τ(k)+ τ(1)
1+ τ(1)

τ(k)
1− τ(k)+ τ(1)

+
τ(k)

1+ τ(1)
τ(1)

))
.

Noting that 1 > τ(k) and y(t) is concave with respect to τ , then

y(k)≥ 1− τ(k)+ τ(1)
1+ τ(1)

y
(

t
(

τ(k)
1− τ(k)+ τ(1)

))
+

τ(k)
1+ τ(1)

y
(

t (τ(1))
)

≥

∫ k
0 Φ−1

(
1

ρ(s)

)
ds

2
∫ 1

0 Φ−1
(

1
ρ(s)

)
ds

y(1)

= µ sup
t∈[0,1]

y(t).

Hence (2.3) holds.
Finally, we prove (iv). In fact, from (2.1), we have

y(t) = y(0)+
∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)Φ(y′(1))+
∫ 1

s
σ(u)du

)
ds, t ∈ [0,1].

The BCs in (2.1) imply that

φ1(y(0)) =
∫ 1

0
g(t)φ1

(
y(0)+

∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1 (

ρ(1)Φ(y′(1))

+
∫ 1

s
σ(u)du

)
ds
)

dt.(2.6)

and

(2.7) φ2(y′(1)) =
∫ 1

0
h(t)φ2

(
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)Φ(y′(1))+
∫ 1

s
σ(u)du

))
dt.

Let

G(c) = φ2(c)−
∫ 1

0
h(t)φ2

(
Φ
−1
(

1
ρ(t)

)
Φ
−1
(

ρ(1)Φ(c)+
∫ 1

t
σ(u)du

))
dt.

If c 6= 0, we know

G(c)
φ2(c)

= 1−
∫ 1

0
h(t)φ2

(
Φ
−1
(

1
ρ(t)

)
Φ
−1
(

ρ(1)+
1

Φ(c)

∫ 1

t
σ(u)du

))
dt.

Since G(c)
φ2(c) is increasing on (−∞,0) and (0,+∞) respectively, and

lim
t→0+

G(c)
φ2(c)

=−∞, lim
t→0−

G(c)
φ2(c)

= +∞,

lim
t→−∞

G(c)
φ2(c)

= 1−φ2
(
Φ
−1 (ρ(1))

)∫ 1

0
h(t)φ2

(
Φ
−1
(

1
ρ(s)

))
dt > 0,
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and
G(c0)
φ2(c0)

= 0,

we know that there exists an unique number Aσ ∈ [0,c0] such that G(Aσ ) = 0. Then y′(1) =
Aσ ∈ [0,c0].

Fix c > 0. Let

H(d) = φ1(d)−
∫ 1

0
g(t)φ1

(
d +

∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)Φ(c)+
∫ 1

s
σ(u)du

)
ds
)

dt.

If d 6= 0, we see

H(d)
d

= 1−
∫ 1

0
g(t)φ1

(
1+

1
d

∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)Φ(c)+
∫ 1

s
σ(u)du

)
ds
)

dt.

It is easy to see H(d)
d is increasing on (0,+∞) and (−∞,0) respectively. Denote

δ =
Φ

(
φ
−1
2

(∫ 1
0 h(t)φ2

(
Φ−1

(
1

ρ(t)

)
dt
)))

1−Φ

(
φ
−1
2

(∫ 1
0 h(t)φ2

(
Φ−1

(
1

ρ(t)

)
dt
)))

ρ(1)
.

Then c0 = Φ−1
(

δ
∫ 1

0 σ(u)du
)

. Since

lim
t→0+

H(d)
d

=−∞, lim
t→0−

H(d)
d

= +∞,

lim
t→−∞

H(d)
d

= 1−
∫ 1

0
g(t)dt > 0,

and
H(d0)

d0

= 1−
∫ 1

0
g(t)φ1

(
1+

1
d0

∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)Φ(c)+
∫ 1

s
σ(u)du

)
ds
)

dt

≥ 1−
∫ 1

0
g(t)φ1

(
1+

1
d0

∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)Φ(c0)+
∫ 1

s
σ(u)du

)
ds
)

dt

≥ 1−
∫ 1

0
g(t)φ1

1+
1−Φ−1

(∫ 1
0 g(s)ds

)
Φ−1

(∫ 1
0 g(s)ds

)
dt

= 0,

we know that there exists an unique number Bσ ∈ [0,d0] such that H(Bσ ) = 0. Then y(0) =
Bσ ∈ [0,d0]. The proof is complete.

Choose k ∈ (0,1). Define the cone P⊆ X by

P =

x ∈ X :

x(t)≥ 0, t ∈ [0,1],x′(t)≥ 0, t ∈ [0,1],
x(0)≤ φ

−1
1

(∫ 1
0 g(s)ds

)
x(1),

mint∈[k,1] x(t)≥ µ maxt∈[0,1] x(t)

 .
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Define the functionals on P : P→ R by

γ(y) = max
t∈[0,1]

|y′(t)|, y ∈ P,

β (y) = max
t∈[0,1]

|y(t)|, y ∈ P,

θ(y) = max
t∈[0,1]

|y(t)|, y ∈ P,

α(y) = min
t∈[k,1]

|y(t)|, y ∈ P,

ψ(y) = min
t∈[k,1]

|y(t)|, y ∈ P.

It is easy to see that α,ψ are two nonnegative continuous concave functionals on the cone P,
γ,β ,θ are three nonnegative continuous convex functionals on the cone P and α(y)≤ β (y)
for all y ∈ P.

Define the operator T : P→ X by

(T x)(t) = Bx +
∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)φ(Ax)+
∫ 1

s
σ(u)du

)
ds, t ∈ [0,1],

where Ax ∈ [0,c0] satisfies
(2.8)

φ2(Ax) =
∫ 1

0
h(t)φ2

(
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)φ(Ax)+
∫ 1

s
f (u,x(u),x′(u))du

))
dt,

where c0 is defined by

c0 = Φ
−1

 Φ

(
φ
−1
2

(∫ 1
0 h(t)φ2

(
Φ−1

(
1

ρ(t)

)
dt
)))

1−Φ

(
φ
−1
2

(∫ 1
0 h(t)φ2

(
Φ−1

(
1

ρ(t)

)
dt
)))

ρ(1)

∫ 1

0
f (u,x(u),x′(u))du

 ,

and Bx ∈ [0,d0] satisfies

φ1(Bx) =
∫ 1

0
g(t)φ1

(
Bx +

∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1 (ρ(1)Φ(Ax)

+
∫ 1

s
f (u,x(u),x′(u))du

)
ds
)

dt,(2.9)

where d0 is defined by

d0 =
Φ−1

(∫ 1
0 g(s)ds

)
1−Φ−1

(∫ 1
0 g(s)ds

)
×
∫ 1

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)Φ(c0)+
∫ 1

s
f (u,x(u),x′(u))du

)
ds.

It follows from Lemma 2.2(ii) and (iii) that T x ∈ P for all x ∈ P. Then T : P→ P is well
defined. Suppose (H1)-(H3) hold. Similarly to Lemma 3.7 in [11], we can prove that T is
completely continuous.
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It is easy to show it holds that
[ρ(t)Φ((T x)′(t))]′+ f (t,x(t),x′(t)) = 0, t ∈ (0,1),
φ1((T x)(0)) =

∫ 1
0 g(s)φ1((T x)(s))ds,

φ2((T x)′(1)) =
∫ 1

0 h(s)φ2((T x)′(s))ds,

Similarly to Lemma 2.2, we can prove that T x ∈ P if x ∈ P.

Theorem 2.1. Suppose that (H1)-(H3) hold and there exist positive constants e1,e2,c, and
Q,W and E are given by

M =
1

1−φ
−1
1

(∫ 1
0 g(s)ds

) ,

Q = Φ

( c
M

)
min

t∈[0,1]
ρ(t)

[
1−Φ

(
φ
−1
2

(∫ 1

0
h(t)φ1

(
1

ρ(t)

)
dt
))

ρ(1)
]
,

W =
1

1− k
Φ

 e2∫ 1
0 Φ−1

(
1

ρ(s)

)
ds

 ,

E = Φ

(e1

M

)
min

t∈[0,1]
ρ(t)

[
1−Φ

(
φ
−1
2

(∫ 1

0
h(t)φ1

(
1

ρ(t)

)
dt
))

ρ(1)
]
.

such that
c≥ e2

µ
> e2 > e1 > 0, Q≥W.

If
(A1) f (t,u,v)≤ Q for all t ∈ (0,1),u ∈ [0,c],v ∈ [−c,c];
(A2) f (t,u,v)≥W for all t ∈ [k,1],u ∈ [e2,e2/µ],v ∈ [−c,c];
(A3) f (t,u,v)≤ E for all t ∈ (0,1),u ∈ [0,e1],v ∈ [−c,c];

then BVP (1.1) has at least three increasing positive solutions x1,x2,x3 such that

(2.10) x1(1) < e1, x2(k) > e2, x3(1) > e1, x3(k) < e2.

Proof. To apply Lemma 2.1, we prove that all conditions in Lemma 2.1 are satisfied. By the
definitions, it is easy to see that α,ψ are two nonnegative continuous concave functionals
on the cone P, γ,β ,θ are three nonnegative continuous convex functionals on the cone P
and α(y)≤ β (y) for all y ∈ P.

For y ∈ P, since y(t)≥ 0,y′(t)≥ 0 for all t ∈ [0,1] and y(0)≤ φ
−1
1

(∫ 1
0 g(s)ds

)
y(1), we

have

|y(t)|=
∣∣∣∣∫ t

0
y′(s)ds+ y(0)

∣∣∣∣
=
∣∣∣∣∫ t

0
y′(s)ds

∣∣∣∣+ y(0)− y(0)φ−1
1

(∫ 1
0 g(s)ds

)
1−φ

−1
1

(∫ 1
0 g(s)ds

)
≤
∫ t

0
|y′(s)|ds+

φ
−1
1

(∫ 1
0 g(s)ds

)
y(1)−φ

−1
1

(∫ 1
0 g(s)ds

)
y(0)

1−φ
−1
1

(∫ 1
0 g(s)ds

)
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≤ 1

1−φ
−1
1

(∫ 1
0 g(s)ds

) sup
t∈[0,1]

|y′(t)|.

It follows that
||y|| ≤Mβ1(y) with M =

1

1−φ
−1
1

(∫ 1
0 g(s)ds

) .

for all y ∈ P. One sees x = x(t) is a positive solution of BVP (1.1) if and only if x is a
solution of the operator equation x = T x.

Corresponding to Lemma 2.1,

c = c, h = µe1, d = e1, a = e2, b =
e2

µ
.

Now, we prove that (C1)–(C4) of Lemma 2.1 hold. One sees that 0 < d < a. The remainder
is divided into four steps.

Step 1. Prove that T : Pc→ Pc;
For y ∈ Pc, we have ||y|| ≤ c. Then 0 ≤ y(t) ≤ c for t ∈ [0,1] and −c ≤ y′(t) ≤ c for all

t ∈ [0,1]. So (A1) implies that

f (t,y(t),y′(t))≤ Q, t ∈ (0,1).

We have

|(Ty)′(t)|=
∣∣∣∣Φ−1

(
1

ρ(t)

)
Φ
−1
(

ρ(1)Φ(Ay)+
∫ 1

t
f (r,y(r),y′(r))dr

)∣∣∣∣
≤
∣∣∣∣Φ−1

(
1

ρ(t)

)
Φ
−1
(

ρ(1)Φ(c0)+
∫ 1

t
f (r,y(r),y′(r))dr

)∣∣∣∣
≤Φ

−1

(
1

mint∈[0,1] ρ(t)

)
Φ
−1

 ∫ 1
0 f (r,y(r),y′(r))dr

1−Φ

(
φ
−1
2

(∫ 1
0 h(t)φ1

(
1

ρ(t)

)
dt
))

ρ(1)


≤Φ

−1

(
1

mint∈[0,1] ρ(t)

)
Φ
−1

 Q

1−Φ

(
φ
−1
2

(∫ 1
0 h(t)φ1

(
1

ρ(t)

)
dt
))

ρ(1)


≤ c.

It follows from Ty ∈ P that

0≤ (Ty)(t)≤M max
t∈[0,1]

|(Ty)′(t)|

≤MΦ
−1

(
1

mint∈[0,1] ρ(t)

)
Φ
−1

 Q

1−Φ

(
φ
−1
2

(∫ 1
0 h(t)φ1

(
1

ρ(t)

)
dt
))

ρ(1)


≤ c.

It follows that

||Ty||= max
{

max
t∈[0,1]

|(Ty)(t)|, max
t∈[0,1]

|(Ty)′(t)|
}
≤ c.

Then T : Pc→ Pc.
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Step 2. Prove that

{y ∈ P(γ,θ ,α;a,b,c)|α(y) > a}=
{

y ∈ P
(

γ,θ ,α;e2,
e2

µ
,c
)
|α(y) > e2

}
6= /0

and α(Ty) > e2 for every y ∈ P
(

γ,θ ,α;e2,
e2
µ

,c
)

;

Choose y(t) = e2
2µ

for all t ∈ [0,1]. Then y ∈ P and

α(y) =
e2

2µ
> e2, θ(y) =

e2

2µ
≤ e2

µ
, γ(y) = 0 < c.

It follows that {y ∈ P(γ,θ ,α;a,b,c)|α(y) > a} 6= /0.
For y ∈ P(γ,θ ,α;a,b,c), one has that

α(y) = min
t∈[k,1]

y(t)≥ e2, θ(y) = max
t∈[0,1]

y(t)≤ e2

µ
, γ(y) = max

t∈[0,1]
|y′(t)| ≤ c.

Then
e2 ≤ y(t)≤ e2

µ
, t ∈ [k,1], |y′(t)| ≤ c.

Thus (A2) implies that
f (t,y(t),y′(t))≥W, t ∈ [k,1].

We get

α(Ty) = (Ty)(k)

= By +
∫ t

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(

ρ(1)φ(Ay)+
∫ 1

s
σ(u)du

)
ds

>
∫ k

0
Φ
−1
(

1
ρ(s)

)
Φ
−1
(∫ 1

k
f (r,y(r),y′(r))dr

)
ds

≥
∫ k

0
Φ
−1
(

1
ρ(s)

)
dsΦ

−1 ((1− k)W )

≥ e2.

This completes Step 2.

Step 3. Prove that

{y ∈ Q(γ,θ ,ψ;h,d,c)|β (y) < d}= {y ∈ Q(γ,θ ,ψ; µe1,e1,c) | β (y) < e1} 6= /0

and
β (Ty) < e1 for every y ∈ Q(γ,θ ,ψ;h,d,c) = Q(γ,θ ,ψ; µe1,e1,c) ;

Choose y(t) = µe1. Then y ∈ P, and

ψ(y) = µe1 ≥ h, β (y) = θ(y) = µe1 < e1 = d, γ(y) = 0≤ c.

It follows that {y ∈ Q(γ,θ ,ψ;h,d,c)|β (y) < d} 6= /0.
For y ∈ Q(γ,θ ,ψ;h,d,c), one has that

ψ(y) = min
t∈[k,1]

y(t)≥ h = µe1, θ(y) = max
t∈[0,1]

y(t)≤ d = e1, γ(y) = max
t∈[0,1]

|y′(t)| ≤ c.

Hence we get that

0≤ y(t)≤ e1, t ∈ [0,1]; −c≤ y′(t)≤ c, t ∈ [0,1].
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Then (A3) implies that
f (t,y(t),y′(t))≤ E, t ∈ (0,1).

So

β (Ty)≤M max
t∈[0,1]

|(Ty)′(t)|

≤MΦ
−1

(
1

mint∈[0,1] ρ(t)

)
Φ
−1

 E

1−Φ

(
φ
−1
2

(∫ 1
0 h(t)φ1

(
1

ρ(t)

)
dt
))

ρ(1)


= e1 = d.

This completes Step 3.

Step 4. Prove that α(Ty) > a for y ∈ P(γ,α;a,c) with θ(Ty) > b;
For y∈P(γ,α;a,c)= P(γ,α;e2,c) with θ(Ty)> b = e2

µ
, we have that α(y)= mint∈[k,1] y(t)≥

e2 and γ(y) = maxt∈[0,1] |y′(t)| ≤ c and maxt∈[0,1](Ty)(t) > e2
µ

. Then

α(Ty) = min
t∈[k,1]

(Ty)(t)≥ µβ (Ty) > µ
e2

µ
= e2 = a.

This completes Step 4.

Step 5. Prove that β (Ty) < d for each y ∈ Q(γ,β ;d,c) with ψ(Ty) < h.
For y ∈ Q(γ,β ;d,c) with ψ(Ty) < d, we have γ(y) = maxt∈[0,1] |y′(t)| ≤ c and β (y) =

maxt∈[0,1] y(t)≤ d = e1 and ψ(Ty) = mint∈[k,1](Ty)(t) < h = e1µ . Then Ty ∈ P implies

β (Ty) = max
t∈[0,1]

(Ty)(t)≤ 1
µ

min
t∈[k,1]

(Ty)(t) <
1
µ

e1µ = e1 = d.

This completes the Step 5.
Then Lemma 2.1 implies that T has at least three fixed points x1 ∈ P, x2 ∈ P and x3 ∈ P

such that
β (x1) < e1, α(x2) > e2, β (x3) > e1, α(x3) < e2.

Hence BVP (1.1) has three increasing positive solutions x1,x2 and x3 such that (2.10) holds.
The proof is complete.

3. Examples

Now, we present an example, whose three positive solutions can not be obtained by theo-
rems in known papers, to illustrate the main results.

Example 3.1. Consider the following BVP

(3.1)

 [et(x′(t))3]′+ f (t,x(t),x′(t)) = 0, t ∈ (0,1),
x(0) = 0,
x′(1) = 0.

Corresponding to BVP (1.1), one sees that Φ(x) = x3,Φ−1(x) = x
1
3 , g(t) = h(t)≡ 0, ρ(t) =

et , φ1(x) = φ2(x) = x, f : (0,1)× [0,∞)×R→ [0,∞) is continuous.
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Choose k = 1/4. Choose e1 = 50,e2 = 250,c = 400000 and Q,W and E are given by

µ =

∫ 1/4
0 Φ−1

(
1

ρ(s)

)
ds

2
∫ 1

0 Φ−1
(

1
ρ(s)

)
ds

=
1− e−

1
12

3−3e−
1
3

>
1
3
,

M =
1

1−φ1

(∫ 1
0 g(s)ds

) = 1,

Q = Φ

( c
M

)
min

t∈[0,1]
ρ(t) = 4×1015,

W =
1

1− k
Φ

 e2∫ 1
0 Φ−1

(
1

ρ(s)

)
ds

=
4
3
×2503;

E = Φ

(e1

M

)
min

t∈[0,1]
ρ(t) = 503.

such that
c≥ e2

µ
> e2 > e1 > 0, Q≥W.

If
(A1) f (t,u,v)≤ 4×1015 for all t ∈ (0,1),u ∈ [0,400000],v ∈ [−400000,400000];
(A2) f (t,u,v)≥ 4

3 ×2503 for all t ∈ [1/4,1],u ∈ [250,1000],v ∈ [−400000,400000];
(A3) f (t,u,v)≤ 503 for all t ∈ (0,1),u ∈ [0,50],v ∈ [−400000,400000];

then Theorem 2.1 implies that BVP (3.1) has at least three increasing positive solutions
x1,x2,x3 such that

x1(1) < 50, x2(1/4) > 250,

and
x3(1) > 50, x3(1/4) < 250.

Remark 3.1. Example 3.1 implies that there is a large number of functions that satisfy the
conditions of Theorem 2.1. In addition, the conditions of Theorem 2.1 are also easy to
check.
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