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Abstract. In this paper, we study the following nonlinear discrete system involving the
p-Laplacian

∆(φp(∆u(n−1)))−a(n)|u(n)|p−2u(n)+∇F(n,u(n)) = 0, n ∈ Z.

By making use of the Linking theorem, we obtain a sufficient condition under which the
system has at least one nonconstant periodic solution.
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1. Introduction

Let N,Z,R be the set of all natural numbers, integers and real numbers, respectively. For
a,b ∈ Z, define Z[a] = {a,a + 1. · · ·}, Z[a,b] = {a,a + 1, · · · ,b} when a ≤ b. Consider the
following nonlinear discrete system involving the p-Laplacian

(1.1) ∆(φp(∆u(n−1)))−a(n)|u(n)|p−2u(n)+∇F(n,u(n)) = 0, n ∈ Z,

where p≥ 2,q > 1, 1
p + 1

q = 1, φp(s) = |s|p−2s, ∆ is the forward difference operator defined
by ∆u(n) = u(n+1)−u(n), a : Z→R, and for m ∈N, F : Z×Rm→R with F(n+M,x) =
F(n,x) for any (n,x) ∈ Z×Rm and some positive integer M > 1. Moreover, F(n,x) is
continuously differentiable in x for all n ∈ Z[1,M].

As it is known, critical-point theory is an important tool to deal with the existence of
solutions of differential equations(see [9–14, 17, 19]). For difference equations, there have
also been some results (see [2–8, 15, 16, 18]). In particular, by using linking theorem,
Guo and Yu have successfully proved the existence of periodic solutions for the following
difference equation

(1.2) ∆
2u(n−1)+ f (n,u(n)) = 0, n ∈ Z(1,M),
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when either f (t,v) is superlinear in the second variable v [6] or f (t,v) is sublinear in the
second variable [7]. In [18], Zhou, Yu and Guo generalized such results to discrete sys-
tems. In [15], by local linking theorem, and in [16], by saddle point theorem, respectively,
the authors proved the existence of periodic solutions for discrete systems. For the discrete
system involving p-Laplacian, recently, by using dual least principle, the authors in [8] con-
sidered system (1.1) with a(n) ≡ 0 and they obtained some existence results under convex
condition.

In this paper, we will use Lemma 2.4 in section 2 to study system (1.1). Obviously,
system (1.1) is more general than (1.2). We obtain some solvability conditions for system
(1.1). To be precise, under suitable growth conditions on F , we establish the existence
of at least one nonconstant solutions for system (1.1) (Theorem 2.1). For the special case
a≡ 0, by Theorem 2.1, we establish the existence of at least one nonconstant solutions for
system (1.1)(Corollary 2.1), which can be seen as the discrete form of Theorem 1 in [19].
In the proof of the Theorem, we use Lemma 2.2 which can be seen as the discrete Sobolev’s
inequality and Wirtinger’s inequality. Such inequalities will be very useful in studying the
existence of periodic solutions for many discrete dynamic systems.

2. Main results

The Sobolev’s Space EM is defined by

EM = {u = {u(n)} : u(n) ∈ Rm,u(n+M) = u(n),n ∈ Z}
and is endowed with the norm

‖u‖=

(
M

∑
n=1
|u(n)|p

) 1
p

where | · | denotes the usual norm in Rm. It is easy to see that (EM,‖·‖) is a finite dimensional
Banach space and linear homeomorphic to RmM .

Let r > 1. For u ∈ EM, define

‖u‖r =

(
M

∑
n=1
|u(n)|r

)1/r

.

Then ‖ · ‖r is also the norm of EM and ‖ · ‖ and ‖ · ‖r are equivalent.

Lemma 2.1. For any u,v ∈ EM, the following useful equality holds:

−
M

∑
n=1

(∆(φp(∆u(n−1))),v(n)) =
M

∑
n=1

(φp(∆u(n)),∆v(n)).

Proof. In fact, it follows from ∆u(0) = ∆u(M) and v(1) = v(M +1) that

−
M

∑
n=1

(∆(φp(∆u(n−1))),v(n))

=−
M

∑
n=1

(φp(∆u(n))−φp(∆u(n−1)),v(n))

=−
M

∑
n=1

(φp(∆u(n)),v(n))+
M

∑
n=2

(φp(∆u(n−1)),v(n))+ (φp(∆u(0)),v(1))
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=−
M

∑
n=1

(φp(∆u(n)),v(n))+
M−1

∑
n=1

(φp(∆u(n)),v(n+1))+ (φp(∆u(M)),v(M +1))

=
M

∑
n=1

(φp(∆u(n)),∆v(n)) .

The conclusion is achieved.

Lemma 2.2. Let u ∈ EM. If ∑
M
n=1 u(n) = 0, then

(2.1) max
n∈Z[1,M]

|u(n)| ≤ (M−1)(q+1)/q

M

(
M

∑
n=1
|∆u(n)|p

)1/p

,

and

(2.2)
M

∑
n=1
|u(n)|p ≤ (M−1)2p−1

Mp−1

M

∑
n=1
|∆u(n)|p.

Proof. Fix n ∈ Z[1,M]. For every τ ∈ Z[1,n], we have

(2.3) u(n) = u(τ)+
n−1

∑
s=τ

∆u(s)

and for every τ ∈ Z[n,M],

(2.4) u(n) = u(τ)−
τ−1

∑
s=n

∆u(s).

Summing (2.3) over Z[1,n] and (2.4) over Z[n,M], we have

(2.5) nu(n) =
n

∑
τ=1

u(τ)+
n

∑
τ=1

n−1

∑
s=τ

∆u(s) =
n

∑
τ=1

u(τ)+
n−1

∑
s=1

s∆u(s)

and

(2.6) (M−n+1)u(n) =
M

∑
τ=n

u(τ)−
M

∑
τ=n

τ−1

∑
s=n

∆u(s) =
M

∑
τ=n

u(τ)−
M−1

∑
s=n

(M− s)∆u(s).

Set

φ(s) =
{

s, 1≤ s≤ n−1,
M− s, n≤ s≤M.

Combining (2.5) with (2.6) and using the Hölder inequality, we obtain

M|u(n)|=

∣∣∣∣∣ M

∑
τ=1

u(τ)+
n−1

∑
s=1

s∆u(s)−
M−1

∑
s=n

(M− s)∆u(s)

∣∣∣∣∣
≤

n−1

∑
s=1

s|∆u(s)|+
M−1

∑
s=n

(M− s)|∆u(s)|

=
M

∑
s=1

φ(s)|∆u(s)|

≤

(
M

∑
s=1

[φ(s)]q
)1/q( M

∑
s=1
|∆u(s)|p

)1/p
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=

(
n−1

∑
s=1

sq +
M−1

∑
s=n

(M− s)q

)1/q( M

∑
s=1
|∆u(s)|p

)1/p

.(2.7)

Since

(2.8)
n−1

∑
s=1

sq +
M−1

∑
s=n

(M− s)q ≤
M−1

∑
s=1

(M−1)q = (M−1)q+1,

it follows from (2.7) that (2.1) holds. On the other hand, from ∑
M
n=1 u(n) = 0, (2.7) and

(2.8), we have

Mp
M

∑
n=1
|u(n)|p

≤

(
M

∑
s=1
|∆u(s)|p

)
M

∑
n=1

(
n−1

∑
s=1

sq +
M−1

∑
s=n

(M− s)q

)p/q

≤M(M−1)2p−1

(
M

∑
s=1
|∆u(s)|p

)
.

It follows that (2.2) holds. Thus the proof is complete.

Lemma 2.3. For any u ∈ EM, we have
M

∑
n=1
|∆u(n)|p ≤ 2p

M

∑
n=1
|u(n)|p.

Proof. By Hölder inequality and p≥ 2, we have
M

∑
n=1
|∆u(n)|p =

M

∑
n=1

(
|u(n+1)−u(n)|2

)p/2

=
M

∑
n=1

(
|u(n+1)|2 + |u(n)|2−2(u(n+1),u(n))

)p/2

≤
M

∑
n=1

(
2|u(n+1)|2 +2|u(n)|2

)p/2

≤2p−1
M

∑
n=1

(|u(n+1)|p + |u(n)|p)

=2p
M

∑
n=1
|u(n)|p.

The conclusion is achieved.

Lemma 2.4. [12, Theorem 2.1 and Example 3] Let X = X1⊕X2 be a Banach space, where
X1 is a finite dimensional subspace of X and X2 = X⊥1 . Suppose that ϕ(·) ∈C1(X ,R) satis-
fies the Palais-Smale condition and the following conditions:

(i) there are constants ρ > 0 and α such that ϕ|∂Bρ∩X2 ≥ α, where Bρ = {u ∈ X :
‖u‖X < ρ},

(ii) there is a constant d < α and e ∈ X2, ‖e‖X = 1, s1 > 0,s2 > ρ such that ϕ|∂Q ≤ d
where Q = {u ∈ X |u = z+λe,z ∈ X1,‖z‖X ≤ s1,λ ∈ [0,s2]}.
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Then ϕ possesses a critical value c≥ α .

The main result of this paper are the following theorems:

Theorem 2.1. Assume that the following conditions hold:

min
n∈Z[1,M]

a(n) >
−Mp−1

(M−1)2p−1 ,
M

∑
n=1

a(n)≤ 0,(2.9)

M

∑
n=1

F(n,x)≥ 0 for all x ∈ Rm,(2.10)

lim
|x|→0

F(n,x)
|x|p

<
Mp−1

p(M−1)2p−1 +
minn∈Z[1,M] a(n)

p
for all n ∈ Z[1,M],(2.11)

lim
|x|→∞

F(n,x)
|x|p

>
Mp/2

p∑
M
n=1 | 1+M

2 −n|p
+

maxn∈Z[1,M] a(n)
p

for all n ∈ Z[1,M].(2.12)

If there exist constant µ > 0 such that

liminf
|x|→∞

(∇F(n,x),x)− pF(n,x)
|x|µ

> 0 for all n ∈ Z[1,M],(2.13)

then system (1.1) has at least one non-constant M-periodic solution.

For the special case a≡ 0, in Theorem 2.1, it is easy to obtain the following corollary.

Corollary 2.1. Assume that F satisfies (2.10), (2.13) and the following conditions:

lim
|x|→0

F(n,x)
|x|p

<
Mp−1

p(M−1)2p−1 for all n ∈ Z[1,M],

lim
|x|→∞

F(n,x)
|x|p

>
Mp/2

p∑
M
n=1 | 1+M

2 −n|p
for all n ∈ Z[1,M].

Then system (1.1) has at least one non-constant M-periodic solution.

Remark 2.1. In [19], the authors consider the differential form of system (1.1) with a≡ 0
and it is required that there exist constants r > p such that µ > r− p and

(2.14) limsup
|x|→∞

F(t,x)
|x|r

< ∞ uniformly for a.e. t ∈ [0,T ].

Corollary 2.1 shows that in dimensional space, such condition (2.14) above is unnecessary
and µ > r− p can be extended to µ > 0.

3. Proof of Theorem 2.1

Consider the functional ϕ defined on EM by

ϕ(u) =
M

∑
n=1

[
1
p
|∆u(n)|p +

a(n)
p
|u(n)|p−F(n,u(n))

]
.

It is well known that the functional ϕ on EM is continuously differentiable. Moreover, for
any u,v ∈ EM, we have〈

ϕ
′(u),v

〉
=

M

∑
n=1

[
(φp(∆u(n)),∆v(n))+(a(n)|u(n)|p−2u(n),v(n))
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−(∇F(n,u(n)),v(n))]

for any u,v ∈ EM(see [11]). Then, u ∈ EM is a critical point of ϕ if and only if
M

∑
n=1

(φp(∆u(n)),∆v(n)) =
M

∑
n=1

(
−a(n)|u(n)|p−2u(n)+∇F(n,u(n)),v(n)

)
.

By the arbitraries of v and Lemma 2.1, we conclude that

∆(φp(∆u(n−1)))−a(n)|u(n)|p−2u(n)+∇F(n,u(n)) = 0, ∀ n ∈ Z[1,M].

Hence u∈ EM is a critical point of ϕ if and only if u satisfies system (1.1). Thus the problem
of finding the solutions for system (1.1) is reduced to one of seeking the critical points of
functional ϕ on EM.

Lemma 3.1. Assume that condition (2.13) holds. Then the functional ϕ satisfies condition
(C), that is {uk} has a convergent subsequence in EM , whenever ϕ(uk) is bounded and
‖ϕ ′(uk)‖× (1+‖uk‖)→ 0 as k→ ∞.

Proof. Let {uk} be a sequence in EM such that ϕ(uk) is bounded and ‖ϕ ′(uk)‖ × (1 +
‖uk‖)→ 0 as k→ ∞. Then there exists a constant M such that

(3.1) |ϕ(uk)| ≤M, ‖ϕ ′(uk)‖(1+‖uk‖)≤M

for every k ∈ N. By (2.13), there are constants C1 > 0 and δ1 > 0 such that

(∇F(n,x),x)− pF(n,x)≥C1|x|µ > 0,

for all |x|> δ1 and all n ∈ Z[1,M]. Hence,

(∇F(n,x),x)− pF(n,x)≥C1|x|µ −C1δ
µ

1 −C2

for all x ∈ Rm and all n ∈ Z[1,M], where C2 = δ1 max{|∇F(n,x)||n ∈ Z[1,M], |x| ≤ δ1}+
pmax{|F(n,x)||n ∈ Z[1,M], |x| ≤ δ1}. Then we have for all large k,

(p+1)M

≥pϕ(uk)− (ϕ ′(uk),uk)

=
M

∑
n=1
|∆uk(n)|p +

M

∑
n=1

a(n)|uk(n)|p− p
M

∑
n=1

F(n,uk(n))

−
M

∑
n=1

(
|∆uk(n)|p−2

∆uk(n),∆uk(n)
)

−
M

∑
n=1

(
a(n)|uk(n)|p−2uk(n),uk(n)

)
+

M

∑
n=1

(∇F(n,uk(n)),uk(n))

=
M

∑
n=1

[(∇F(n,uk(n)),uk(n))− pF(n,uk(n))]

≥C1

M

∑
n=1
|uk(n)|µ −MC1δ

µ

1 −C2M.

So ∑
M
n=1 |uk(n)|µ is bounded. If µ ≥ p, by Hölder’s inequality, we have

M

∑
n=1
|uk(n)|p ≤M

µ−p
µ

( M

∑
n=1
|uk(n)|µ

) p
µ

.
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Then ‖uk‖ is bounded. If µ < p, since(
M

∑
n=1
|uk(n)|p

)µ/p

≤
M

∑
n=1
|uk(n)|µ .

Thus we know that ‖uk‖ is bounded in EM . Since EM is finite dimensional Banach space,
it is easy to know that there exists a convergent subsequence of {uk}, which implies that ϕ

satisfies the (C) condition. The proof is complete.
Theorem 2.1. As shown in [1], a deformation lemma can be proved with the weaker condi-
tion (C) replacing the usual Palais-Smale condition, and it turns out that Lemma 2.4 holds
under the condition (C). Let ẼM = {u ∈ EM|∑M

n=1 u(n) = 0}. Obviously, EM = Rm⊕ ẼM.
Let X = EM, X1 = Rm and X2 = ẼM. Then, by Lemma 3.1, we only need to prove (i) and
(ii) in Lemma 2.4 hold.

By (2.11), there is

0 < ε0 <
Mp−1

2p(M−1)2p−1 +
minn∈Z[1,M] a(n)

2p

such that

lim
|x|→0

F(n,x)
|x|p

≤ Mp−1

p(M−1)2p−1 +
minn∈Z[1,M] a(n)

p
−2ε0.

Thus, there is a constant δ2 > 0 such that

F(n,x)≤
(

Mp−1

p(M−1)2p−1 +
minn∈Z[1,M] a(n)

p
− ε0

)
|x|p

for all |x| ≤ δ2 and all n ∈ Z[1,M]. For every u ∈ ẼM and ρ > 0 with

‖u‖= ρ ≤ Mδ2

2(M−1)(q+1)/q
,

by (2.1) and Lemma 2.3, it is easy to know that maxn∈Z[1,M] |u(n)| ≤ δ2. Note that (2.9)

implies −Mp−1

(M−1)2p−1 < minn∈Z[1,M] a(n)≤ 0. Thus, by (2.2), we have

ϕ(u) =
1
p

M

∑
n=1
|∆u(n)|p +

1
p

M

∑
n=1

a(n)|u(n)|p−
M

∑
n=1

F(n,u(n))

≥ 1
p

M

∑
n=1
|∆u(n)|p +

1
p

M

∑
n=1

a(n)|u(n)|p

−
(

Mp−1

p(M−1)2p−1 +
minn∈Z[1,M] a(n)

p
− ε0

) M

∑
n=1
|u(n)|p

≥ 1
p

M

∑
n=1
|∆u(n)|p +

minn∈Z[1,M] a(n)
p

· (M−1)2p−1

Mp−1

M

∑
n=1
|∆u(n)|p

−
(

Mp−1

p(M−1)2p−1 +
minn∈Z[1,M] a(n)

p
− ε0

)
(M−1)2p−1

Mp−1

M

∑
n=1
|∆u(n)|p

≥ ε0
(M−1)2p−1

Mp−1

M

∑
n=1
|∆u(n)|p ≥ ε0‖u‖p.



380 Z. Luo and X. Zhang

Hence, there exists a constant α > 0 such that

ϕ(u)≥ α, for every u ∈ ẼM and ‖u‖= ρ.

which shows that (i) holds.
Next it will be shown that (ii) also holds. For the sake of convenience, denote

A =

(
M

∑
n=1
|1+M

2
−n|p

)1/p

.

Let

ε1 = min
n∈Z[1,M]

liminf
|x|→∞

F(n,x)
|x|p

− Mp/2

pAp −
maxn∈Z[1,M] a(n)

p
> 0,

By (2.12), there exists sufficiently large δ3 > 0 such that

F(n,x)≥

(
Mp/2

pAp +
maxn∈Z[1,M] a(n)

p
+

ε1

2

)
|x|p

for all |x| ≥ δ3 and all n ∈ Z[1,M] and

(2C3)1/pM1/2
/(

ε
1/p
1

√
M

∑
n=1
|1+M−2n

2A
|2
)

:= B > ρ,

where

C3 :=

(
Mp/2

pAp +
maxn∈Z[1,M] a(n)

p
+

ε1

2

)
δ

p
3 +max{|F(n,x)||n ∈ Z[1,M], |x| ≤ δ3}.

It is easy to verify that Mp−1/(M−1)2p−1 < Mp/2/Ap. So by (2.9), we know that maxn∈Z[1,M]

a(n) >−Mp/2/Ap. Thus, for all x ∈ Rm and all n ∈ Z[1,M], we have

F(n,x)≥

(
Mp/2

pAp +
maxn∈Z[1,M] a(n)

p
+

ε1

2

)
|x|p−C3.

Let e = {e(n)}, e(n+M) = e(n), where

(3.2) e(n) =

( 1+M
2 −n

)
e1(

∑
M
n=1 | 1+M

2 −n|p
)1/p , e1 = (1,0, · · · ,0)τ .

Obviously, e∈ ẼM. By calculation, it is easy to know that |e(n)|= |(1+M−2n)/2A|, ‖e‖=
1. Let Q = {u∈EM|u = x+se,x∈Rm,‖x‖≤M1/p(2C3)1/p/ε

1/p
1 ,s∈ [0,B]}. It follows from

p≥ 2 and Hölder’s inequality that

M

∑
n=1
|x+ se(n)|2 ≤

[
M

∑
n=1

(
|x+ se(n)|2

) p
2

] 2
p

·M1− 2
p .

for all x ∈ Rm and s ∈ [0,∞). Thus we have

Mp/2

Ap

M

∑
n=1
|x+ se(n)|p ≥Mp/2

Ap M1− p
2

(
M

∑
n=1
|x+ se(n)|2

) p
2
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=
M
Ap

(
M

∑
n=1
|x|2 +

M

∑
n=1
|se(n)|2

) p
2

≥M
Ap

(
M

∑
n=1
|se(n)|2

) p
2

≥ Msp

Ap

(
M

∑
n=1
|e(n)|p

)
=

Msp

Ap =
M

∑
n=1
|s∆e(n)|p(3.3)

for all x ∈ Rm and s ∈ [0,∞). Then for every x+ se ∈ Q, by (3.2) and (3.3), we have

ϕ(x+ se) =
1
p

M

∑
n=1
|s∆e(n)|p +

1
p

M

∑
n=1

a(n)|x+ se(n)|p−
M

∑
n=1

F(n,x+ se(n))

≤

(
Mp/2

pAp +
maxn∈Z[1,M] a(n)

p

)
M

∑
n=1
|x+ se(n)|p

−

(
Mp/2

pAp +
maxn∈Z[1,M] a(n)

p
+

ε1

2

)
M

∑
n=1
|x+ se(n)|p +MC3

=− ε1

2

M

∑
n=1
|x+ se(n)|p +MC3

≤− ε1

2
M1− p

2

(
M

∑
n=1
|x|2 + s2

M

∑
n=1
|1+M−2n

2A
|2
) p

2

+MC3.

For every x+ se ∈ Q, where |x|= (2C3)1/p/ε
1/p
1 , we have

ϕ(x+ se)≤− ε1

2
M1− p

2

(
M

∑
n=1
|x|2
) p

2

+MC3 = 0.(3.4)

For every x+ se ∈ Q, where

s = B = (2C3)1/pM1/2 /

(
ε

1/p
1

√
M

∑
n=1
|1+M−2n

2A
|2
)

,

we have

(3.5) ϕ(x+ se)≤−ε1

2
M1− p

2

(
s2

M

∑
n=1
|1+M−2n

2A
|2
) p

2

+MC3 = 0.

If s = 0, for all x ∈ Rm, by (2.9) and (2.10), we have

(3.6) ϕ(x) =
1
p

M

∑
n=1

a(n)|x|p−
M

∑
n=1

F(n,x)≤ 0.

Therefore, by (3.4)–(3.6), we have ϕ|∂Q≤ 0. Let d = 0,s1 = M1/p(2C3)1/p/ε
1/p
1 and s2 = B.

Thus (ii) in Lemma 2.4 is proved. Hence, by Lemma 2.4, ϕ has one critical value c≥α > 0.
Then system (1.1) has at least one nonconstant M-periodic solution. In fact, assume that
x ∈ Rm is the solution of system (1.1). Then by (2.9) and (2.10), one has (3.6) which
contradicts c > 0.
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