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Abstract. We establish the existence of traveling waves for diffusive-dispersive conserva-
tion laws with locally Lipschitz flux function, singular diffusion and nonlinear dispersion.
Because of the singular diffusion, the linearized traveling wave system at the equilibrium
corresponding to the right-hand state of the shock has purely imaginary eigenvalues. We
use a Lyapunov-type function and LaSalle’s invariance principle to show that this equilib-
rium is attracting. The level sets of the Lyapunov-type function enables us to estimate its
domain of attraction. The equilibrium corresponding to the left-hand state of the shock is a
saddle. We show that exactly one of the two trajectories leaving the saddle enters the domain
of attraction of the attractor, thus giving a traveling wave.
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1. Introduction

We consider the existence of a certain kind of smooth solution, called a traveling wave, of
the following third-order partial differential equation

(1.1) ∂tu(x, t)+∂x f (u(x, t)) = (R(u,εux))x +δ (A(u)(B(u)ux)x)x, x ∈ RI , t > 0,

where, the term (R(u,εux))x represents diffusion effect and the term δ (A(u)(B(u)ux)x)x rep-
resents the dispersion effect, see [5]. The small positive numbers ε > 0,δ > 0 measure the
small scale of diffusion and dispersion, respectively. Throughout, we assume the following
hypotheses

(H1) The flux function f = f (u), the diffusion function R = R(u,v) and the dispersion
functions A = A(u) > 0,B = B(u) > 0 are continuous and locally Lipschitz.

(H2) The diffusion function R = R(u,v) satisfies

(1.2) Ru(u,0) = Rv(u,0) = 0, R(u,v)v > 0,v 6= 0 for any u.
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As motivated by our earlier works [31, 32], we develop in this paper the attraction domain
method for the model (1.1) with a singular diffusion satisfying (1.2). Observe that a reg-
ular diffusion of the type R(u,v) ≡ v gives Rv ≡ 1 and therefore it does not fulfil (1.2). A
major difference between the models with regular and singular diffusion is that with sin-
gular diffusion, the linearized traveling wave system at the equilibrium corresponding to
the right-hand side state of a Lax shock does not have negative eigenvalues; instead it has
purely imaginary eigenvalues. To show that the equilibrium point is asymptotically stable,
we define a Lyapunov-type function and invoke LaSalle’s invariance principle. However,
our argument, with a slight modification, can be applied to the case of a regular diffusion
and therefore improves the result in [31]. A simple example of diffusion is R(u,v) = |v|pv,
where p≥ 0, in which the case p = 0 corresponds to a regular diffusion as in [31], and the
case p > 0 corresponds to a singular diffusion satisfying (1.2).

Letting ε,δ = 0 in (1.1) we obtain the conservation law

(1.3) ∂tu+∂x f (u) = 0.

It has been known that whenever a traveling wave of (1.1) connecting the left-hand and right-
hand states u− and u+, respectively, exists, then its point-wise limit when ε,δ → 0 gives
a shock wave of (1.3) connecting the left-hand state u− and right hand state u+, see [18].
Conversely, given a shock wave connecting the left-hand state u− and right hand state u+,
the question whether there is a traveling wave connecting these two states has attracted many
authors. It was shown by Slemrod, see [28], that this is the case for a Lax (classical) shock
of an isentropic van der Waals fluid in the domain where the pressure is a convex function
of the specific volume. See also [10, 29] for the study of the viscosity-capillarity zero limit
of smooth solutions. Observe that diffusive-dispersive models also provide the existence of
traveling waves associated with nonclassical shocks. The reader is referred to the works of
LeFloch, Bedjaoui and their collaborators, see [1–5,11,18] for the study of traveling waves
associated with nonclassical shocks.

It is very interesting that nonlinear, degenerate diffusion and dispersion have been found
useful in many applications of fluid dynamics and material sciences. Besides, in an engi-
neering experiment, a classical shock or a nonclassical shock both could have the possibility
to appear. One has seen the focus on diffusive-dispersive traveling waves associated with
a nonclassical shock in the works of Bedjaoui and LeFloch [1–5, 18]. Our goal in this pa-
per is to draw a parallel work to the one of Beadjaoui and LeFloch in [5] by focusing on
diffusive-dispersive traveling waves associated with a classical shock for a general conser-
vation law where the flux function is solely locally Lipschitz. This would provide a more
comprehensive description of diffusive-dispersive traveling waves.

In the works of LeFloch-Thanh [19–22], classical and nonclassical Riemann solvers were
studied. Observe that even if nonclassical shocks are privileged (for definitiveness, for ex-
ample), classical shocks always appear in nonclassical Riemann solvers. Thus, a moder-
ate nonclassical Riemann solver-something between the classical Riemann solver and the
privileging-nonclassical shock Riemann solver-should contain more classical shocks. Pio-
neering works for classical shocks were carried out by Lax [16], Oleinik [26], and Liu [25],
etc. See also [15, 23, 24, 30] for classical shocks of the extension of the p-system and gas
dynamics equations and related topics. The reader is referred to the works of LeFloch and
his students and collaborators, see [11,12,17–21], for nonclassical shock waves. The reader
is referred to [7] for the Riemann problem for hyperbolic systems of conservation laws
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with Lipschitz flux function. We also observe that traveling waves for diffusive-dispersive
scalar equations were earlier studied by Bona and Schonbek [6], Jacobs, McKinney, and
Shearer [13]. Traveling waves of the hyperbolic-elliptic model of phase transition dynamics
were also studied by Slemrod [10, 28] and Fan [8, 9], Shearer and Yang [27]. See also the
references therein. In our recent work [33], we established the existence of traveling waves
in elastodynamics with variable viscosity and capillarity.

The organization of this paper is as follows. In Section 2, we provides basic facts of shock
waves and traveling waves, and the equilibrium points. Using linearization, we observe that
the equilibrium point corresponding to the left-hand state of the given Lax shock is a saddle
point. However, the equilibrium point corresponding to the right-hand state is a focus of
the linearized system. We close the section by draw a statement that linearization does not
help to bring a firm conclusion about the stability of the state on the right. In Section 3,
we first introduce a Lyapunov-type function. We then apply LaSalle’s invariance principle
to show that the equilibrium point corresponding to the right-hand state is asymptotically
stable. Then we use the level sets of the Lyapunov-type function to estimate the region of
attraction of the attracting equilibrium. It turns out that there is exactly one stable trajectory
of the saddle point eventually enters the attraction domain of the attracting equilibrium.
This establishes a saddle-to-attractor connection and accordingly gives us a unique traveling
wave, up to translation in space. Finally, in Section 4, we will show that the analysis in the
current paper can be used to improve our earlier result in [31]. Moreover, we illustrate the
existence of traveling waves by a numerical experiment.

2. Shock waves and traveling waves

First, let us provide a brief introduction to the concept of shock waves. A discontinuity of
the form

(2.1) u(x, t) =
{

u−, x < st,
u+, x > st,

where u−,u+ are relatively the left-hand and right-hand states and s is the speed of dis-
continuity propagation, is a weak solution of the conservation law (1.2) in the sense of
distributions iff it satisfies the Rankine-Hugoniot relation

(2.2) −s(u+−u−)+ f (u+)− f (u−) = 0.

The equation (2.2) implies that the speed of discontinuity propagation s is given by

s = s(u−,u+) =
f (u+)− f (u−)

u+−u−
.

It is known that weak solutions are not unique. To select a unique solution, one requires that
weak solutions of the form (2.1) satisfy an entropy admissibility condition. In the case of
scalar conservation laws, one often uses the Oleinik entropy criterion, which requires

(2.3)
f (u)− f (u−)

u−u−
≥ f (u+)− f (u−)

u+−u−
, for any u between u+ and u−.

The condition (2.3) is equivalent to

f (u)− f (u+)
u−u+

≤ f (u+)− f (u−)
u+−u−

, for any u between u+ and u−.
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A (classical) shock wave of (1.3) is a weak solution of the form (2.1) and satisfies the
Oleinik entropy criterion (2.3). In brief, a shock wave connecting a left-hand state u− to a
right-hand state u+ with shock speed s is given by (2.1), where u± and s are such that the
Rankine-Hugoniot relation (2.2) and the Oleinik criterion (2.3) hold.

In the case of a hyperbolic system of conservation, one often uses the Lax shock inequal-
ities or Liu’s entropy condition as an admissibility condition for shock waves. One therefore
calls a Lax shock of (1.1) to be a discontinuity of the form (2.1) satisfying the following Lax
shock inequalities

f ′(u−) > s(u−,u+) > f ′(u+), u− 6= u+,

where s(u−,u+) is the speed of discontinuity (shock speed).
Geometrically, the inequality (2.2) means that if u+ < u−, the graph of f is lying below

the straight line (∆) connecting the two points (u±, f (u±)) in the interval [u+,u−].
A traveling waves of (1.1) is a smooth solution u = u(y) depending on the re-scaled

variable
y :=

x− st
ε

.

for some constant speed s. Substituting u = u(y),y = (x− st)/ε, to (1.1), the traveling wave
u connecting a left-hand state u− to a right-hand state u+ satisfies the ordinary differential
equation

(2.4) −s
du
dy

+
d f (u)

dy
=

dR(u, du
dy )

dy
+

δ

ε2
d
dy

(
A(u)

d
dy

(
B(u)

du
dy

))
,

and the boundary conditions

(2.5)

lim
y→±∞

u(y) = u±,

lim
y→±∞

du
dy

= lim
y→±∞

d2u
dy2 = 0.

Integrating (2.4) and using the boundary condition (2.5), we find u such that

(2.6)
δ

ε2 A(u)
d
dy

(
B(u)

du
dy

)
+R

(
u,

du
dy

)
=−s(u(y)−u−)+ f (u)− f (u−), y ∈ RI .

Using (2.5) again, we deduce from (2.6)

s =
f (u+)− f (u−)

u+−u−
.

which means that u−,u+ and s satisfy the Rankine-Hugoniot relation (2.2) and they are
respectively the left-hand, right-hand state and shock speed of a discontinuity of (1.3).

Setting

v = B(u)
du
dy

we can re-write the second-order differential equation (2.6) to the following second-order
system

(2.7)

du(y)
dy

= b(u(y))v(y),

dv(y)
dy

= γa(u(y))(−Q(u(y),v(y))+h(u(y))), −∞ < y < +∞,
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where

(2.8)
a(u) =

1
A(u)

, b(u) =
1

B(u)
, γ =

ε2

δ
,

Q(u,v) = R(u,b(u)v), h(u) =−s(u−u−)+ f (u)− f (u−).

Setting
U = (u,v), F(U) = (b(u)v,γa(u)(−Q(u,v)+h(u))),

we can re-write the system (2.7) in the form

(2.9)
dU
dy

= F(U), −∞ < y < +∞.

It is easy to check that a point U in the (u,v)-phase plane is an equilibrium point of the
autonomous differential equations (2.7) if and only if U has the form U = (u+,0) for some
constant u+ so that the states u± and the shock speed s satisfy the Rankine-Hugoniot relation
(2.2). Consequently, u = u(x, t) defined by (2.1) is a weak solution of the conservation law
(1.3). Conversely, a jump of (1.3) of the form (2.1) gives equilibria (u−,0),(u+,0) of the
differential equation (2.7).

Suppose now that f is differentiable at some point u. Then, the Jacobian matrix DF(U)
of the system (2.9) at U = (u,v) is given by

DF(U) =
(

b′(u)v b(u)
γa′(u)(−Q(u,v)+h)+ γa(u)(−Qu(u,v)+ f ′(u)− s) −γa(u)Qv(u,v)

)
.

Recall that Q(u,v) = R(u,b(u)v). Therefore, it holds that

Qu(u,v) = Ru(u,b(u)v)+Rv(u,b(u)v)b′(u)v,

Qv(u,v) = Rv(u,b(u)v)b(u).

This yields, under the hypotheses (H1) and (H2):

Qu(u,0) = Qv(u,0) = Q(u,0) = 0.

Thus, if f is differentiable at u±, using h(u±) = 0 and (1.2) we obtain

DF(u±,0) =
(

0 b(u±)
γa(u±)( f ′(u±)− s) 0

)
.

The characteristic equation of DF(u±,0) is then given by

λ
2− γa(u±)b(u±)( f ′(u±)− s) = 0.

Thus, we arrive at the following conclusion.

Proposition 2.1. Assume the hypotheses (H1) and (H2). In addition, assume that f ′(u±)
exist and the states u± correspond to a Lax shock. Then, for the linearized system at (u±,0):

(i) The Jacobian matrix at (u−,0) admits two eigenvalues having opposite signs

(2.10)
λ1(u−,0) =−

√
γa(u−)b(u−)( f ′(u−)− s) < 0,

λ2(u−,0) =
√

γa(u−)b(u−)( f ′(u−)− s) > 0.

The point (u−,0) is a saddle point.
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(ii) The Jacobian matrix at (u+,0) admits two purely imaginary eigenvalues

(2.11) λ1,2(u+,0) =±i
√

γa(u+)b(u+)(s− f ′(u+)), where i2 =−1.

The point (u+,0) is thus a focus (of the linearized system).

We aim at showing the existence of a traveling wave corresponding to a Lax shocks by
means of a saddle-to-attractor connection. However, as seen by Proposition 2.1, lineariza-
tion does not work to show that (u+,0) is asymptotically stable. This is a contrary to the
case in [31], where linearization shows that (u+,0) is asymptotically stable. To establish a
saddle-to-attractor connection, we will prove in the next section that (u+,0) is asymptoti-
cally stable using LaSalle’s invariance principle.

3. Existence of traveling waves

3.1. Estimate of attraction domain of the attracting equilibrium

In this section we will establish a sharp estimate the the domain of attraction of the attracting
equilibrium (u+,0).

Now let us consider the differential equations

(3.1)

du(y)
dy

= b(u(y))v(y),

dv(y)
dy

= γa(u(y))(−Q(u(y),v(y))+h(u(y))), −∞ < y < +∞,

where
Q(u,v) = R(u,b(u)v), h(u) =−s(u−u−)+ f (u)− f (u−).

The function Q then has the same property as the function R:

Q(u,v)v > 0, v 6= 0

for any u. We define a Lyapunov-type function

(3.2) L(u,v) = γ

∫ u+

u

a(ξ )
b(ξ )

h(ξ )dξ +
v2

2
.

Then we have

L(u+,0) = 0, ∇L(u,v) =
〈
−γa(u)h(u)

b(u)
,v
〉

.

And therefore

(3.3)

L̇(u,v) = ∇L(u,v) ·
〈

du
dy

,
dv
dy

〉
=
〈
−γa(u)h(u)

b(u)
,v
〉
〈b(u)v,γa(u)(−Q(u,v)+h(u))〉

=−γa(u)Q(u,v)v〈0, for v 6= 0.

For definitiveness, we assume that

u+ < u−,
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without restriction. We assume that there are two values p <+< q≤ u− such that

(3.4)
∫ q

p

a(ξ )
b(ξ )

h(ξ )dξ > 0.

The condition (3.4) is fulfilled when for example the function f is differentiable at u = u+
and the shock satisfies either the Lax shock inequality

f ′(u+) < s

or the strict Oleinik entropy condition
f (u)−u(u+)

u−u+
< s, for u+ +θ

′ > u > u+,

for some small θ ′ > 0. Indeed, by continuity, there is a positive number θ > 0 such that

(3.5)
f (u)−u(u+)

u−u+
< s, for u+−θ < u < u+.

It follows from (3.5) that∫ u+

u

a(ξ )
b(ξ )

h(ξ )dξ > 0, u+−θ < u < u+.

Set p = u+−θ , from the last inequality, by continuity, there exists some q > u+ so that∫ q

p

a(ξ )
b(ξ )

h(ξ )dξ ≥ 0,

which establishes (3.4).
Let us take a sufficiently large number M so that

(3.6) M2 > |s|+ max
u∈[p,q]

a(u)
b(u)

Lip[p,q] f ,

where Lip[p,q] f denotes the Lipschitz constant of the function f on the interval [p,q]. From
(3.4) and (3.6) we now define the set

(3.7)
G = {(u,v) ∈ RI 2|(u−u+)2 +

1
M2 v2 ≤ |u+−q|2, u≥ u+}

∪{(u,v) ∈ RI 2|(u−u+)2 +
|u+− p|2

(M|u+−q|)2 v2 ≤ |u+− p|2, u≤ u+},

(see Figure 1).

Lemma 3.1. Let G be the set defined by (3.7) and ∂G denotes its boundary. For sufficiently
large M, we have

(3.8) min
(u,v)∈ ∂G

L(u,v) = L(q,0).

Proof. On the semi-ellipse ∂G,u≥ u+, one has

v2 = M2(|u+−q|2− (u−u+)2.

Substituting v from the last equation to the expression of L, we have

L(u,v)
∣∣∣
(u,v)∈∂G,u≥u+

=
∫ u+

u

a(ξ )
b(ξ )

h(ξ )dξ +
M2

2
(|u+−q|2− (u−u+)2

:= g(u), u ∈ [u+,q].
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A straightforward calculation gives

dg(u)
du

=−a(u)
b(u)

h(u)−M2(u−u+)

=−(u−u+)
(

M2 +
a(u)
b(u)

( f (u)− f (u+)
u−u+

− s
))

< 0, u ∈ (u+,q)

where the last inequality follows from (3.6). The function g is therefore strictly decreasing
for u ∈ [u+,q] and attains its minimum on this interval at the end-point u = q. This yields

min
(u,v)∈ ∂G,u≥u+

L(u,v) = L(q,0).

Similarly, it holds that
min

(u,v)∈ ∂G,u≤u+
L(u,v) = L(p,0).

Moreover, it is derived from (3.4) that

L(p,0)≥ L(q,0)

so that (3.8) is established. The proof of Lemma 3.1 is complete.

Lemma 3.2. For any positive number 0 < β < L(q,0), the set

(3.9) Ωβ := {(u,v) ∈ G|L(u,v)≤ β}

(see Figure 1) is a compact set, positively invariant with respect to (3.1), and has the point
(u+,0) as an interior point.

Figure 1. The set Ωβ defined by (3.9)

Proof. Since Ωβ is a subset of the bounded set G, the continuity then implies that Ωβ is a
compact set.
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We will show that the set Ωβ is in the interior of G. In deed, assume the contrary, then
there is a point (u0,u0) ∈Ωβ which lies on the boundary of G. Then, in view of Lemma 3.1
and by definition of minimum, we have

L(u0,v0)≥ L(q,0) > β ≥ L(u0,v0)

which is a contradiction. Thus, the closed curve L(u,v) = β lies entirely in the interior of
G. Moreover, the semi-negativity of the derivative along trajectories of (3.1) of L yields

dL(u(y),v(y))
dy

≤ 0.

Thus,
L(u(y),v(y))≤ L(u(0),v(0))≤ β , ∀y > 0,

which shows that any trajectory starting in Ωβ cannot cross the closed curve L(u,v) = β .
Therefore, the compact set Ωβ is positively invariant with respect to (3.1). This completes
the proof of Lemma 3.2.

In what follows, we will show that trajectories of (3.1) starting in Ωβ exist for all y > 0.
Moreover, these trajectories will converge to the node (w+,0) as y→+∞.

Theorem 3.1. Given (u0,v0)∈Ωβ . The initial-value problem for (3.1) with initial condition
(u(0),v(0)) = (u0,v0) admits a unique global solution (u(y),v(y)) for all y≥ 0. Moreover,
this trajectory converges to (u+,0) as y→+∞, i.e.,

lim
y→+∞

(u(y),v(y)) = (u+,0).

This means that the equilibrium point (u+,0) is asymptotically stable.

Proof. As seen by Lemma 3.2, the set Ωβ defined by (3.4) is a compact set and is positively
invariant with respect to (3.1). This simply means that any solution of (3.1) starting in Ωβ

lies entirely in Ωβ . It follows from the existence theory of differential equations that there is
a unique solution starting in Ωβ defined for all y≥ 0 (see [14], Theorem 3.3, for example).
Denote

E = {(u,v) ∈Ωβ |L̇(u,v) = 0}
Then, it follows from (3.3) that

(3.10)
E = {(u,v) ∈Ωβ |L̇(u,v) =−γa(u)Q(u,v)v = 0}

= {(u,v) ∈Ωβ |v = 0}.
Applying LaSalle’s invariance principle (see [14], Theorem 4.4), wa can see that every
trajectory of (3.1) starting in Ωβ approaches the largest invariant set M of the set E as
y→ ∞. Therefore, it is sufficient to show that the set M contains only one point (u+,0).
This can be done by showing that no solution can stay in E, other than the trivial solution
(u(y),v(y))≡ (u+,0). Indeed, let (u(y),v(y)) be a solution that stays in E. Then,

du(y)
dy

= b(u)v(y)≡ 0,

which yields
u≡ u+.

That is,
(u(y),v(y))≡ (u+,0).
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Thus, LaSalle’s invariance principle implies that every trajectory of (3.1) starting in Ωβ

converges to the equilibrium point (u+,0) as y→ ∞. This completes the proof.

3.2. Saddle-to-attractor connection and existence of traveling waves

In this section will establish existence result. First we consider the stable trajectories issuing
from the saddle point (u−,0) at −∞. Assume that we can always have a number p = p(u−)
such that

(3.11)
∫ u−

p(u−)
h(v)dv > 0.

Then u− plays the role for q in (3.9). The union of the sets Ωβ ,0 < β < L(u−,0) can give a
reasonable estimate for the attraction domain. In fact, we set

(3.12) Ω = ∪0<β<L(u−,0)Ωβ .

Then, a straightforward calculation shows that

(3.13)
Ω = {(w,z) ∈ RI 2| L(u,v)−L(u−,0) < 0}

=
{

(u,v) ∈ RI 2| γ

∫ u−

u

a(ξ )
b(ξ )

h(ξ )dξ +
v2

2
< 0
}

Due to the continuity, we can draw some conclusions of the estimate Ω of the attraction
domain in the following lemma. See Figure 2.

Figure 2. Attraction domain: The bounded set enclosed by the curve is the set Ω given by
(3.13) which gives an estimate of the attraction domain of the attracting equilibrium

Lemma 3.3. Under the condition (3.11), the attraction domain of the node (u+,0) of (3.1)
contains the set Ω defined by (3.12). The set Ω is open, connected and has the point (u−,0)
on its boundary.
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We now consider the stable trajectories leaving the saddle point (u−,0). Since the stable
trajectories are tangent to the eigenvector < 1,λ2(u−,0) >, (see (2.10)), one of them leaves
the saddle point (u−,0) in the quadrant

Q1 = {(u,v)|u < u−,v < 0}
and the other leaves the saddle point in the quadrant

Q2 = {(u,v)|u > u−,v > 0}.
Since we need the stable trajectory that goes beyond the attracting equilibrium, we will
study only the stable trajectory that leaves the saddle point in the quadrant Q1.

Multiply both sides of the second equation of (3.1) by b(u) du
dy = v and integrating from

(−∞,y), we get∫ y

−∞

v
dv
dy

dy =
∫ y

−∞

du
dy

γa(u(y))
b(u(y))

(−Q(u(y),v(y))+h(u(y))))dy

or
v2

2
=
∫ u

u−

γa(ξ )
b(ξ )

(−Q(ξ ,v)+h(ξ ))dξ .

Since (u,v) is Q1, v < 0 and thus Q(.,v) < 0. Thus, we have

0≤ v2

2
<
∫ u

u−

γa(ξ )
b(ξ )

h(ξ )dξ

or ∫ u−

u

γa(ξ )
b(ξ )

h(ξ )dξ +
v2

2
< 0.

The last inequality shows that the stable trajectory leaving the saddle point enters the attrac-
tion domain of the attracting equilibrium:

(u(y),v(y)) ∈Ω,

which establishes a saddle-to-attractor connection.
The above argument leads us to the following main theorem for the existence of traveling

waves.

Theorem 3.2. Assume that the flux function f is locally Lipschitz, and that there is a shock
wave of (1.2) connecting the left-hand state u− and the right-hand state u+ with the shock
speed s satisfying the Oleinik entropy condition. In addition, assume that the condition
(3.11) holds. Then, there exists a traveling wave of (1.1) connecting the states u−,u+.

4. The case of regular diffusion and numerical illustration

Parts of the analysis in the previous section can be applied, with slight modifications, to a
conservation law with regular diffusion and dispersion. In this section, we will extend our
analysis to improve our earlier result in [31]. Precisely, we consider the following diffusive-
dispersive conservation law

(4.1) ∂tu(x, t)+∂x f (u(x, t)) = ε∂xxu(x, t)+δ∂xxxu(x, t), x ∈ RI , t > 0,

where the constants ε > 0,δ > 0 represent the diffusion and dispersion coefficients, respec-
tively.
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In [31], we consider a traveling wave of (4.1) to be a smooth solution u = u(y) depending
on the re-scaled variable

(4.2) y := α
x− st

ε
=

x− st√
δ

, α = ε/
√

δ ,

for some constant speed s, and satisfies the boundary conditions

(4.3)

lim
y→±∞

u(y) = u±,

lim
y→±∞

du
dy

= lim
y→±∞

d2u
dy2 = 0.

Arguing similarly as in Section 2, by setting

v =
du
dy

we find that (u,v) satisfies the following system of first-order ordinary differential equations

(4.4)

du(y)
dy

= v(y),

dv(y)
dy

=−αv(y)− s(u(y)−u−)+ f (u(y))− f (u−).

It was shown in [31] that the point (u+,0) is an asymptotically attracting equilibrium, and
the point (u−,0) is a saddle point.

The Lyapunov function for the attracting equilibrium (u+,0) is given by

L(u,v) =
∫ u+

u
h(v)dv+

1
2

v2,

where
h(u) =−s(u−u−)+ f (u)− f (u−).

Assume that the condition (3.11) holds. Then, the following result was established.

Proposition 4.1. [31, Prop. 3.3 ] The domain of attraction of the attracting equilibrium
(u+,0) includes the set Ω defined by

(4.5) Ω = {(u,v) ∈ RI 2| L(u,v) < L(u−,0)}.

Arguing similarly as in Section 3, we find that the stable trajectory of the saddle point
(u−,0) getting down from (u−,0) at −∞ eventually enters the set Ω. This establishes the
following theorem.

Theorem 4.1. Assume that the flux function f is locally Lipschitz, and that there is a shock
wave of (1.3) connecting the left-hand state u− and the right-hand state u+ with the shock
speed s satisfying the Oleinik entropy condition. In addition, assume that the condition
(3.11) holds. Then, there exists a unique traveling wave of (4.1) connecting the states
u−,u+.

Next, we will present some numerical illustration for the traveling wave of (4.1) where

(4.6) f (u) = u4−6a2u2, a = constant,a > 0.

The function f admits two inflection points u =±a, see Figure 3.



Traveling Waves with Singular Diffusion and Nonlinear Dispersion 395

Figure 3. The flux function given by (4.6)

In the following experiment we take

(4.7) ε = 10−2, δ = 10−3, a = 1/3, u− = 1, u+ = 0.

The estimate of the attraction domain is shown by Figure 4.

Figure 4. Estimate of the attraction domain of the attracting equilibrium (0,0) of (4.4), (4.6)
and (4.7)
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Figure 5. Illustration of the right part of the traveling wave in (y,u)-plane (above) and the
curve C in the (u,v)-plane (below).

The trajectory C of (4.4), (4.6) and (4.7) starting at a point (u0,v0) = (0.99,−0.001)
near the saddle point (1,0) and located inside the attraction domain converges to the attract-
ing equilibrium. The right part of the traveling wave and the stable trajectory in the phase
domain are shown by Figure 5. Here, we draw the trajectory for increasing time and we can
see that for sufficiently large time, the trajectory approaches the attracting equilibrium.
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