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1. Introduction

The holomorphic functions of one complex variable which map the unit disk onto starlike or
convex domains have been extensively studied. These functions are easily characterized by
simple analytic or geometric conditions. In moving to higher dimensions, several difficulties
arise. In the case of one complex variable, the following well known theorems had been
established.

Theorem 1.1. [4] Suppose that f (z) = z+∑
∞
n=2 anzn is a holomorphic function on the unit

disk U = {z ∈ C : |z| < 1} in C. If ∑
∞
n=2 n|an| ≤ 1, then f is a starlike function on the unit

disk U in C.

Theorem 1.2. [4] Suppose that f (z) = z+∑
∞
n=2 anzn is a holomorphic function on the unit

disk U in C. If ∑
∞
n=2 n2|an| ≤ 1, then f is a convex function in U.

Theorem 1.3. [4] If f (z) = z+∑
∞
n=2 anzn is a univalent starlike function on the unit disk U

in C, then f (z) is convex in |z|< r0 with r0 = 2−
√

3.

In 1999, Roper and Suffridge [11] provided a sufficient condition for a normalized bi-
holomorphic convex mapping on the open Euclidean unit ball in Cn, which was the n-
dimensional version of Theorem 1.2. After that, Zhu [15] provided a brief proof of the
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theorem of Roper and Suffridge. Liu and Zhu [7, 8] gave some sufficient conditions for a
normalized biholomorphic convex mapping on some Reinhardt domains in Cn.

The objective of this paper is to establish the n-dimensional versions for Theorem 1.1
and Theorem 1.3. Now we recall some definitions and notations.

Suppose that Cn is the space of n complex variables z = (z1,z2, · · · ,zn) with the usual
inner product 〈z,w〉 = ∑

n
j=1 z jw j and the Euclidean norm ‖z‖ =

√
〈z,z〉. Let H(Bn) be the

class of mappings f (z) = ( f1(z), · · · , fn(z)),z = (z1, · · · ,zn) ∈ Cn, which are holomorphic
on the unit ball Bn = {z ∈Cn : ‖z‖ < 1} with values in Cn. If f ∈ H(Bn), we say that f is
normalized if f (0) = 0 and D f (0) = In, where In is the identity operator on Cn. A mapping
f ∈ H(Bn) is said to be locally biholomorphic on Bn if f has a local inverse at each point
z ∈ Bn or, equivalently, if the first Fréchet derivative

D f (z) =
(

∂ f j(z)
∂ zk

)
1≤ j,k≤n

is nonsingular at each point in Bn.
If f ∈ H(Bn) is a normalized mapping, then f (z) has the Taylor series expansion

f (z) = z+
∞

∑
k=2

Ak(zk), z ∈ Bn,

where Ak(zk) = (1/k!)Dk f (0)(zk), and Dk f (0)(zk) is the k-th order Fréchet derivative of f
at z = 0.

Let Hm(Bn) denote the subclass of H(Bn) consisting of mappings f , which are local
biholomorphic and f (z) = z+∑

∞
k=m+1(1/k!)Dk f (0)(zk).

Let S∗(Bn) and K(Bn) be the subclasses of H1(Bn) consisting respectively of starlike and
convex mappings on Bn. Then f ∈ S∗(Bn) if and only if f is locally biholomorphic such that

Re〈D f (z)−1 f (z),z〉> 0

for all z ∈ Bn\{0}(see [6, Theorem 1]).
A mapping f ∈ H1(Bn)(see, [1, 6]) is called starlike of order α ∈ (0,1) on Bn if∣∣∣∣ 1

‖z‖2 〈D f (z)−1 f (z),z〉− 1
2α

∣∣∣∣< 1
2α

for all z ∈ Bn\{0}.

Let S∗(α,Bn) denote the class of starlike mappings of order α on Bn for 0 < α < 1 and let
S∗(0,Bn) ≡ S∗(Bn). It is evident that S∗(α,Bn) ⊂ S∗(Bn) for 0 ≤ α < 1. Let S∗m(α,Bn) ≡
S∗(α,Bn)∩Hm(Bn) for 0≤ α < 1.

A mapping f ∈ H(Bn) is a convex mapping on Bn, written f ∈ K(Bn), if and only if for
any z = (z1, · · · ,zn) ∈ Bn and b = (b1, · · · ,bn) ∈Cn such that Re〈b,z〉= 0, we have(see, [2])

(1.1) ‖ b ‖2 −Re〈D f (z)−1D2 f (z)(b,b),z〉 ≥ 0.

Definition 1.1. Let F be a nonempty subset of H1(Bn). The number rc(F ), called the
radius of convexity of F , is the biggest positive number r ∈ (0,1] such that each mapping
f (z) ∈F is convex on Bn

r = {z ∈ Cn : ‖z‖ < r}. The number r∗(F ), called the radius of
starlikeness of F , is the biggest positive number r ∈ (0,1] such that each mapping f (z)∈F
is starlike on Bn

r = {z ∈Cn : ‖z‖< r}.

It is well known that the radius rc(H1(Bn)) of convexity of H1(Bn) doesn’t exist when
n≥ 2, and the radius of convexity of starlike mappings on the unit polydisc and four classes
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of classical domains also don’t exist. However, there exist the radius rc(S∗(Bn)) of convexity
of starlike mappings on Euclidean unit ball Bn(see, [10, 12, 13]), it is conjectured in [13]
that rc(S∗(Bn)) = 2−

√
3.

In order to derive our main results, we need the following lemmas.

Lemma 1.1. [9] Let α ∈ [0,1) and

(1.2) Mm(α) =


(m+1)

√
1−2α√

(m+1)2+1−2α
, 0≤ α ≤ 1

m+3 ,

(m+1)(1−α)
m+1+α

, 1
m+3 < α < 1.

If f ∈ Hm(Bn) satisfies the following inequality

‖D f (z)− In‖ ≤Mm(α)

for all z ∈ Bn, then f ∈ S∗m(α,Bn).

Lemma 1.2. [4] Let f (z) = z+∑
∞
k=2 Ak(zk) be a normalized starlike mapping on Bn. Then

‖Ak‖ ≤
e2

4
(k +1)2, k ≥ 2.

Lemma 1.3. [11] Let f (z)= z+∑
∞
k=2 Ak(zk) be a holomorphic mapping on Bn. If ∑

∞
k=2 k2‖Ak‖≤

1, then f (z) is a convex mapping on Bn.

2. Main results

Theorem 2.1. Let f (z) = z+∑
∞
k=m+1 Ak(zk) be a holomorphic mapping on Bn. If

(2.1)
∞

∑
k=m+1

(k−α)‖Ak‖ ≤ Nm(α),

where Nm(α) is defined by

(2.2) Nm(α) =


(m+1−α)

√
1−2α√

(m+1)2+1−2α
, 0≤ α ≤ 1

m+3 ,

(m+1−α)(1−α)
m+1+α

, 1
m+3 < α < 1,

then f ∈ S∗m(α,Bn).

Proof. Let q(z) = f (z)− z. Then q(z) = ∑
∞
k=m+1 Ak(zk) ∈ H(Bn) and

(2.3) Dq(z) =
∞

∑
k=m+1

kAk(zk−1, ·),

it follows from (2.1), (2.2) and the above equation that

‖D f (z)− In‖= ‖Dq(z)‖= sup
‖u‖≤1

{‖Dq(z)(u)‖}

= sup
‖u‖≤1

∥∥∥ ∞

∑
k=m+1

kAk(zk−1,u)‖

≤
∞

∑
k=m+1

k‖Ak‖(2.4)
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≤ m+1
m+1−α

∞

∑
k=m+1

(k−α)‖Ak‖

≤ m+1
m+1−α

Nm(α) = Mm(α) < 1,

where Mm(α) is defined by (1.2). This implies that D f (z) = In−(In−D f (z)) is an invertible
linear operator (see[14, p.192]), thus f ∈ Hm(Bn). Hence by Lemma 1.1, we obtain that
f ∈ S∗m(α,Bn), and the proof is complete.

Setting α = 0,m = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.1. Let f (z) = z+∑
∞
k=2 Ak(zk) be a holomorphic mapping on Bn. If

(2.5)
∞

∑
k=2

k‖Ak‖ ≤
2√
5
≈ 0.89443,

then f (z) is a starlike mapping on Bn.

Remark 2.1. It is evident that Corollary 2.1 is the n-dimensional version of Theorem 1.1.

Theorem 2.2. Suppose that α ∈ (0,1). Let f (z) = z+∑
∞
k=2 Ak(zk) be holomorphic mapping

on Bn. If

(2.6)
∞

∑
k=2

(k−α)‖Ak‖ ≤
1−|1−2α|

2
,

then f ∈ S∗(α,Bn).

Proof. First, it follows from (2.6) that
∞

∑
k=2

k‖Ak‖ ≤
2

2−α

∞

∑
k=2

(k−α)‖Ak‖

≤ 1−|1−2α|
2−α

< 1.

Next, by (2.3), we obtain

‖In−D f (z)‖=
∥∥∥∥− ∞

∑
k=2

kAk(zk−1, ·)
∥∥∥∥≤ ∞

∑
k=2

k‖Ak‖< 1,z ∈ Bn,

which implies that D f (z) = In−(In−D f (z)) is an invertible linear operator (see[14, p.192]),
and

‖D f (z)−1‖ ≤ 1
1−‖In−D f (z)‖

≤ 1
1−∑

∞
k=2 k‖Ak‖

, z ∈ Bn.

For z ∈ Bn\{0}, from (2.6), we obtain∣∣∣∣ 2α

‖z‖2 〈D f (z)−1 f (z),z〉−1
∣∣∣∣= ∣∣∣∣ 1

‖z‖2 〈D f (z)−1(2α f (z)−D f (z)(z)),z〉
∣∣∣∣

≤ 1
‖z‖
‖D f (z)−1‖‖2α f (z)−D f (z)(z)‖

≤ 1
‖z‖
· |1−2α| · ‖z‖+∑

∞
k=2(k−2α)‖Ak‖‖z‖k

1−∑
∞
k=2 k‖Ak‖

<
|1−2α|+∑

∞
k=2(k−2α)‖Ak‖

1−∑
∞
k=2 k‖Ak‖

≤ 1,
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it follows that f ∈ S∗(α,Bn). This completes the proof.

Notice that
(2−α)(1−α)

2+α
≥ α ⇔ α ≤ 2

5
,

by means of Theorems 2.1 and 2.2, we obtain the following corollary.

Corollary 2.2. Suppose that α ∈ [0,1). Let f (z) = z+∑
∞
k=2 Ak(zk) be a holomorphic map-

ping on Bn. If
∞

∑
k=2

(k−α)‖Ak‖ ≤ B(α),

where B(α) is defined by

(2.7) B(α) =



(2−α)
√

1−2α√
5−2α

, 0≤ α ≤ 1
4 ,

(2−α)(1−α)
2+α

, 1
4 < α ≤ 2

5 ,

α, 2
5 < α < 1

2 ,

1−α, 1
2 ≤ α < 1,

then f ∈ S∗(α,Bn).

Remark 2.2. Setting α = 1/2 in Theorem 2.2 or Corollary 2.2, we get Theorem 2.4 in [3].

Theorem 2.3. Suppose that n≥ 2. If f ∈ S∗(Bn), then f is convex on Bn
r1

, where r1 ≈ 0.012
is the root in (0,1) of the equation

(2.8) e2
[

r2 +4r +1
(1− r)5 −1

]
= 1.

Hence rc(S∗(Bn)) ∈
[
r1,
√

3/9
]
.

Proof. Since f ∈ S∗(Bn), we have

f (z) = z+
∞

∑
k=2

Ak(zk),

and by Lemma 1.2, we obtain that

(2.9) ‖Ak‖ ≤
e2

4
(k +1)2, k ≥ 2.

Let F(z) = (1/r) f (rz) = z+∑
∞
k=2 βk(zk) for z∈Bn and r∈ (0,1), then βk = rk−1Ak,k≥ 2.

In view of (2.9), direct computation yields that
∞

∑
k=2

k2‖βk‖ ≤
∞

∑
k=2

k2 e2

4
(k +1)2 · rk−1 = e2

[
r2 +4r +1
(1− r)5 −1

]
≤ 1

for r ∈ (0,r1], where r1 is the root in (0,1) of the equation (2.8). Hence by Lemma 1.3, we
obtain that F is convex on Bn, thus f is convex on Bn

r1
, and rc(S∗(Bn))≥ r1.
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Finally, we verify that rc(S∗(Bn))≤
√

3/9. To this end, let

f0(z) =

(
z1 +

3
√

3
2

z2
n,z2, · · · , zn,

)
it is easy to prove that f0(z) ∈ S∗(Bn) (refer to the proof of Example 5 in [11]).

Set

F0(z) =
1
r

f0(rz) =

(
z1 +

3
√

3
2

rz2
n,z2, · · · , zn

)
for z ∈ Bn and r ∈ (0,1). Straightforward computations yield

(DF0(z))−1D2F0(z)(b,b) =
(

3
√

3rz1b2
n,0, · · · ,0

)
, z ∈ Bn, b = (b1,b2, · · · , bn) ∈ Bn.

Therefore for 0 < r ≤
√

3/9, we obtain

‖b‖2−Re〈(DF0(z))−1D2F0(z)(b,b),z〉= ‖b‖2−Re(3
√

3rz1b2
n)

≥ ‖b‖2−3
√

3r|z1||bn|2

≥ ‖b‖2(1−3
√

3r)≥ 0

for all z = (z1,z2, · · · , zn)∈Bn, b∈Cn and Re〈z,b〉= 0. Hence in view of (1.1) we conclude
that F0(z) is convex in Bn for 0 < r ≤

√
3/9.

If r >
√

3/9, we may find z1 ∈U such that z1r >
√

3/9. Moreover, if z =(z1,0, · · · ,0),b =
(0, · · · ,0,1), then Re〈z,b〉= 0 and

‖b‖2−Re〈(DF0(z))−1D2F0(z)(b,b),z〉= 1−3
√

3rz1 < 0.

So F0(z) is convex in Bn if and only if 0 < r ≤
√

3/9, and thus f0(z) is convex in Bn
r if and

only if 0 < r ≤
√

3/9. Hence rc(S∗(Bn))≤
√

3/9, and the proof is complete.

Remark 2.3. From Theorem 2.3, we know that rc(S∗(Bn)) ≤
√

3/9 ≈ 0.19245 < 2−
√

3,
and the conjecture proposed in [13] that rc(S∗(Bn)) = 2−

√
3 is not right when n ≥ 2 (see

also [5, Example 3.5]).

Now we consider the radius problems associated with the following sets (see[3]):

Fn =
{

f (z) = z+
∞

∑
k=2

Ak(zk) ∈ H(Bn) : ‖Ak‖ ≤ 1
}

and

Gn =
{

f (z) = z+
∞

∑
k=2

Ak(zk) ∈ H(Bn) : ‖Ak‖ ≤ k
}

.

In [3], the following result was obtained.

Theorem 2.4. [3]
(1) If f ∈ Gn, then f is starlike on Bn

r1(Gn) and r∗(Gn)∈ [r1(Gn),ru(Gn)], where r1(Gn) =
0.12038··· is the unique solution in (0,1) of the equation

2r3−6r2 +9r−1 = 0,

and ru(Gn) = 0.16487··· is the unique solution in (0,1) of the equation

1+ r = 2(1− r)3.
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(2) If f ∈ Fn, then f is starlike on Bn
r2(Fn) and r∗(Fn) ∈ [r2(Fn),ru(Fn)], where

ru(Fn) = 1− 1/
√

2 = 0.29289··· and r2(Fn) = 0.21922··· is the unique solution
in (0,1) of the equation

2r2−5r +1 = 0.

Theorem 2.5. Let α ∈ [0,1) and B(α) is defined by (2.7).

(1) If f ∈ Gn, then f is starlike of order α on Bn
r3(Gn,α), where r3(Gn,α) is the unique

solution in (0, 1) of the equation

(2.10) (B(α)+1−α)r3−3(B(α)+1−α)r2 +(3B(α)+4−2α)r−B(α) = 0.

(2) If f ∈Fn, then f is starlike of order α on Bn
r4(Fn,α), where

(2.11) r4(Fn,α) = 1+
α−

√
(α−2)2 +4B(α)

2(B(α)−α +1)
.

Proof. (1) If f (z) = z+∑
∞
k=2 Ak(zk) ∈ Gn, let h(z) = f (rz)/r for z ∈ Bn,r ∈ (0,1), then we

have h(z) = z+∑
∞
k=2 rk−1Ak(zk). Since

∞

∑
k=2

(k−α)rk−1‖Ak‖ ≤
∞

∑
k=2

k(k−α)rk−1 =
1+ r

(1− r)3 −1−α
2r− r2

(1− r)2 ≤ B(α)

if and only if

(B(α)+1−α)r3−3(B(α)+1−α)r2 +(3B(α)+4−2α)r−B(α)≤ 0.

From Corollary 2.2, we obtain h ∈ S∗(α,Bn), which implies that f is starlike of order α on
Bn

r3(Gn,α).

(2) If f (z) = z + ∑
∞
k=2 Ak(zk) ∈Fn, also let h(z) = f (rz)/r for z ∈ Bn,r ∈ (0,1), then we

have h(z) = z+∑
∞
k=2 rk−1Ak(zk). Since

∞

∑
k=2

(k−α)rk−1‖Ak‖ ≤
∞

∑
k=2

(k−α)rk−1 =
2r− r2

(1− r)2 −α
r

1− r
≤ B(α)

if and only if
(B(α)−α +1)r2− (2B(α)+2−α)r +B(α)≥ 0.

Since (B(α)−α +1)r2−(2B(α)+2−α)r+B(α)≥ 0 for 0 < r≤ r4(Fn,α), by Corollary
2.2, we obtain h ∈ S∗(α,Bn), which implies that f is starlike of order α on Bn

r4(Fn,α). This
completes the proof.

Remark 2.4. Let α = 0 in Theorem 2.5, by a simple calculation, we have r3(Gn,0) =
0.1526··· and r4(Fn,0) = 0.27345···, which improves Theorem 2.4 or Theorem 4.2 in [3].
Hence

r3(Gn,0) = 0.1526··· ≤ r∗(Gn)≤ ru(Gn) = 0.16487···

and

r4(Fn,0) = 1−
√

5−2
√

5 = 0.27345··· ≤ r∗(Fn)≤ ru(Fn) = 1−1/
√

2 = 0.29289···.
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3. Sufficient condition in complex Hilbert spaces

Suppose that X is a complex Hilbert space with product 〈·, ·〉 and norm ‖ · ‖ =
√
〈·, ·〉, and

B = {z ∈ X : ‖z‖< 1} is the unit ball in X .
A mapping f is in S∗m(α,B) if and only if f (z) = z + ∑

+∞

k=m+1 Ak(zk) is a locally biholo-
morphic mapping on B and satisfies the following inequalities∣∣∣∣ 1

‖z‖2 〈D f (z)−1 f (z),z〉− 1
2α

∣∣∣∣< 1
2α

, z ∈ B\{0}

for 0 < α < 1 and
Re〈D f (z)−1 f (z),z〉> 0, z ∈ B\{0}

for α = 0. We call the biholomorphic mapping f ∈ S∗m(α,B) starlike of order α .

Lemma 3.1. [9] Let α ∈ [0,1) and Mm(α) is given by (1.2). If f (z) = z+∑
+∞

k=m+1 Ak(zk) is
a locally biholomorphic mapping on B and satisfies the following inequality

‖D f (z)− I‖ ≤Mm(α)

for all z ∈ B, where I is the identity operator on X, then f ∈ S∗m(α,B).

With the aid of Lemma 3.1, applying the similar method of Theorems 2.1 and 2.2, we
may obtain the following theorem.

Theorem 3.1. Let f (z) = z+∑
∞
k=2 Ak(zk) be a holomorphic mapping on B. If

(3.1)
∞

∑
k=2

(k−α)‖Ak‖ ≤ B(α),

where B(α) is defined by (2.7), then f ∈ S∗(α,B).

Remark 3.1. Setting α = 1/2 in Theorem 3.1, we get Theorem 5.3 in [3].
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