
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 35(2) (2012), 247–256

Scaling on Diagonal Quasi-Newton Update for Large-Scale
Unconstrained Optimization

1WAH JUNE LEONG, 2MAHBOUBEH FARID AND 3MALIK ABU HASSAN
1 ,3Department of Mathematics, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
1leong@math.upm.edu.my, 2mahboubeh farid@yahoo.com, 3malik@math.upm.edu.my

Abstract. Diagonal quasi-Newton (DQN) methods are a class of quasi-Newton methods
which alter the standard quasi-Newton updates of approximations to the Hessian or its in-
verse to diagonal updating matrices. Most often, the updating formulae for this class of
methods are derived by the variational approach. A major drawback under this approach is
that the derived diagonal matrix may suffer from the loss of positive definiteness and thus it
may not be appropriate for use within a descent-gradient algorithm. Previous strategies to
overcome this difficulty concentrated on skipping or restarting the non-descent steps. Do-
ing so would abandon the second derivative information that is found on the previous step
and consequently, the speed of convergence is usually slower than it would be without these
remedies. Hence the present paper intends to propose a simple yet effective remedy to over-
come the difficulty that gives arise non-positive-definite updating matrices in the variational
based DQN methods. To this end we find that by incorporating an appropriate scaling for
the diagonal updating, it improves step-wise convergence while avoiding non-positive defi-
niteness of the updates. Finally, the new DQN method is tested for computational efficiency
and stability on numerous test functions, and the numerical results indicate clear superiority
over the current methods.
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1. Introduction

Quasi-Newton (QN) methods are considered to be the most efficient methods for solving
unconstrained optimization problems of the form:

(1.1) min f (x),

where x ∈Rn and f ∈ C 2. In QN methods, the basic recursion is analog to the one used in
Newton-Raphson method having the form:

(1.2) xk+1 = xk−αkB−1
k gk.
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In this recursion, αk is the stepsize selected to ensure some convergence criteria, while the
kth search direction dk is given by−B−1

k gk where gk = g(xk) =5 f (xk) is the gradient vector
of f (x) and Bk is usually some matrix approximation to the Hessian matrix Gk =52 f (xk)
at xk, the kth approximation to the solution. The approximations Bk are deferred from the
gradients at previous iterations and updated as new gradients become available so as to
satisfy the QN equation

(1.3) Bksk−1 = yk−1

where sk−1 = xk− xk−1 and yk−1 = gk−gk−1.
This paper is devoted to a class of QN methods that uses some diagonal matrices to

approximate the Hessian. The approach underlying such approximation over here was orig-
inated by Nazareth [10, 11] where the diagonal approximation is derived based upon the
least change weak secant updating strategy of Dennis and Wolkowicz [5] with the added re-
striction that full matrices are replaced by diagonal matrices. Updating schemes that utilize
this approach are then considered by Zhu et al. [13] and in particular, the variants that re-
quire no linesearch are developed by Leong et al. [8] and Hassan et al. [7]. In this approach,
the variational technique that is employed in the generation of Powell Symmetric Broyden
(PSB) and symmetric rank one (SR1) quasi-Newton updates (see, for example Dennis and
Schnabel [4]) is utilized to derive the diagonal updating formulae. QN property is incorpo-
rated within the variational problem and the resulting updating formulae belong to a class
of least change secant updates that are numerically more stable. Like their counterpart of
PSB and SR1 updates in the quasi-Newton setting, a major drawback under this approach is
that the updated diagonal matrix may suffer from the loss of positive definiteness. Although
various measures have been considered by Leong et al. [8], Hassan et al. [7], and Zhu et
al.[13] to encounter this limitation, they are generally not very effective (see Section 2 for
details). Hence, the main aim of this paper is to propose a simple yet effective remedy for
it.

The paper is organized as follows. In Section 2, we formulate and provide short solutions
for the variational problems stated in Zhu et al. [13], Leong et al. [8] and Hassan et al. [7]
that give the diagonal updating formulae. Section 3 discusses the situation where non-
positive-definiteness might occur and propose an effective measure for the difficulty. It
follows by computational results in Section 4 to illustrate the merit of our remedy.

2. Diagonal quasi-Newton methods via variational approach

Assume that Dk is positive definite, and let {yk} and {sk} be two sequences of n-vectors
such that yT

k sk > 0 for all k. Because it is usually difficult to satisfy the QN equation,
Dk+1sk = yk with a nonsingular matrix of the diagonal form, one can consider to satisfy it
in some directions. By projecting the QN equation (1.3) (also called the secant equation),
in a direction υ such that yT

k υ 6= 0 gives

(2.1) sT
k Bk+1υ = yT

k υ .

If υ = sk is chosen, it leads to the so-called weak-secant relation, which was introduced by
Dennis and Wolkowicz [5]:

(2.2) sT
k Bk+1sk = yT

k sk.
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Under this weak-secant equation, Zhu et al. [13] and Leong et al. [8] employ inde-
pendently, a variational technique that is analogue to the one used to derive the Powell
Symmetric Broyden (PSB) quasi-Newton update (see, for example Dennis and Schnabel
[4]) for approximating the Hessian matrix diagonally. The resulting update is derived to be
the solution of the following variational problem:

V P1 : min
1
2
‖Dk+1−Dk‖2

F

s.t. sT
k Dk+1sk = sT

k yk

and Dk+1 is diagonal

and gives the corresponding solution Dk+1 as follows:

(2.3) Dk+1 = Dk +

(
sT

k yk− sT
k Dksk

)

tr(E2
k )

Ek,

where Ek =diag
(

s2
k,1,s

2
k,2, . . . ,s

2
k,n

)
, sk,i is the ith component of the vector sk and tr denotes

the trace operator.
Analogously, one can also project the inverse equation, B−1

k+1yk = sk in the direction
υ = yk to obtain the weak-quasi-Newton equation:

(2.4) yT
k B−1

k+1yk = sT
k yk.

Using (2.4), Hassan et al. [7] derive the diagonal updating formula for approximating the
inverse of Hessian matrix directly as the solution of the following variational problem:

V P2 : min
1
2
‖Uk+1−Uk‖2

F

s.t. yT
k Uk+1yk = yT

k sk

and Uk+1 is diagonal

and leads to the solution Uk+1, which is given as

(2.5) Uk+1 = Uk +

(
yT

k sk− yT
k Ukyk

)

tr(G2
k)

Gk,

where Gk =diag
(

y2
k,1,y

2
k,2, . . . ,y

2
k,n

)
and yk,i is the ith component of the vector yk.

Note that when sT
k yk < sT

k Dksk (or yT
k sk < yT

k Ukyk), the resulting Dk+1 (or Uk+1) is not
necessarily positive definite. Hence, like their counterpart of PSB update in the quasi-
Newton setting, the foregoing update does not preserve positive definiteness and thus it is
not appropriate for use within a quasi-Newton-based algorithm.

To address this difficulty, various approaches are considered (see for example, [13], [8],
[7]). The first approach is proposed by Zhu et al. [13], where they choose to update the
square root or Cholesky factor D1/2, instead of D. The updating formula for Dk+1 is then
derived as follows:

(2.6) Dk+1 =
{

Dk, if sT
k Dksk = yT

k sk,
(I + µ∗k Ek)−2Dk, otherwise,

where µ∗k is the largest solution of the following nonlinear equation:

(2.7) sT
k (I + µEk)−2Dksk = sT

k yk.
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As the approach requires the solution of a nonlinear equation at each iteration, when n is
large, this strategy would probably cause numerical difficulties. This limits the approach
toward solving only small problems. Due to the complexity in computing (2.6), Leong et
al. [8] proposed to use the following simple updating formula for Dk+1:

(2.8) Dk+1 =

{
Dk + (sT

k yk−sT
k Dksk)

tr(E2
k )

Ek, if Dk + (sT
k yk−sT

k Dksk)
tr(E2

k )
Ek > 0,

Dk, otherwise.

The idea is to replace Dk+1 by Dk, which is supposed to be positive-definite whenever Dk+1
is not. However, one can see that the resulting Dk+1 will no longer obey the weak-QN
relation if Dk+1 = Dk is used. This limitation leads to the last approach where Hassan et al.
[7] proposed to use the following updating formula:

(2.9) Dk+1 =





Dk + (sT
k yk−sT

k Dksk)
tr(E2

k )
Ek, if Dk + (sT

k yk−sT
k Dksk)

tr(E2
k )

Ek > 0,

yT
k sk

yT
k yk

I, otherwise.

This updating scheme is equivalent to restart the updating by (yT
k sk/yT

k yk)I if Dk+1 > 0 is
violated. It is interesting to note that (yT

k sk/yT
k yk)I is precisely the unique matrix that would

be obtained from the solution of V P1 with the updating matrix is further restricted to a scalar
multiple of identity matrix. Hence, the updating matrix of (2.9) will satisfy the weak-QN
equation. However when the updating scheme is restarted, information stored during the
updating process for Dk may be lost. In fact, both attempts recommended by Leong et al.
[8] and Hassan et al. [7] will abandon the second derivative information that is found on the
previous step and consequently the speed of convergence is usually slower than it would be
without the skipping/restart.

Motivated by the weaknesses in the existing approaches in handling non-positive-definite
updates, we propose a new approach through a scaling strategy (multiplying the approxi-
mate Hessian by an appropriate scalar before it is updated) to cater for the weakness. In
the following section, we introduce our scaling and present some properties concerning our
scaling.

3. Scaling for the diagonal quasi-Newton update

For brevity, let us denote

(3.1) Λk =

(
sT

k yk− sT
k Dksk

)

tr(E2
k )

Ek.

and thus, the diagonal updating (2.3) can be expressible as Dk+1 = Dk + Λk. Firstly, note
that the curvature of an objective function, f can be written as

(3.2) sT
k Ḡksk = sT

k yk,

where Ḡk =
∫ 1

0 ∇2 f (xk + tsk)dt is the average of Hessian along sk. Since it is not practical
to compute the eigenvalues of Ḡk in each iteration, we can estimate their size relatively
to those of Dk on the basis of two useful quantities Qk and qk, where Qk is the Rayleigh
quotient of Ḡk:

(3.3) Qk =
sT

k Ḡksk

sT
k sk

=
sT

k yk

sT
k sk
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and qk is the Rayleigh quotient of Dk:

(3.4) qk =
sT

k Dksk

sT
k sk

with respect to sk. Thus, an approximation of their relative size may be constructed, on the
basis of the scalar

(3.5) θk =
Qk

qk
=

sT
k yk

sT
k Dksk

.

If θk > 1, we can say that the eigenvalues of Dk are relatively small when compared to those
of the local Hessian matrix. In addition having θk > 1 is also equivalent to have sT

k yk −
sT

k Dksk > 0 and it follows that the corresponding Λk is positive (semi-)definite. Hence, one
can see that the diagonal updating (2.3) has a self-correcting property in increasing the size
of the eigenvalues by adding a positive (semi-)definite Λk on Dk and the resulting Dk+1 =
Dk +Λk will also be positive-definite. Conversely, if θk < 1 or equivalently the eigenvalues
of Dk are relatively large, we have that sT

k yk − sT
k Dksk < 0 and subsequently it leads to a

negative (semi-)definite Λk. The self-correcting property acts by reducing the eigenvalues of
Dk through adding a negative definite matrix on Dk of magnitude |sT

k yk−sT
k Dksk|. However,

by reducing the eigenvalues (or diagonal elements) of Dk at the same magnitude may cause
some diagonal entries to be over-reduced to become negative. This leads to the present
of non-positive definite Dk+1. Thus modifying the updating formula (2.3) seems desirable
when the size of the eigenvalues of Dk is estimated to be large (i.e. when θk < 1). In the
following, we try to seek further correction to the large eigenvalues so that the updated Dk+1
may maintain positive definiteness.

In order to define our strategy, we first describe the so-called scaled diagonal updating
formula. The scaled diagonal updating formula is exactly the diagonal updating formula
(2.3), except that Dk is replaced by σkDk:

(3.6) Dk+1 = σkDk +

(
sT

k yk−σksT
k Dksk

)

tr(E2
k )

Ek,

where σk is a scaling parameter. If a scaling that is less than or equal to 1 is chosen, Al-Baali
[1] showed that a scaled quasi-Newton method will maintain the same convergence property
that the original quasi-Newton method has on convex objective functions. Generally, there
are two influences that fight against each other in selecting our scaling parameter. First, we
observe that scaling may be employed when θk < 1. Because choosing a value of σk < 1
decreases the eigenvalues of Dk instantly when Dk is scaled by σk. Thus, in this case, the
scaled diagonal updating formula has a stronger ”reducing” property on large eigenvalues
than that of the unscaled diagonal updating formula (2.3). For this purpose, we propose to
use the Oren-Luenberger scaling factor [12]:

σk = θk =
sT

k yk

sT
k Dksk

.

On the other hand when θk ≥ 1, scaling is not needed as a scaling that greater than 1 will
worsen the situation and may also violate the convergence of the original algorithm. There-
fore, we can involve our scaling parameter as

(3.7) σk = min(θk,1) .



252 W. J. Leong, M. Farid and M. A. Hassan

Hence, (3.6) becomes

(3.8) Dk+1 =





(
sT
k yk

sT
k Dksk

)
Dk, if θk < 1,

Dk + (sT
k yk−sT

k Dksk)
tr(E2

k )
Ek, if θk ≥ 1.

Finally, by combining the feature of scaling to the monotone algorithm of Hassan et al.
[7] gives our method:

SMDQN Method:

Step 0. Given an initial point x0 and a positive definite diagonal matrix D0. Set k = 0.
Step 1. If ‖gk‖ ≤ ε then stop.
Step 2. If k = 0, compute x1 = x0− g0/‖g0‖. Else if k ≥ 1, compute xk+1 = xk −D−1

k gk
where Dk is given by (3.8) (with the index k +1 is replaced by k) and update Dk+1.

Step 3. Let dk,m, dk,M , dk+1,m and dk+1,M be the smallest and largest diagonal entry of Dk
and Dk+1, respectively. Check whether dk,m > dk+1,M/2 holds. If yes, set Dk+1 = ρI
where ρ = min{(0.99dk,M)/(2d 2

k,m),(sT
k yk)/(sT

k sk)}. Otherwise retain Dk+1 that is
computed in Step 2.

Step 4. Set k := k +1 and return to step 1.

The SMDQN method is exactly the method of Hassan et al., except that (3.8) is employed
to update Dk. Both of these methods belong to a class of diagonal quasi-Newton methods
that do not require linear searches. To get insights into the effect of scaling in algorithmic
behaviors, we examine the performance of three methods, include MDQN-I, MDQN-II and
SMDQN method in solving the Generalized PSC1 test problem with n = 100 [2]:

(1) MDQN-I method: SMDQN method with Dk in Step 2 is given by (2.8) (with index
k +1 be replaced by k).

(2) MDQN-II method: SMDQN method with Dk in Step 2 is given by (2.9) (with
index k +1 be replaced by k).

(3) SMDQN method.

We do not consider the strategy of Zhu et al. [13] in here as we believe that the strategy is not
practical for solving large-scale problems, which are the target group of such methods. The
performance of these methods is measured by computing the number, log | f (xk)− f (x∗)|,
where x∗ is the minimizer of the function, which the number measures the magnitude of
decrease on the objective function in logarithmic scale. Figure 1 illustrates behaviors of the
selected algorithms on the minimization. From the figure, one can observe that although
the scaling does not alter the trajectory of the DQN direction, it ensures the speed of con-
vergence is higher when compares to that with the skipping/restart (SMDQN method is
approximately 90% and 120% faster than that with restarts and skipping, respectively).

4. Convergence analysis

The property of not requiring linear searches is a very important one for much of the effort
expended by optimization methods often is spent on these one dimensional minimizations
for obtaining the optimal steplength.

In this section, we will consider the convergence of SMDQN method in minimizing a
strictly convex quadratic function, f with a constant positive definite Hessian A under some
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Figure 1. Comparison of the methods: log | f (xk)− f (x∗)| vs number of iterations

specific conditions. This is important for it usually also implies convergence for a twice-
differentiable nonlinear function within a neighborhood of a local minimum. We shall give
the convergence of the SMDQN method as follows:

Theorem 4.1. Consider the minimization of a strictly convex quadratic function, f with
positive definite constant Hessian A. Let {xk} be a sequence generated by the SMDQN
method and x∗ is a unique minimizer of f . Then either gk = 0 holds for some finite k ≥ 1 or
limk→∞ ‖gk‖= 0. Moreover, {xk} converges R−linearly to x∗.

Proof. By Taylor expansion and the fact sT
k Ask = sT

k Dk+1sk, we have

f (xk−D−1
k gk) = f (xk)−gT

k D−1
k gk +

1
2

gT
k D−1

k Dk+1D−1
k gk

= f (xk)−gT
k D−1

k DkD−1
k gk +

1
2

gT
k D−1

k Dk+1D−1
k gk

≤ f (xk)−
(

dk,m−
dk+1,M

2

)
d−2

k,M‖gk‖2.(4.1)

If ‖gk‖ = 0, then the first part of the proof is completed. Thus, we assume that gk 6= 0 for
all finite k. Note that if the condition

(4.2) dk,m−
dk+1,M

2
> 0

holds, we have that f (xk+1) ≤ f (xk) for all finite k. Else if (4.2) is violated, by Step 3 of
SMDQN method, we obtain

f (xk−D−1
k gk)≤ f (xk)−

(
dk,m−

ρd 2
k,M

2

)
d−2

k,M‖gk‖2,

where ρ is defined as in Step 3 of the SMDQN method. One can see that our choice of
ρ will lead to dk,m− (ρd 2

k,M)/2 > 0. This implies that in both occasions, f (xk+1) ≤ f (xk)
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holds for all finite k. Since f is bounded below, we have f (xk)− f (xk+1)→ 0, when k→ ∞
and this also implies that limk→∞ ‖gk‖= 0.

Furthermore, the strictly convexity of f implies that we can bound f (x∗):

(4.3) f (x)− 1
2λm

‖g(x)‖2 ≤ f (x∗)≤ f (x)− 1
2λM

‖g(x)‖2,

where λm and λM are the smallest and largest eigenvalues of A, respectively. It follows that
‖gk‖2 ≥ 2λm( f (xk)− f (x∗). Thus, (4.1) becomes

(4.4) f (xk+1)− f (x∗)≤ h( f (xk)− f (x∗)),

where h = 1− cλm with either c =
(

dk,m− dk+1,M
2

)
d−2

k,M or c = dk,m− (ρd 2
k,M)/2. Note that

as cλm > 0 and f (xk+1)≤ f (xk), we must have 0 < h < 1 for all k. Therefore the sequence
{xk} converges R−linearly to x∗.

Note that if (4.2) is violated, this means that some eigenvalues of Dk, in particular those
nearby dk,m are relatively too small when compared with those of A. Although the self-
correcting property of the updating formula can augment the eigenvalues of Dk to give
Dk+1, the situation of under-augmented for the eigenvalues that close to dk,m might occur
and hence, causes nonmonotone in { f (xk)}.

5. Numerical results

To further illustrate the capability of the methods, we solve a set of 30 standard uncon-
strained optimization problems available in CUTE [3], Moré et al. [9] and Andrei [2] with
dimension varying from 10 up to 10000.

Table 1. Test problem and its dimension

Test functions (Dimensions)

Freudenstein and Roth, Extended Trigonometric, Extended Beale, Raydan 2,
Diagonal 5, Extended Himmelblau, Generalized Rosenbrock, Extended PSC1
Generalized PSC1, Hager, Generalized Tridiagonal 1,
Extended Three Exponential Terms, Generalized Tridiagonal 2,
Extended Block Diagonal BD1, Quadratic QF2, Extended Tridiagonal 2
Penalty 1, Penalty 2, Full Hessian FH2, EG2, Raydan 1, Diagonal 1,
Diagonal 2, Broyden Tridiagonal (n = 10,100,1000,10000)
Diagonal 4, Perturbed Quadratic, Diagonal 3, Almost Perturbed Quadratic,
Tridiagonal Perturbed Quadratic (n = 10,100,1000)

The full description of these test problems can be found in [2]. All algorithms are coded
in MATLAB 7.0 and are executed on a workstation with dual-processors. All runs are ter-
minated when ‖gk‖ ≤ 10−5. The routine is also forced to stop when the number of iteration
exceeds 1000 or CPU time exceeds 104 seconds. The performances of these methods, rela-
tive to iteration and CPU time, are given in in Figures 2 and 3 using the profiling of Dolan
and Morè [6]. We observed from the results that the SMDQN algorithm obtains an im-
provement over both MDQN-I and MDQN-II methods with an average of 45% and 20%
decreases in number of iterations, respectively.
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Figure 2. Comparison of the methods: number of iterations
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Figure 3. Comparison of the methods: CPU time per iteration

6. Conclusion

This paper suggests a technique to rapidly control large eigenvalues of the diagonal quasi-
Newton matrix by scaling the current approximation before updating it. This leads to a
simple way in preserving positive definiteness of a DQN updating. The usefulness of our
scaling approach within the diagonal quasi-Newton updating, when computational cost is
at premium, has been fully demonstrated. Nonetheless, SMDQN algorithm strikes a good
compromise for large scale application because it has low time and memory requirements
per iteration.
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