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Abstract. Let A denote the family of all analytic functions f in the unit disk D with the
normalization f (0) = 0 = f ′(0)− 1. Define S = { f ∈ A : f is univalent in D}, U =
{ f ∈A :

∣∣ f ′(z)(z/ f (z))2−1
∣∣< 1 for z ∈ D}, and P(1/2) = { f ∈A : Re( f (z)/z) > 1/2

for z ∈ D}. In this paper, we determine the radius of univalency of F(z) = z f (z)/g(z) when-
ever f ∈S or U , and g ∈S or P(1/2). Based on our investigations, we conjecture that
F is univalent in the disk |z| < 1/3 whenever f ∈S and g ∈P(1/2). We also conjecture
that F is univalent in the disk |z|<

√
5−2 whenever both f and g are in S .
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1. Introduction

Let A denote the family of all analytic functions in the unit disk D := {z ∈C : |z|< 1} and
satisfying the normalization f (0) = 0 = f ′(0)−1. Let

S = { f ∈A : f is univalent in D}.
We say that a function f ∈ S is starlike if f (D) is a domain with the property that the
segment [0,w] := {tw | 0 ≤ t ≤ 1} ⊂ f (D) for each w ∈ f (D). Let U denote the set of all
f ∈A satisfying the condition ([5, 6])∣∣∣∣∣ f ′(z)

(
z

f (z)

)2

−1

∣∣∣∣∣< 1 for z ∈ D.

Functions in U are known to be univalent in D, but functions in S are not necessarily
belong to the class U . Moreover, functions in U are not necessarily starlike (see [2]).
Later, several generalizations of the class U were investigated (see eg. [9]). It would be
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interesting to consider the harmonic analog of this class and other related classes. For some
aspects of planar harmonic mappings, we refer to [1] and the references therein. On the
other hand, the class U has many properties in common with the classical subclasses of S ,
eg. Koebe function z/(1− z)2 belongs to both the classes. Set

U2 = { f ∈U : f ′′(0) = 0}.
It is known that each function in U2 is included in the class P(1/2), where

P(1/2) = { f ∈A : Re( f (z)/z) > 1/2 for z ∈ D} .
We remark that K ⊂P(1/2), where K denotes the class of all functions f ∈S that are
convex, i.e. f (D) is a convex domain.

Throughout the paper the function F is defined by

(1.1) F(z) =
z f (z)
g(z)

,

where f will be either in S or in U , and g ∈ A will be suitably chosen so that g(z)/z is
non-vanishing in the unit disk D. One of the aims of this article is to find r0 ∈ (0,1] such
that the function F defined by (1.1) is univalent in the disk |z| < r0. In each case, largest
value of the number r0 satisfying the desired conclusion is an open question.

The proofs of the results rely on recent results of the first two authors, and a careful use
of power series method. It seems that there exists no other method through which one can
obtain the results of this paper. Finally, we state two conjectures concerning the radius of
univalency of F .

We now state our main results.

Theorem 1.1. Let f ∈U and g∈P(1/2). Then the function F defined by (1.1) is univalent
in the disk |z|< r0, where

r0 =
−
√

6+
√

18+π
√

6
2
√

6+π
≈ 0.325793.

Theorem 1.2. Let f ∈U and g ∈S . Then the function F defined by (1.1) is univalent in
the disk |z|< r0, where

r0 =
2

3+
√

25+8π/
√

6
≈ 0.223763.

Theorem 1.3. Let f ∈S and g∈P(1/2). Then the function F defined by (1.1) is univalent
in the disk |z|< r0, where r0 = 0.315449 · · · is the smallest root of the equation

4r5 +6r4−8r3−4r2 +5r−1 = 0,

that lies in the interval (0,(
√

3−1)/2).

It is now appropriate to consider

f (z) =
z

(1+ z)2 and g(z) =
z

1− z
.

Then
z

F(z)
=

g(z)
f (z)

=
(1+ z)2

1− z
= (1+2z+ z2)(1+ z+ z2 + · · ·)
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and therefore,
z

F(z)
= 1+3z+4

∞

∑
n=2

zn.

We see that the Taylor coefficients of z/F(z) are all positive and

rz
F(rz)

= 1+3rz+4
∞

∑
n=2

rnzn.

According to Lemma 2.2 (below), G defined by G(z) = r−1F(rz) is univalent in D if and
only if

4
∞

∑
n=2

(n−1)rn =
4r2

(1− r)2 ≤ 1, i.e. (3r−1)(r +1)≤ 0.

This gives r ∈ (0,1/3] and thus, F is univalent in the disk |z|< 1/3. This example leads to

Conjecture 1.1. Suppose that f ∈ S and g ∈P(1/2) (or more generally, g ∈ A with
g(z)/z 6= 0 with |g(k)(0)| ≤ k! for k = 2,3,4, . . .). Then the function F defined by (1.1) is
univalent in the disk |z|< 1/3.

We now state our final result.

Theorem 1.4. Let f ,g ∈S . Then the function F defined by (1.1) is univalent in the disk
|z|< r0, where r0 = 0.21734 · · · is the root of the equation

20r5 +16r4−23r3−7r2 +7r−1 = 0

in the interval (0,1).

In order to state our next conjecture, we consider

f (z) =
z

(1+ z)2 , g(z) =
z

(1− z)2 and G(z) = r−1F(rz).

Then, we have

z
F(z)

=
g(z)
f (z)

=
(

1+ z
1− z

)2

= (1+2z+ z2)(1+2z+3z2 + · · ·)

so that
z

F(z)
= 1+4z+4

∞

∑
n=2

nzn.

Again, the Taylor coefficients of z/F(z) are all positive and

rz
F(rz)

= 1+4rz+4
∞

∑
n=2

nrnzn.

According to Lemma 2.2, G is univalent in D if and only if

4
∞

∑
n=2

(n−1)nrn =
8r2

(1− r)3 ≤ 1.

The last inequality is equivalent to

r3 +5r2 +3r−1 = (r +1)(r2 +4r−1)≤ 0
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which gives 0 < r ≤ r0 =
√

5− 2 ≈ 0.236068, where r0 is the unique positive root of the
equation r2 +4r−1 = 0 in the interval (0,1). Thus, F is univalent in the disk |z|<

√
5−2.

This example leads to

Conjecture 1.2. Suppose that f ,g ∈ S (more generally, g ∈ A with g(z)/z 6= 0 and
|g(k)(0)| ≤ k(k!) for k = 2,3,4, . . .). Then the function F defined by (1.1) is univalent in
the disk |z|<

√
5−2.

It is worth reminding that the sharpness of the radius r0 in Theorems 1.1–1.4 is open.
Also, it would be interesting to investigate similar problems for holomorphic functions of
several variables (see eg. [4]).

2. Preliminary lemmas

For the proofs of our results, we need the following lemmas.

Lemma 2.1. Let φ(z) = 1+∑
∞
n=1 bnzn be a non-vanishing analytic function on D and let f

be of the form

f (z) =
z

φ(z)
=

z
1+∑

∞
n=1 bnzn .

Then, we have the following:

(a) If ∑
∞
n=2(n−1)|bn| ≤ 1, then f ∈U .

(b) If ∑
∞
n=2(n−1)|bn| ≤ 1−|b1|, then f ∈S ∗.

(c) If f ∈U , then ∑
∞
n=2(n−1)2|bn|2 ≤ 1.

The conclusion (a) in Lemma 2.1 is from [5, 8] whereas the (b) is due to Reade et al.
[10, Theorem 1]. Finally, if f ∈U , then we have∣∣∣∣∣ f ′(z)

(
z

f (z)

)2

−1

∣∣∣∣∣=
∣∣∣∣−z

(
z

f (z)

)′
+

z
f (z)
−1
∣∣∣∣=
∣∣∣∣∣ ∞

∑
n=2

(n−1)bnzn

∣∣∣∣∣≤ 1

and so the inequality
∞

∑
n=2

(n−1)2|bn|2 ≤ 1

follows from Prawitz’/Parseval’s theorem. We remark that Prawitz’ theorem is an immediate
consequence of Gronwall’s area theorem. Thus, (c) follows.

Next we recall the following result due to Obradović and Ponnusamy [7].

Lemma 2.2. Let f ∈A have the form
z

f (z)
= 1+b1z+b2z2 + · · · with bn ≥ 0 for all n≥ 2

and for all z in a neighborhood of z = 0. Then we have the following equivalence:

(a) f ∈S

(b) f (z) f ′(z)
z 6= 0 for z ∈ D

(c) ∑
∞
n=2(n−1)bn ≤ 1

(d) f ∈U .
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3. Proofs

Consider the function F defined by (1.1), where f ∈S and g ∈A such that g(z)/z 6= 0 in
D. Because f ∈S , we can express z/ f (z) as

z
f (z)

= 1+b1z+b2z2 + · · · .

We may let
g(z) = z+ c2z2 + c3z3 + · · · .

In view (1.1), we may rewrite F as

z
F(z)

=
(
1+b1z+b2z2 + · · ·

)(
1+ c2z+ c3z2 + · · ·

)
= 1+

∞

∑
n=1

Bnzn (say),

where

Bn =
n

∑
k=0

bkcn−k+1 (b0 = c1 = 1)

and by assumption z/F(z) 6= 0 in D. Also, we observe that

(3.1) |Bn| ≤ |cn+1|+ |b1| |cn|+
n

∑
k=2
|bk| |cn−k+1|.

Now, for r ∈ (0,1], we define G by

(3.2) G(z) = r−1F(rz)

and consider the function
rz

F(rz)
= 1+

∞

∑
n=1

Bnrnzn.

In order to prove that F is univalent in |z|< r0, it suffices to show that G∈U for 0 < r≤ r0.
According to Lemma 2.1(a), G ∈U for 0 < r ≤ r0 if we can show

(3.3) S(r) :=
∞

∑
n=2

(n−1)|Bn|rn ≤ 1

for 0 < r ≤ r0. The estimation of the left hand side of the relation (3.3) depends on the
condition on the coefficients bn and cn. With this setting, we now consider a number of
special cases that concern our results.
Proof of Theorem 1.1. Let f ∈ U and g ∈P(1/2). Then the Taylor coefficients ck of g
satisfy the condition

|ck| ≤ 1 for all k = 2,3,4, . . ..

By Lemma 2.1(c), we obtain that |b1|= | f ′′(0)/2| ≤ 2 (by the Bieberbach inequality for the
second coefficients of f ∈S ) and

(3.4)
∞

∑
k=2

(k−1)2|bk|2 ≤ 1.

Using the last two inequalities, it follows from (3.1) and the Cauchy-Schwarz inequality
that

|Bn| ≤ 3+
n

∑
k=2
|bk| ≤ 3+

(
n

∑
k=2

(k−1)2|bk|2
) 1

2
(

n

∑
k=2

1
(k−1)2

) 1
2

≤ 3+
π√
6
.
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Using the bound for Bn, the sum S(r) defined by (3.3) yields that

S(r)≤ A
∞

∑
n=2

(n−1)rn = A
r2

(1− r)2 , A = 3+
π√
6
.

Finally, S(r)≤ 1 is satisfied if Ar2 ≤ (1− r)2. This gives 0 < r ≤ r0, where

r0 =
√

A−1
A−1

=
−
√

6+
√

18+π
√

6
2
√

6+π
≈ 0.325793

is the unique positive root of equation (A− 1)r2 + 2r− 1 = 0. Thus, S(r) ≤ 1 whenever
0 < r ≤ r0 and therefore, Gr defined by (3.2) belongs to U for 0 < r ≤ r0. In particular, F
defined by (1.1) is univalent in the disk |z|< r0.

Remark 3.1. It is well-known that the class S ∗(1/2) of starlike functions g of order 1/2
(and hence the class of convex functions) is included in P(1/2). Moreover, if g ∈U with
g′′(0) = 0, then it is known that g ∈P(1/2) (see for example [8]). Finally, we remark that
the conclusion of Theorem 1.1 continues to hold if we relax the condition g ∈P(1/2) by
g ∈A with g(z)/z 6= 0 in D and |g(k)(0)| ≤ k! for k = 2,3,4, . . .. This fact is clear from the
proof of Theorem 1.1.

Proof of Theorem 1.2. Let f ∈U and g ∈S . Then, by the de Branges theorem, the Taylor
coefficients ck of g satisfy the condition

|ck| ≤ k for all k = 2,3,4, . . ..

Using the last inequality and the inequality (3.4) which holds as f ∈ U , it follows from
(3.1) and the Cauchy-Schwarz inequality that (since |b1| ≤ 2)

|Bn| ≤ |cn+1|+2|cn|+
n

∑
k=2
|bk| |cn−k+1|

≤ (n+1)+2n+

(
n

∑
k=2

(k−1)2|bk|2
) 1

2
(

n

∑
k=2

(n− k +1)2

(k−1)2

) 1
2

≤ 3n+1+
√

Cn,

where

Cn :=
n

∑
k=2

(n− k +1)2

(k−1)2 =
n−1

∑
k=1

(n− k)2

k2 = n2
n−1

∑
k=1

1
k2 +(n−1)−2n

n−1

∑
k=1

1
k
.

The fact that
∞

∑
k=1

1
k2 =

π2

6
and

n−1

∑
k=1

1
k
≥ 1

gives the crude estimate

Cn <
π2

6
n2 +(n−1)−2n =

π2

6
n2− (n+1)

so that

Cn <
π2

6
n2 and |Bn|< 3n+1+

π√
6

n = Bn+1, B = 3+
π√
6
.
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Thus, in this case, the sum S(r) given by (3.3) leads to

S(r) <
∞

∑
n=2

(n−1)(Bn+1)rn = B
∞

∑
n=2

(n−1)nrn +
∞

∑
n=2

(n−1)rn =
2Br2

(1− r)3 +
r2

(1− r)2

and therefore, the inequality (3.3) is satisfied if

2Br2

(1− r)3 +
r2

(1− r)2 ≤ 1, i.e. 2(B−1)r2 +3r−1≤ 0.

This gives the condition 0 < r ≤ r0, where

r0 =
−3+

√
1+8B

4(B−1)
=

2
3+
√

1+8B
=

2

3+
√

25+8π/
√

6
≈ 0.223763

is the unique positive root of the equation 2(B− 1)r2 + 3r− 1 = 0 in the interval (0,1).
Thus, G defined by (3.2) belongs to U for 0 < r ≤ r0. In particular, F defined by (1.1) is
univalent in the disk |z|< r0.

Remark 3.2. Clearly, the condition on g ∈S in Theorem 1.2 can be replaced by g ∈ A
with g(z)/z 6= 0 in D and |g(k)(0)| ≤ k(k!) for k = 2,3,4, . . ..

Proof of Theorem 1.3. Let f ∈S and g ∈P(1/2). Then f has the form
z

f (z)
= 1+b1z+b2z2 + · · ·

with |b1| ≤ 2. Moreover, from the well-known Area Theorem [3, Theorem 11 on p.193 of
Vol. 2] we have

∞

∑
k=2

(k−1)|bk|2 ≤ 1,

and, because g ∈P(1/2), it follows that |ck| ≤ 1 for k = 2,3,4, . . .. As in the proof of The-
orem 1.1, using the last three coefficient inequalities, it follows from (3.1) and the Cauchy-
Schwarz inequality that

|Bn| ≤ |cn+1|+2|cn|+
n

∑
k=2
|bk| |cn−k+1|

≤ 3+
n

∑
k=2
|bk|

≤ 3+

(
n

∑
k=2

(k−1)|bk|2
) 1

2
(

n

∑
k=2

1
k−1

) 1
2

≤ 3+
√

Dn,

where

Dn =
n−1

∑
k=1

1
k
.

Next, in view of the inequalities

1
k +1

<
∫ k+1

k

dx
x

= log(k +1)− logk <
1
k
,
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it follows that for n≥ 2,

Dn < logn+
n−1

n
< logn+1 < n

and so, |Bn|< 3+
√

n. Thus, in this case, the sum S(r) defined by (3.3) gives

S(r) <
∞

∑
n=2

(n−1)
(
3+
√

n
)

rn =
3r2

(1− r)2 +
∞

∑
n=2

(n−1)
√

nrn.

Next, we observe that

∞

∑
n=2

(n−1)
√

nrn ≤

(
∞

∑
n=2

(n−1)rn

) 1
2
(

∞

∑
n=2

(n−1)nrn

) 1
2

= r
(

1
(1− r)2

) 1
2

r
(

2
(1− r)3

) 1
2

=
r2

(1− r)2

√
2

1− r
and therefore, the inequality (3.3) is satisfied if

φ(r) :=
3r2

(1− r)2 +
r2

(1− r)2

(
2

1− r

)1/2

−1≤ 0.

This gives the condition 0 < r ≤ r0, where r0 is the smallest root of the equation φ(r) = 0
in the interval (0,1). If we simplify the last equation, we see that this is equivalent to

4r5 +6r4−8r3−4r2 +5r−1 = 0,

and we obtain that the smallest root r0 ≈ 0.315449 lies in the interval (0,(
√

3−1)/2). As
before, the above discussion completes the proof of Theorem 1.3.

Remark 3.3. Clearly, the conclusion of Theorem 1.3 continues to hold if the condition on
g in Theorem 1.3 can be replaced by g ∈ A with g(z)/z 6= 0 in D and |g(k)(0)| ≤ k! for
k = 2,3,4, . . ..

Proof of Theorem 1.4. Let f ,g∈S . Then, the de Branges theorem applied to g gives |ck| ≤
k for k = 2,3,4, . . . and so by the Cauchy-Schwarz inequality, (3.1) gives that

|Bn| ≤ 3n+1+
n

∑
k=2
|bk|(n− k +1)

≤ 3n+1+

(
n

∑
k=2

(k−1)|bk|2
) 1

2
(

n

∑
k=2

(n− (k−1))2

k−1

) 1
2

≤ 3n+1+

(
n

∑
k=2

(n− (k−1))2

k−1

) 1
2

as f ∈S

= 3n+1+
√

En

where En may be written as

En =
n−1

∑
k=1

(n− k)2

k
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= n2
n−1

∑
k=1

1
k
−2(n−1)n+

(n−1)n
2

= n2
n−1

∑
k=1

1
k
− 3(n−1)n

2

< n2
(

logn+
n−1

n

)
− 3(n−1)n

2

= n2 logn− (n−1)n
2

< n2 logn < n3.

It follows that |Bn|< 3n+1+n
√

n and the sum S(r) defined by (3.3) takes the form

S(r) <
∞

∑
n=2

(n−1)
(
3n+1+n

√
n
)

rn

≤ 3
∞

∑
n=2

(n−1)nrn +
∞

∑
n=2

(n−1)rn +
∞

∑
n=2

(n−1)n
√

nrn

≤ 6r2

(1− r)3 +
r2

(1− r)2 +

(
∞

∑
n=2

(n−1)nrn

) 1
2
(

∞

∑
n=2

(n−1)n2rn

) 1
2

=
6r2

(1− r)3 +
r2

(1− r)2 +
2r2

(1− r)3

√
2+ r
1− r

=: ψ(r), say .

Now, the inequality (3.3), namely, S(r)≤ 1, is satisfied if ψ(r)≤ 1. This gives 0 < r ≤ r0,
where r0 is the smallest root of the equation ψ(r)−1 = 0, or equivalently

20r5 +16r4−23r3−7r2 +7r−1 = 0,

in the interval (0,1). We see that r0 = 0.21734 and with this value of r0, we complete the
proof of Theorem 1.4.

Remark 3.4. Again we remark that the condition g ∈S in Theorem 1.4 may be replaced
by g ∈A with g(z)/z 6= 0 in D with |ck| ≤ k for k = 2,3,4, . . .. The conclusion of Theorem
1.4 continues to hold under this weaker hypothesis.
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