Multivalent Harmonic Functions Defined by Dziok-Srivastava Operator

${ }^{1}$ Rashidah Omar and ${ }^{2}$ Suzeini Abdul Halim
${ }^{1,2}$ Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Malaysia
${ }^{1}$ Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara, Malaysia
${ }^{1}$ ashidah@hotmail.com, ${ }^{2}$ suzeini@um.edu.my

Abstract

Necessary and sufficient coefficient bounds and convolution condition for certain multivalent harmonic functions whose convolution with generalized hypergeometric functions is starlike of order γ are investigated. Results on extreme points, convex combination and distortion bounds using the coefficient condition are also obtained.

2010 Mathematics Subject Classification: 30C45, 30C50
Keywords and phrases: Multivalent harmonic functions, starlike functions, generalized hypergeometric functions, Dziok-Srivastava operator.

1. Introduction

A complex-valued continuous function $f=u+i v$ in a complex domain $E \subset \mathbb{C}$ is said to be harmonic if both u and v are real harmonic in E. There is an interrelation between harmonic functions and analytic functions. If E is a simply connected domain, then $f=h+\bar{g}$ where h and g are analytic in E; the functions h and g are respectively called the analytic part and co-analytic part of f. The function $f=h+\bar{g}$ is said to be harmonic univalent in E if the mapping $z \rightarrow f(z)$ is orientation preserving, harmonic and univalent in E. This mapping is orientation preserving and locally univalent in E if and only if the Jacobian J_{f} of f given by $J_{f}(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}$ is positive in E [16]. From the perspective of geometric functions theory, Clunie and Sheil-Small [10] initiated the study on these functions by introducing the class S_{H} consisting of normalized complex-valued harmonic univalent functions f defined on $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. They gave necessary and sufficient conditions for f to be locally univalent and sense-preserving in \mathbb{D}. Coefficient bounds for functions in S_{H} were obtained. Since then, various subclasses of S_{H} were investigated by several authors $[1,5,8,9,15$, 19, 20, 21]. Note that the class S_{H} reduces to the class of normalized analytic univalent functions if the co-analytic part of f is identically to zero ($g \equiv 0$).

Multivalent harmonic functions in \mathbb{D} were introduced by Duren, Hengartner and Laugesen [11] via the argument principle. In [2], the class of multivalent harmonic functions and the class $S_{H}^{*}(p, \gamma)$ of multivalent harmonic starlike functions of order γ, where $p \geq 1$,

[^0]$0 \leq \gamma<1$ were discussed and studied. Motivated by [4], we introduce a class of multivalent harmonic functions starlike of order γ using the Dziok-Srivastava operator. Several related work using other linear operators can also be found in [3, 14, 26, 24].

Recall that the convolution of two analytic functions $\varphi(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\psi(z)=$ $\sum_{n=0}^{\infty} b_{n} z^{n}$ defined on \mathbb{D} is the analytic function given by $\varphi(z) * \psi(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}=$ $\psi(z) * \varphi(z)$. Let $S_{H}(p)$ denote the class of multivalent harmonic functions $f=h+\bar{g}$ where

$$
\begin{equation*}
h(z)=z^{p}+\sum_{n=2}^{\infty} a_{n+p-1} z^{n+p-1}, \quad g(z)=\sum_{n=1}^{\infty} b_{n+p-1} z^{n+p-1} . \tag{1.1}
\end{equation*}
$$

For $\alpha_{i} \in \mathbb{C}(i=1,2, \ldots, l)$ and $\beta_{j} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}(j=1,2, \ldots, m)$, the generalized hypergeometric function ${ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right)$ is given by

$$
\begin{aligned}
{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right) & =\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{l}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{m}\right)_{n} n!} z^{n} \\
\left(l \leq m+1 ; l, m \in N_{0}\right. & :=N \cup\{0\} ; z \in D)
\end{aligned}
$$

where $(\lambda)_{n}$ is the Pochhammer symbol defined, in terms of gamma function, by

$$
(\lambda)_{n}:=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}= \begin{cases}1, & n=0, \lambda \neq 0 \\ \lambda(\lambda+1)(\lambda+2) \cdots(\lambda+n-1), & n=1,2,3, \ldots\end{cases}
$$

For an analytic function h of the form (1.1), Dziok and Srivastava [12] introduced the linear operator

$$
H_{p}^{l, m}\left[\alpha_{1}\right] h(z)=z^{p}{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right) * h(z)
$$

which includes well known operators such as the Hohlov operator [13], Carlson-Shaffer operator [7], Ruscheweyh derivative operator [22], the generalized Bernardi-Libera-Livington integral operator [6], [17], [18] and the Srivastava-Owa fractional derivative operator [25]. For a harmonic function $f=h+\bar{g}$, with h and g given by (1.1), the Dziok-Srivastava operator is defined by

$$
H_{p}^{l, m}\left[\alpha_{1}\right] f(z)=H_{p}^{l, m}\left[\alpha_{1}\right] h(z)+\overline{H_{p}^{l, m}\left[\alpha_{1}\right] g(z)},
$$

where $H_{p}^{l, m}\left[\alpha_{1}\right] h(z)=z^{p}+\sum_{n=2}^{\infty} \phi_{n} a_{n+p-1} z^{n+p-1}, H_{p}^{l, m}\left[\alpha_{1}\right] g(z)=\sum_{n=1}^{\infty} \phi_{n} b_{n+p-1} z^{n+p-1}$ and

$$
\begin{equation*}
\phi_{n}=\frac{\left(\alpha_{1}\right)_{n-1} \cdots\left(\alpha_{l}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \cdots\left(\beta_{m}\right)_{n-1}(n-1)!} \tag{1.2}
\end{equation*}
$$

$\alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{m}$ are positive real numbers such that $l \leq m+1$.
Denote by $S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$, the class of multivalent harmonic functions satisfying

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)^{\prime}-\overline{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)^{\prime}}}{\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)+\overline{\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)}}\right) \geq p \gamma \tag{1.3}
\end{equation*}
$$

for $p \geq 1,0 \leq \gamma<1,|z|=r<1$. Note that $S_{H}^{*}\left(1, \alpha_{1}, \gamma\right) \equiv S_{H}^{*}\left(\alpha_{1}, \gamma\right)$ is the class defined in [4]. In the case of $l=m+1$ and $\alpha_{2}=\beta_{1}, \ldots, \alpha_{l}=\beta_{m}, S_{H}^{*}(p, 1, \gamma) \equiv S_{H}^{*}(p, \gamma)$ is investigated in [2] and $S_{H}^{*}(1,1, \gamma) \equiv S_{H}^{*}(\gamma)$ is the class introduced by Jahangiri [15]. Further
$T_{H}^{*}\left(p, \alpha_{1}, \gamma\right), p \geq 1$ denotes the class of functions $f=h+\bar{g} \in S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ where h and g are functions of the form

$$
\begin{equation*}
h(z)=z^{p}-\sum_{n=2}^{\infty}\left|a_{n+p-1}\right| z^{n+p-1}, g(z)=\sum_{n=1}^{\infty}\left|b_{n+p-1}\right| z^{n+p-1} . \tag{1.4}
\end{equation*}
$$

2. Main results

Necessary coefficient conditions for the harmonic starlike functions and harmonic convex functions can be found in [10] and [23]. Now we derive sufficient coefficient bound for the class $S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$.

Theorem 2.1. Let $f=h+\bar{g}$ be given by (1.1) and $\prod_{i=1}^{l}\left(\alpha_{i}\right)_{n-1} \geq \prod_{j=1}^{m}\left(\beta_{j}\right)_{n-1}(n-1)$!. If (2.1) $\sum_{n=2}^{\infty}\left(\frac{n+p(1-\gamma)-1}{p(1-\gamma)}\left|a_{n+p-1}\right|+\frac{n+p(1+\gamma)-1}{p(1-\gamma)}\left|b_{n+p-1}\right|\right)\left|\phi_{n}\right| \leq 1-\frac{1+\gamma}{1-\gamma}\left|b_{p}\right|$ where $\left|b_{p}\right|<(1-\gamma) /(1+\gamma), 0 \leq \gamma<1$ and ϕ_{n} is given by (1.2), then the harmonic function f is orientation preserving in \mathbb{D} and $f \in S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$.

Proof. The inequality $\left|h^{\prime}(z)\right| \geq\left|g^{\prime}(z)\right|$ is enough to show that f is orientation preserving. Note that

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq p|z|^{p-1}-\sum_{n=2}^{\infty}(n+p-1)\left|a_{n+p-1}\right||z|^{n+p-2} \\
& =p|z|^{p-1}\left(1-\sum_{n=2}^{\infty} \frac{(n+p-1)}{p}\left|a_{n+p-1}\right||z|^{n-1}\right) \\
& \geq p|z|^{p-1}\left(1-\sum_{n=2}^{\infty} \frac{(n+p-1)}{p}\left|a_{n+p-1}\right|\right) \\
& \geq|z|^{p-1}\left(1-\sum_{n=2}^{\infty} \frac{(n+p(1-\gamma)-1)}{p(1-\gamma)}\left|\phi_{n}\right|\left|a_{n+p-1}\right|\right)
\end{aligned}
$$

By hypothesis, since $\left|\phi_{n}\right| \geq 1$ and by (2.1),

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq|z|^{p-1}\left(\frac{1+\gamma}{1-\gamma}\left|b_{p}\right|+\sum_{n=2}^{\infty} \frac{(n+p(1+\gamma)-1)}{p(1-\gamma)}\left|\phi_{n}\right|\left|b_{n+p-1}\right|\right) \\
& =|z|^{p-1}\left(\sum_{n=1}^{\infty} \frac{(n+p(1+\gamma)-1)}{p(1-\gamma)}\left|\phi_{n}\right|\left|b_{n+p-1}\right|\right) \\
& \geq|z|^{p-1}\left(\sum_{n=1}^{\infty}(n+p-1)\left|b_{n+p-1}\right|\right) \\
& \geq|z|^{p-1}\left(\sum_{n=1}^{\infty}(n+p-1)\left|b_{n+p-1}\right||z|^{n-1}\right) \\
& =\sum_{n=1}^{\infty}(n+p-1)\left|b_{n+p-1}\right||z|^{n+p-2}=\left|g^{\prime}(z)\right|
\end{aligned}
$$

Thus, f is orientation preserving in \mathbb{D}.

Next, we prove $f \in S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ by establishing condition (1.3). First, let

$$
w(z)=\frac{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)^{\prime}-\overline{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)^{\prime}}}{\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)+\overline{\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)}}=\frac{A(z)}{B(z)},
$$

where
$A(z)=z\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)^{\prime}-\overline{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)^{\prime}}, \quad B(z)=\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)+\overline{\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)}$.
Now,

$$
\begin{aligned}
&|A(z)+p(1-\gamma) B(z)|-|A(z)-p(1+\gamma) B(z)| \\
& \geq(2 p-p \gamma)\left|z^{p}\right|-\sum_{n=2}^{\infty}(n+2 p-p \gamma-1)\left|\phi_{n} a_{n+p-1} z^{n+p-1}\right| \\
&-\sum_{n=1}^{\infty}(n+p \gamma-1)\left|\phi_{n} b_{n+p-1} z^{n+p-1}\right|-p \gamma\left|z^{p}\right| \\
&-\sum_{n=2}^{\infty}(n-p \gamma-1)\left|\phi_{n} a_{n+p-1} z^{n+p-1}\right|-\sum_{n=1}^{\infty}(n+2 p+p \gamma-1) \mid \overline{\phi_{n} b_{n+p-1} z^{n+p-1} \mid} \\
&= 2 p(1-\gamma)\left|z^{p}\right|-\sum_{n=2}^{\infty}(2 n+2 p-2 p \gamma-2)\left|\phi_{n}\right|\left|a_{n+p-1}\right|\left|z^{n+p-1}\right| \\
& \quad-\sum_{n=1}^{\infty}(2 n+2 p+2 p \gamma-2)\left|\bar{\phi}_{n}\right|\left|\bar{b}_{n+p-1}\right|\left|\bar{z}^{n+p-1}\right| \\
&= 2 p(1-\gamma)\left|z^{p}\right|\left(1-\sum_{n=2}^{\infty} \frac{(n+p-p \gamma-1)}{p(1-\gamma)}\left|\phi_{n}\right|\left|a_{n+p-1}\right|\left|z^{n-1}\right|\right. \\
&\left.-\sum_{n=1}^{\infty} \frac{(n+p+p \gamma-1)}{p(1-\gamma)}\left|\phi_{n}\right|\left|b_{n+p-1}\right|\left|z^{n-1}\right|\right) \\
& \geq 2 p(1-\gamma)\left|z^{p}\right|\left(1-\sum_{n=2}^{\infty} \frac{(n+p-p \gamma-1)}{p(1-\gamma)}\left|\phi_{n}\right|\left|a_{n+p-1}\right|\right. \\
&\left.-\sum_{n=1}^{\infty} \frac{(n+p+p \gamma-1)}{p(1-\gamma)}\left|\phi_{n}\right|\left|b_{n+p-1}\right|\right) \\
&= 2 p(1-\gamma)\left|z^{p}\right|\left(1-\frac{1+\gamma}{1-\gamma}\left|b_{p}\right|-\left(\sum _ { n = 2 } ^ { \infty } \left[\frac{(n+p-p \gamma-1)}{p(1-\gamma)}\left|a_{n+p-1}\right|\right.\right.\right. \\
&\left.\left.\left.+\frac{(n+p+p \gamma-1)}{p(1-\gamma)}\left|b_{n+p-1}\right|\right]\left|\phi_{n}\right|\right)\right)
\end{aligned}
$$

The last expression is non-negative by (2.1). Since Re $w \geq p \gamma$ if and only if $\mid A(z)+p(1-$ $\gamma) B(z)\left|\geq|A(z)-p(1+\gamma) B(z)|, f \in S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)\right.$.

For $\sum_{n=1}^{\infty}\left(\left|x_{n+p-1}\right|+\left|\bar{y}_{n+p-1}\right|\right)=1$ and $x_{p}=0$, the function
$f_{1}(z)=z^{p}+\sum_{n=2}^{\infty} \frac{p(1-\gamma)}{[n+p(1-\gamma)-1]\left|\phi_{n}\right|} x_{n+p-1} z^{n+p-1}+\sum_{n=1}^{\infty} \frac{p(1-\gamma)}{[n+p(1+\gamma)-1]\left|\phi_{n}\right|} \bar{y}_{n+p-1} \bar{z}^{n+p-1}$
shows equality in the coefficient bound given by (2.1). For the function f_{1} defined in (2.2), the coefficients are

$$
a_{n+p-1}=\frac{p(1-\gamma)}{[n+p(1-\gamma)-1]\left|\phi_{n}\right|} x_{n+p-1} \quad \text { and } \quad b_{n+p-1}=\frac{p(1-\gamma)}{[n+p(1+\gamma)-1]\left|\phi_{n}\right|} \bar{y}_{n+p-1},
$$

and since condition (2.1) holds, this implies $f_{1} \in S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$.
To show that the converse need not be true, consider the function

$$
f(z)=z^{p}+\frac{p(1-\gamma)}{[1+p(1-\gamma)] \phi_{2}} z^{p+1}+\frac{\gamma-1}{2(1+\gamma)} \bar{z}^{p}
$$

It can be shown that

$$
\operatorname{Re}\left(\frac{z\left[z^{p}+\frac{p(1-\gamma)}{[1+p(1-\gamma)]} z^{p+1}\right]^{\prime}-\bar{z}^{\left[\frac{(\gamma-1)}{2(1+\gamma)} \bar{z}^{p}\right]^{\prime}}}{z^{p}+\frac{p(1-\gamma)}{[1+p(1-\gamma)]} z^{p+1}+\frac{(\gamma-1)}{2(1+\gamma)} \bar{z}^{p}}\right) \geq p \gamma, \quad(p \geq 1,0 \leq \gamma<1)
$$

thus $f \in S_{p}^{*}\left(p, \alpha_{1}, \gamma\right)$ but

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{n+p(1-\gamma)-1}{p(1-\gamma)}\left|a_{n+p-1}\right|\left|\phi_{n}\right|+\sum_{n=1}^{\infty} \frac{n+p(1+\gamma)-1}{p(1-\gamma)}\left|b_{n+p-1}\right|\left|\phi_{n}\right| \\
& =\frac{1+p(1-\gamma)}{p(1-\gamma)}\left|\frac{p(1-\gamma)}{[1+p(1-\gamma)] \phi_{2}}\right|\left|\phi_{2}\right|+\frac{1+\gamma}{1-\gamma}\left|\frac{\gamma-1}{2(1+\gamma)}\right|>1 .
\end{aligned}
$$

The next result provide a convolution condition for f to be in the class $S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$.
Theorem 2.2. $f \in S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ if and only if

$$
\begin{aligned}
& H_{p}^{l, m}\left[\alpha_{1}\right] h(z) *\left[\frac{2 p(1-\gamma) z^{p}+(\xi-2 p+2 p \gamma+1) z^{p+1}}{(1-z)^{2}}\right] \\
& \quad-\overline{H_{p}^{l, m}\left[\alpha_{1}\right] g(z) *\left[\frac{2 p(\xi+\gamma) \bar{z}^{p}+(\xi-2 p \xi-2 p \gamma+1) \bar{z}^{p+1}}{(1-\bar{z})^{2}}\right] \neq 0, \quad|\xi|=1, z \in D} .
\end{aligned}
$$

Proof. A necessary and sufficient condition for $f \in S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ is given by (1.3) and we have

$$
\operatorname{Re}\left(\frac{1}{p(1-\gamma)}\left[\frac{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)^{\prime}-\overline{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)^{\prime}}}{\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)+\overline{\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)}}-p \gamma\right]\right) \geq 0
$$

Since

$$
\begin{aligned}
& \frac{1}{p(1-\gamma)}\left[\frac{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)^{\prime}-\overline{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)^{\prime}}}{\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)+\overline{\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)}}-p \gamma\right] \\
& =\frac{1}{p(1-\gamma)}\left[\frac{p+\sum_{n=2}^{\infty}(n+p-1) \phi_{n} a_{n+p-1} z^{n-1}-\frac{z^{p}}{z^{p}} \sum_{n=1}^{\infty}(n+p-1) \overline{\phi_{n} b_{n+p-1} z^{n-1}}}{1+\sum_{n=2}^{\infty} \phi_{n} a_{n+p-1} z^{n-1}+\frac{z^{p}}{z^{p}} \sum_{n=1}^{\infty} \overline{\phi_{n} b_{n+p-1} z^{n-1}}}-p \gamma\right] \\
& =1
\end{aligned}
$$

at $z=0$, the above required condition is equivalent to

$$
\begin{gather*}
\frac{1}{p(1-\gamma)}\left[\frac{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)^{\prime}-\overline{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)^{\prime}}}{\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)+\overline{\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)}}-p \gamma\right] \neq \frac{\xi-1}{\xi+1}, \tag{2.3}\\
|\xi|=1, \xi \neq-1,0<|z|<1 .
\end{gather*}
$$

Simple algebraic manipulation in (2.3) yields

$$
\begin{aligned}
0 \neq & (\xi+1)\left(z\left(H_{p}^{l, m}\left[\alpha_{1}\right] h(z)\right)^{\prime}-\overline{z\left(H_{p}^{l, m}\left[\alpha_{1}\right] g(z)\right)^{\prime}}-p \gamma H_{p}^{l, m}\left[\alpha_{1}\right] h(z)-p \gamma \overline{H_{p}^{l, m}\left[\alpha_{1}\right] g(z)}\right) \\
& -(\xi-1) p(1-\gamma) H_{p}^{l, m}\left[\alpha_{1}\right] h(z)-(\xi-1) p(1-\gamma) \overline{H_{p}^{l, m}\left[\alpha_{1}\right] g(z)} \\
= & H_{p}^{l, m}\left[\alpha_{1}\right] h(z) *\left((\xi+1)\left(\frac{z^{p}}{(1-z)^{2}}-\frac{(1-p) z^{p}}{(1-z)}\right)-\frac{(2 p \gamma+p \xi-p) z^{p}}{(1-z)}\right) \\
& -\overline{H_{p}^{l, m}\left[\alpha_{1}\right] g(z)} *\left(\overline{(\bar{\xi}+1)\left(\frac{z^{p}}{(1-z)^{2}}-\frac{(1-p) z^{p}}{(1-z)}\right)}+\frac{(2 p \gamma+p \bar{\xi}-p) z^{p}}{(1-z)}\right) \\
= & H_{p}^{l, m}\left[\alpha_{1}\right] h(z) *\left[\frac{2 p(1-\gamma) z^{p}+(\xi-2 p+2 p \gamma+1) z^{p+1}}{(1-z)^{2}}\right] \\
& -\overline{H_{p}^{l, m}\left[\alpha_{1}\right] g(z)} *\left[\frac{2 p(\xi+\gamma) \bar{z}^{p}+(\xi-2 p \xi-2 p \gamma+1) \bar{z}^{p+1}}{(1-\bar{z})^{2}}\right] .
\end{aligned}
$$

The coefficient bound for class $T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ is determined in the following theorem. Furthermore, we use the coefficient condition to obtain extreme points, convex combination and distortion bounds.

Theorem 2.3. Let $f=h+\bar{g}$ be given by (1.4). Then $f \in T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n+p(1-\gamma)-1}{p(1-\gamma)}\left|a_{n+p-1}\right|+\frac{n+p(1+\gamma)-1}{p(1-\gamma)}\left|b_{n+p-1}\right|\right)\left|\phi_{n}\right| \leq 1-\frac{1+\gamma}{1-\gamma}\left|b_{p}\right| \tag{2.4}
\end{equation*}
$$

where $\left|b_{p}\right|<(1-\gamma) /(1+\gamma), 0 \leq \gamma<1$ and ϕ_{n} is given by (1.2).
Proof. Since $T_{H}^{*}\left(p, \alpha_{1}, \gamma\right) \subset S_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$, sufficiency part follows from Theorem 2.1. To prove the necessity part, suppose that $f \in T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$. Then we obtain
$\operatorname{Re}\left(\frac{p z^{p}-\sum_{n=2}^{\infty}(n+p-1)\left|a_{n+p-1}\right| \phi_{n} z^{n+p-1}-\sum_{n=1}^{\infty}(n+p-1)\left|\bar{b}_{n+p-1}\right| \bar{\phi}_{n} z^{n+p-1}}{z^{p}-\sum_{n=2}^{\infty}\left|a_{n+p-1}\right| \phi_{n} z^{n+p-1}+\sum_{n=1}^{\infty}\left|\bar{b}_{n+p-1}\right| \bar{\phi}_{n} \bar{z}^{n+p-1}}\right) \geq p \gamma$, and the result follows by letting $r \rightarrow 1^{-}$along real axis.

Let clco $T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ denote the closed convex hull of $T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$. Now we determine the extreme points of clco $T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$.

Theorem 2.4. Let f be given by (1.4). Then $f \in \operatorname{clco} T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ if and only if f can be expressed in the form

$$
\begin{equation*}
f=\sum_{n=1}^{\infty}\left(X_{n+p-1} h_{n+p-1}+Y_{n+p-1} g_{n+p-1}\right) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gathered}
h_{p}(z)=z^{p}, h_{n+p-1}(z)=z^{p}-\frac{p(1-\gamma)}{[n+p(1-\gamma)-1]\left|\phi_{n}\right|} z^{n+p-1} \quad(n=2,3, \ldots), \\
g_{n+p-1}(z)=z^{p}+\frac{p(1-\gamma)}{[n+p(1+\gamma)-1]\left|\phi_{n}\right|} \bar{z}^{n+p-1} \quad(n=1,2,3, \ldots),
\end{gathered}
$$

ϕ_{n} is given by (1.2), and $\sum_{n=1}^{\infty}\left(X_{n+p-1}+Y_{n+p-1}\right)=1$, with $X_{n+p-1} \geq 0, Y_{n+p-1} \geq 0$. In particular, the extreme points of $T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ are h_{n+p-1} and g_{n+p-1}.
Proof. Let f be of the form (2.5), then we have

$$
\begin{align*}
f(z)= & X_{p} h_{p}(z)+\sum_{n=2}^{\infty} X_{n+p-1}\left(z^{p}-\frac{p(1-\gamma)}{[n+p(1-\gamma)-1]\left|\phi_{n}\right|} z^{n+p-1}\right) \\
& +\sum_{n=1}^{\infty} Y_{n+p-1}\left(z^{p}+\frac{p(1-\gamma)}{[n+p(1+\gamma)-1]\left|\phi_{n}\right|} \bar{z}^{n+p-1}\right) \\
= & z^{p}-\sum_{n=1}^{\infty} \frac{p(1-\gamma)}{[n+p(1-\gamma)-1]\left|\phi_{n}\right|} X_{n+p-1} z^{n+p-1} \\
& +\sum_{n=1}^{\infty} \frac{p(1-\gamma)}{[n+p(1+\gamma)-1]\left|\phi_{n}\right|} Y_{n+p-1} \bar{z}^{n+p-1} . \tag{2.6}
\end{align*}
$$

Furthermore, let
$\left|a_{n+p-1}\right|=\frac{p(1-\gamma)}{[n+p(1-\gamma)-1]\left|\phi_{n}\right|} X_{n+p-1} \quad$ and $\quad\left|b_{n+p-1}\right|=\frac{p(1-\gamma)}{[n+p(1+\gamma)-1]\left|\phi_{n}\right|} Y_{n+p-1}$.
Then

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{[n+p(1-\gamma)-1]\left|\phi_{n}\right|}{p(1-\gamma)}\left(\frac{p(1-\gamma)}{[n+p(1-\gamma)-1]\left|\phi_{n}\right|} X_{n+p-1}\right) \\
& \quad+\sum_{n=1}^{\infty} \frac{[n+p(1+\gamma)-1]\left|\phi_{n}\right|}{p(1-\gamma)}\left(\frac{p(1-\gamma)}{[n+p(1+\gamma)-1]\left|\phi_{n}\right|} Y_{n+p-1}\right) \\
& =\sum_{n=2}^{\infty} X_{n+p-1}+\sum_{n=1}^{\infty} Y_{n+p-1}=1-X_{p} \leq 1 .
\end{aligned}
$$

Thus $f \in \operatorname{clco} T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$.
Conversely, suppose that $f \in \operatorname{clco} T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$. Set

$$
\begin{array}{ll}
X_{n+p-1}=\frac{[n+p(1-\gamma)-1]\left|\phi_{n}\right|\left|a_{n+p-1}\right|}{p(1-\gamma)} & (n=2,3, \ldots), \\
Y_{n+p-1}=\frac{[n+p(1+\gamma)-1]\left|\phi_{n}\right|\left|b_{n+p-1}\right|}{p(1-\gamma)} & (n=1,2, \ldots),
\end{array}
$$

and define $X_{p}=1-\sum_{n=2}^{\infty} X_{n+p-1}-\sum_{n=1}^{\infty} Y_{n+p-1}$. Then,

$$
\begin{aligned}
f(z) & =z^{p}-\sum_{n=2}^{\infty}\left|a_{n+p-1}\right| z^{n+p-1}+\sum_{n=1}^{\infty}\left|b_{n+p-1}\right| \bar{z}^{n+p-1} \\
& =z^{p}-\sum_{n=2}^{\infty} \frac{p(1-\gamma) X_{n+p-1}}{[n+p(1-\gamma)-1]\left|\phi_{n}\right|} z^{n+p-1}+\sum_{n=1}^{\infty} \frac{p(1-\gamma) Y_{n+p-1}}{[n+p(1+\gamma)-1]\left|\phi_{n}\right|} \bar{z}^{n+p-1}
\end{aligned}
$$

$$
\begin{aligned}
= & X_{p} z^{p}+\sum_{n=2}^{\infty} X_{n+p-1}\left(z^{p}-\frac{p(1-\gamma)}{[n+p(1-\gamma)-1]\left|\phi_{n}\right|^{2}} z^{n+p-1}\right) \\
& \quad+\sum_{n=1}^{\infty} Y_{n+p-1}\left(z^{p}+\frac{p(1-\gamma)}{[n+p(1+\gamma)-1]\left|\phi_{n}\right|} \bar{z}^{n+p-1}\right) \\
= & \sum_{n=1}^{\infty}\left(X_{n+p-1} h_{n+p-1}+Y_{n+p-1} g_{n+p-1}\right)
\end{aligned}
$$

as required.
Theorem 2.5. The class $T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ is closed under convex combination.
Proof. For $i=1,2,3, \ldots$, suppose that $f_{i}(z) \in T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$, where f_{i} is given by

$$
f_{i}(z)=z^{p}-\sum_{n=2}^{\infty}\left|a_{i, n+p-1}\right| z^{n+p-1}+\sum_{n=1}^{\infty}\left|b_{i, n+p-1}\right| \bar{z}^{n+p-1} .
$$

By Theorem 2.3,

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n+p(1-\gamma)-1}{p(1-\gamma)}\left|\phi_{n}\right|\left|a_{i, n+p-1}\right|+\sum_{n=1}^{\infty} \frac{n+p(1+\gamma)-1}{p(1-\gamma)}\left|\phi_{n}\right|\left|b_{i, n+p-1}\right| \leq 1 \tag{2.7}
\end{equation*}
$$

For $\sum_{i=1}^{\infty} t_{i}=1,0 \leq t_{i} \leq 1$, the convex combination of f_{i} may be written as,

$$
\sum_{i=1}^{\infty} t_{i} f_{i}(z)=z^{p}-\sum_{n=2}^{\infty}\left(\sum_{i=1}^{\infty} t_{i}\left|a_{i, n+p-1}\right|\right) z^{n+p-1}+\sum_{n=1}^{\infty}\left(\sum_{i=1}^{\infty} t_{i}\left|b_{i, n+p-1}\right|\right) \bar{z}^{n+p-1} .
$$

Then, by (2.7)

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{[n+p(1-\gamma)-1]\left|\phi_{n}\right|}{p(1-\gamma)}\left(\left|\sum_{i=1}^{\infty} t_{i}\right| a_{i, n+p-1}| |\right) \\
& \quad+\sum_{n=1}^{\infty} \frac{[n+p(1+\gamma)-1]\left|\phi_{n}\right|}{p(1-\gamma)}\left(\left|\sum_{i=1}^{\infty} t_{i}\right| b_{i, n+p-1}| |\right) \\
& =\sum_{i=1}^{\infty} t_{i}\left(\sum_{n=2}^{\infty} \frac{[n+p(1-\gamma)-1]\left|\phi_{n}\right|}{p(1-\gamma)}\left|a_{i, n+p-1}\right|+\sum_{n=1}^{\infty} \frac{[n+p(1+\gamma)-1]]\left|\phi_{n}\right|}{p(1-\gamma)}\left|b_{i, n+p-1}\right|\right) \\
& \leq \sum_{i=1}^{\infty} t_{i}=1
\end{aligned}
$$

Hence, $\sum_{i=1}^{\infty} t_{i} f_{i}(z) \in T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$.
In the last theorem below we give distortion inequalities for f in the class $T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$.
Theorem 2.6. If $f \in T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$ with $\phi_{n} \geq \phi_{2}$, then for $|z|=r<1$,

$$
|f(z)| \leq\left(1+\left|b_{p}\right|\right) r^{p}+r^{p+1}\left(\frac{p(1-\gamma)}{[p(1-\gamma)+1]\left|\phi_{2}\right|}-\frac{p(1+\gamma)\left|b_{p}\right|}{[p(1-\gamma)+1]\left|\phi_{2}\right|}\right)
$$

and

$$
|f(z)| \geq\left(1-\left|b_{p}\right|\right) r^{p}-r^{p+1}\left(\frac{p(1-\gamma)}{[p(1-\gamma)+1]\left|\phi_{2}\right|}-\frac{p(1+\gamma)\left|b_{p}\right|}{[p(1-\gamma)+1]\left|\phi_{2}\right|}\right) .
$$

Proof. Since

$$
\begin{aligned}
& \frac{p(1-\gamma)+1}{p(1-\gamma)}\left|\phi_{2}\right| \sum_{n=2}^{\infty}\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right) \\
& \leq \sum_{n=2}^{\infty} \frac{n+p(1-\gamma)-1}{p(1-\gamma)}\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right)\left|\phi_{n}\right| \\
& \leq \sum_{n=2}^{\infty}\left(\frac{n+p(1-\gamma)-1}{p(1-\gamma)}\left|a_{n+p-1}\right|+\frac{n+p(1+\gamma)-1}{p(1-\gamma)}\left|b_{n+p-1}\right|\right)\left|\phi_{n}\right|
\end{aligned}
$$

the result of Theorem 2.3 gives

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right) \leq \frac{p(1-\gamma)}{[p(1-\gamma)+1]\left|\phi_{2}\right|}\left(1-\frac{1+\gamma}{1-\gamma}\left|b_{p}\right|\right) . \tag{2.8}
\end{equation*}
$$

Next, again since $f \in T_{H}^{*}\left(p, \alpha_{1}, \gamma\right)$, we have from (2.8) and $|z|=r$ that

$$
\begin{aligned}
|f(z)| & =\left|z^{p}-\sum_{n=2}^{\infty}\right| a_{n+p-1}\left|z^{n+p-1}+\sum_{n=1}^{\infty}\right| b_{n+p-1}\left|\bar{z}^{n+p-1}\right| \\
& \leq\left|z^{p}\right|+\sum_{n=2}^{\infty}\left|a_{n+p-1}\right||z|^{n+p-1}+\sum_{n=1}^{\infty}\left|b_{n+p-1}\right||\bar{z}|^{n+p-1} \\
& =r^{p}+\sum_{n=2}^{\infty}\left|a_{n+p-1}\right| r^{n+p-1}+\sum_{n=1}^{\infty}\left|b_{n+p-1}\right| r^{n+p-1} \\
& \leq\left(1+\left|b_{p}\right|\right) r^{p}+\left(\sum_{n=2}^{\infty}\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right)\right) r^{p+1} \\
& \leq\left(1+\left|b_{p}\right|\right) r^{p}+r^{p+1}\left(\frac{p(1-\gamma)}{[p(1-\gamma)+1]\left|\phi_{2}\right|}-\frac{p(1+\gamma)\left|b_{p}\right|}{[p(1-\gamma)+1]\left|\phi_{2}\right|}\right)
\end{aligned}
$$

which gives the first result.
In a similar manner, we obtain the following lower bound.

$$
\begin{aligned}
|f(z)| & \geq r^{p}-\sum_{n=2}^{\infty}\left|a_{n+p-1}\right| r^{n+p-1}-\sum_{n=1}^{\infty}\left|b_{n+p-1}\right| r^{n+p-1} \\
& =\left(1-\left|b_{p}\right|\right) r^{p}-\sum_{n=2}^{\infty}\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right) r^{n+p-1} \\
& \geq\left(1-\left|b_{p}\right|\right) r^{p}-r^{p+1}\left(\frac{p(1-\gamma)}{[p(1-\gamma)+1]\left|\phi_{2}\right|}-\frac{p(1+\gamma)\left|b_{p}\right|}{[p(1-\gamma)+1]\left|\phi_{2}\right|}\right) .
\end{aligned}
$$

Acknowledgement. The authors thank the referees for useful comments and suggestions. This research was supported by a grant from University Malaya (IPPP/UPGP/geran(RU/ PPP)/PS207/2009A).

References

[1] O. P. Ahuja, Use of theory of conformal mappings in harmonic univalent mappings with directional convexity, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 3, 775-784.
[2] O. P. Ahuja and J. M. Jahangiri, Multivalent harmonic starlike functions, Ann. Univ. Mariae CurieSkłodowska Sect. A 55 (2001), 1-13.
[3] O. P. Ahuja, S. Joshi and N. Sangle, Multivalent harmonic uniformly starlike functions, Kyungpook Math. J. 49 (2009), no. 3, 545-555.
[4] H. A. Al-Kharsani and R. A. Al-Khal, Univalent harmonic functions, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Article 59, 8 pp.
[5] K. Al-Shaqsi and M. Darus, On harmonic functions defined by derivative operator, J. Inequal. Appl. 2008, Art. ID 263413, 10 pp.
[6] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[7] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745.
[8] R. Chandrashekar, G. Murugusundaramoorthy, S. K. Lee and K. G. Subramanian, A class of complex-valued harmonic functions defined by Dziok-Srivastava operator, Chamchuri J. Math., 1 (2009), no. 2, 31-42.
[9] Sh. Chen, S. Ponnusamy and X. Wang, Coefficient estimates and Landau-Bloch's constant for planar harmonic mappings, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 2, 255-265.
[10] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.
[11] P. Duren, W. Hengartner and R. S. Laugesen, The argument principle for harmonic functions, Amer. Math. Monthly 103 (1996), no. 5, 411-415.
[12] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1-13.
[13] E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1978), 83-89.
[14] J. M. Jahangiri, B. Şeker and S. S. Eker, Sălăgean-type harmonic multivalent functions, Acta Univ. Apulensis Math. Inform. No. 18 (2009), 233-244.
[15] J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), no. 2, 470-477.
[16] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689-692.
[17] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
[18] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.
[19] G. Murugusundaramoorthy, K. Vijaya and R. K. Raina, A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator, Arch. Math. (Brno) 45 (2009), no. 1, 37-46.
[20] G. Murugusundaramoorthy, A class of Ruscheweyh-type harmonic univalent functions with varying arguments, Southwest J. Pure Appl. Math. 2003, no. 2, 90-95.
[21] T. Rosy, B. A. Stephen, K. G. Subramanian and J. M. Jahangiri, Goodman-Rønning-type harmonic univalent functions, Kyungpook Math. J. 41 (2001), no. 1, 45-54.
[22] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[23] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. (2) 42 (1990), no. 2, 237-248.
[24] P. Sharma and N. Khan, Harmonic multivalent functions involving a linear operator, Int. J. Math. Anal. (Ruse) 3 (2009), no. 5-8, 295-308.
[25] H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106 (1987), 1-28.
[26] K. G. Subramanian, B. A. Stephen and S. K. Lee, Subclasses of multivalent harmonic mappings defined by convolution, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 3, 717-726.

[^0]: Communicated by V. Ravichandran.
 Received: May 5, 2011; Revised: October 4, 2011.

