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1. Introduction

A complex-valued continuous function f = u+ iv in a complex domain E ⊂ C is said to be
harmonic if both u and v are real harmonic in E. There is an interrelation between harmonic
functions and analytic functions. If E is a simply connected domain, then f = h+ ḡ where
h and g are analytic in E; the functions h and g are respectively called the analytic part and
co-analytic part of f . The function f = h + ḡ is said to be harmonic univalent in E if the
mapping z→ f (z) is orientation preserving, harmonic and univalent in E. This mapping is
orientation preserving and locally univalent in E if and only if the Jacobian J f of f given by
J f (z) = |h′(z)|2−|g′(z)|2 is positive in E [16]. From the perspective of geometric functions
theory, Clunie and Sheil-Small [10] initiated the study on these functions by introducing the
class SH consisting of normalized complex-valued harmonic univalent functions f defined
on D = {z ∈ C : |z|< 1}. They gave necessary and sufficient conditions for f to be locally
univalent and sense-preserving in D. Coefficient bounds for functions in SH were obtained.
Since then, various subclasses of SH were investigated by several authors [1, 5, 8, 9, 15,
19, 20, 21]. Note that the class SH reduces to the class of normalized analytic univalent
functions if the co-analytic part of f is identically to zero (g≡ 0).

Multivalent harmonic functions in D were introduced by Duren, Hengartner and Lauge-
sen [11] via the argument principle. In [2], the class of multivalent harmonic functions
and the class S∗H(p,γ) of multivalent harmonic starlike functions of order γ , where p ≥ 1,
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0≤ γ < 1 were discussed and studied. Motivated by [4], we introduce a class of multivalent
harmonic functions starlike of order γ using the Dziok-Srivastava operator. Several related
work using other linear operators can also be found in [3, 14, 26, 24].

Recall that the convolution of two analytic functions ϕ(z) = ∑
∞
n=0 anzn and ψ(z) =

∑
∞
n=0 bnzn defined on D is the analytic function given by ϕ(z) ∗ψ(z) = ∑

∞
n=0 anbnzn =

ψ(z)∗ϕ(z). Let SH(p) denote the class of multivalent harmonic functions f = h+ ḡ where

(1.1) h(z) = zp +
∞

∑
n=2

an+p−1zn+p−1, g(z) =
∞

∑
n=1

bn+p−1zn+p−1 .

For αi ∈ C (i = 1,2, . . . , l) and β j ∈ C\{0,−1,−2, . . .} ( j = 1,2, . . . ,m), the generalized
hypergeometric function lFm(α1, . . . ,αl ;β1, . . . ,βm;z) is given by

lFm(α1, . . . ,αl ;β1, . . . ,βm;z) =
∞

∑
n=0

(α1)n . . .(αl)n

(β1)n . . .(βm)nn!
zn

(l ≤ m+1; l,m ∈ N0 := N∪{0};z ∈ D)

where (λ )n is the Pochhammer symbol defined, in terms of gamma function, by

(λ )n :=
Γ(λ +n)

Γ(λ )
=

{
1, n = 0, λ 6= 0
λ (λ +1)(λ +2) · · ·(λ +n−1), n = 1,2,3, . . .

For an analytic function h of the form (1.1), Dziok and Srivastava [12] introduced the linear
operator

H l,m
p [α1]h(z) = zp

lFm(α1, . . . ,αl ;β1, . . . ,βm;z)∗h(z)

which includes well known operators such as the Hohlov operator [13], Carlson-Shaffer op-
erator [7], Ruscheweyh derivative operator [22], the generalized Bernardi-Libera-Livington
integral operator [6], [17], [18] and the Srivastava-Owa fractional derivative operator [25].
For a harmonic function f = h+ ḡ, with h and g given by (1.1), the Dziok-Srivastava oper-
ator is defined by

H l,m
p [α1] f (z) = H l,m

p [α1]h(z)+H l,m
p [α1]g(z),

where H l,m
p [α1]h(z) = zp + ∑

∞
n=2 φnan+p−1zn+p−1 , H l,m

p [α1]g(z) = ∑
∞
n=1 φnbn+p−1zn+p−1

and

(1.2) φn =
(α1)n−1 · · ·(αl)n−1

(β1)n−1 · · ·(βm)n−1(n−1)!
,

α1, . . . ,αl ,β1, . . . ,βm are positive real numbers such that l ≤ m+1.
Denote by S∗H(p,α1,γ), the class of multivalent harmonic functions satisfying

(1.3) Re

 z
(

H l,m
p [α1]h(z)

)′
− z
(

H l,m
p [α1]g(z)

)′
(

H l,m
p [α1]h(z)

)
+
(

H l,m
p [α1]g(z)

)
≥ pγ

for p ≥ 1,0 ≤ γ < 1, |z| = r < 1. Note that S∗H(1,α1,γ) ≡ S∗H(α1,γ) is the class defined
in [4]. In the case of l = m +1 and α2 = β1, . . . ,αl = βm, S∗H(p,1,γ) ≡ S∗H(p,γ) is inves-
tigated in [2] and S∗H(1,1,γ) ≡ S∗H(γ) is the class introduced by Jahangiri [15]. Further
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T ∗H(p,α1,γ), p ≥ 1 denotes the class of functions f = h + ḡ ∈ S∗H(p,α1,γ) where h and g
are functions of the form

(1.4) h(z) = zp−
∞

∑
n=2
|an+p−1|zn+p−1 , g(z) =

∞

∑
n=1
|bn+p−1|zn+p−1 .

2. Main results

Necessary coefficient conditions for the harmonic starlike functions and harmonic convex
functions can be found in [10] and [23]. Now we derive sufficient coefficient bound for the
class S∗H(p,α1,γ).

Theorem 2.1. Let f = h+ ḡ be given by (1.1) and ∏
l
i=1 (αi)n−1 ≥∏

m
j=1 (β j)n−1 (n−1)!. If

(2.1)
∞

∑
n=2

(
n+ p (1− γ)−1

p (1− γ)
|an+p−1|+

n+ p (1+ γ)−1
p (1− γ)

|bn+p−1|
)
|φn| ≤ 1− 1+ γ

1− γ
|bp|

where |bp|< (1−γ)/(1+γ) , 0≤ γ < 1 and φn is given by (1.2), then the harmonic function
f is orientation preserving in D and f ∈ S∗H(p,α1,γ).

Proof. The inequality |h′(z)| ≥ |g′(z)| is enough to show that f is orientation preserving.
Note that

|h′(z)| ≥ p |z|p−1−
∞

∑
n=2

(n+ p−1)|an+p−1||z|n+p−2

= p|z|p−1

(
1−

∞

∑
n=2

(n+ p−1)
p

|an+p−1||z|n−1

)

≥ p|z|p−1

(
1−

∞

∑
n=2

(n+ p−1)
p

|an+p−1|

)

≥ |z|p−1

(
1−

∞

∑
n=2

(n+ p (1− γ)−1)
p (1− γ)

|φn||an+p−1|

)
By hypothesis, since |φn| ≥ 1 and by (2.1),

|h′(z)| ≥ |z|p−1

(
1+ γ

1− γ
|bp|+

∞

∑
n=2

(n+ p (1+ γ)−1)
p (1− γ)

|φn||bn+p−1|

)

= |z|p−1

(
∞

∑
n=1

(n+ p (1+ γ)−1)
p (1− γ)

|φn||bn+p−1|

)

≥ |z|p−1

(
∞

∑
n=1

(n+ p−1)|bn+p−1|

)

≥ |z|p−1

(
∞

∑
n=1

(n+ p−1)|bn+p−1||z|n−1

)

=
∞

∑
n=1

(n+ p−1)|bn+p−1||z|n+p−2 = |g′(z)|

Thus, f is orientation preserving in D.
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Next, we prove f ∈ S∗H(p,α1,γ) by establishing condition (1.3). First, let

w(z) =
z
(

H l,m
p [α1]h(z)

)′
− z
(

H l,m
p [α1]g(z)

)′
(

H l,m
p [α1]h(z)

)
+
(

H l,m
p [α1]g(z)

) =
A(z)
B(z)

,

where

A(z) = z
(

H l,m
p [α1]h(z)

)′
− z
(

H l,m
p [α1]g(z)

)′
, B(z) =

(
H l,m

p [α1]h(z)
)

+
(

H l,m
p [α1]g(z)

)
.

Now,

|A(z)+ p (1− γ)B(z)|− |A(z)− p (1+ γ)B(z)|

≥ (2p− pγ)|zp|−
∞

∑
n=2

(n+2p− pγ−1)|φnan+p−1zn+p−1|

−
∞

∑
n=1

(n+ pγ−1)|φnbn+p−1zn+p−1|− pγ|zp|

−
∞

∑
n=2

(n− pγ−1)|φnan+p−1zn+p−1|−
∞

∑
n=1

(n+2p+ pγ−1)|φnbn+p−1zn+p−1|

= 2p (1− γ)|zp|−
∞

∑
n=2

(2n+2p−2pγ−2)|φn||an+p−1||zn+p−1|

−
∞

∑
n=1

(2n+2p+2pγ−2)|φ n||bn+p−1||zn+p−1|

= 2p (1− γ)|zp|

(
1−

∞

∑
n=2

(n+ p− pγ−1)
p (1− γ)

|φn||an+p−1||zn−1|

−
∞

∑
n=1

(n+ p+ pγ−1)
p (1− γ)

|φn||bn+p−1||zn−1|

)

≥ 2p (1− γ)|zp|

(
1−

∞

∑
n=2

(n+ p− pγ−1)
p (1− γ)

|φn||an+p−1|

−
∞

∑
n=1

(n+ p+ pγ−1)
p (1− γ)

|φn||bn+p−1|

)

= 2p (1− γ)|zp|

(
1− 1+ γ

1− γ
|bp|−

(
∞

∑
n=2

[
(n+ p− pγ−1)

p (1− γ)
|an+p−1|

+
(n+ p+ pγ−1)

p (1− γ)
|bn+p−1|

]
|φn|
))

The last expression is non-negative by (2.1). Since Re w≥ pγ if and only if |A(z)+ p (1−
γ)B(z)| ≥ |A(z)− p (1+ γ)B(z)|, f ∈ S∗H(p,α1,γ).

For ∑
∞
n=1 (|xn+p−1|+ |ȳn+p−1|) = 1 and xp = 0, the function

(2.2)

f1(z)= zp +
∞

∑
n=2

p (1− γ)
[n+ p(1− γ)−1]|φn|

xn+p−1zn+p−1 +
∞

∑
n=1

p(1− γ)
[n+ p(1+ γ)−1]|φn|

ȳn+p−1z̄n+p−1
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shows equality in the coefficient bound given by (2.1). For the function f1 defined in (2.2),
the coefficients are

an+p−1 =
p (1− γ)

[n+ p(1− γ)−1]|φn|
xn+p−1 and bn+p−1 =

p(1− γ)
[n+ p(1+ γ)−1]|φn|

ȳn+p−1,

and since condition (2.1) holds, this implies f1 ∈ S∗H(p,α1,γ).
To show that the converse need not be true, consider the function

f (z) = zp +
p(1− γ)

[1+ p(1− γ)]φ2
zp+1 +

γ−1
2(1+ γ)

z̄p.

It can be shown that

Re

 z
[
zp + p(1−γ)

[1+p(1−γ)] z
p+1
]′
− z̄
[

(γ−1)
2(1+γ) z̄p

]′
zp + p(1−γ)

[1+p(1−γ)] z
p+1 + (γ−1)

2(1+γ) z̄p

≥ pγ, (p≥ 1,0≤ γ < 1)

thus f ∈ S∗p(p,α1,γ) but

∞

∑
n=2

n+ p(1− γ)−1
p(1− γ)

|an+p−1||φn|+
∞

∑
n=1

n+ p(1+ γ)−1
p(1− γ)

|bn+p−1||φn|

=
1+ p(1− γ)

p(1− γ)

∣∣∣∣ p(1− γ)
[1+ p(1− γ)]φ2

∣∣∣∣ |φ2|+
1+ γ

1− γ

∣∣∣∣ γ−1
2(1+ γ)

∣∣∣∣> 1.

The next result provide a convolution condition for f to be in the class S∗H(p,α1,γ).

Theorem 2.2. f ∈ S∗H(p,α1,γ) if and only if

H l,m
p [α1]h(z)∗

[
2p(1− γ)zp +(ξ −2p+2pγ +1)zp+1

(1− z)2

]
−H l,m

p [α1]g(z)∗
[

2p(ξ + γ)z̄p +(ξ −2pξ −2pγ +1)z̄p+1

(1− z̄)2

]
6= 0, |ξ |= 1,z ∈ D.

Proof. A necessary and sufficient condition for f ∈ S∗H(p,α1,γ) is given by (1.3) and we
have

Re

 1
p(1− γ)

 z
(

H l,m
p [α1]h(z)

)′
− z
(

H l,m
p [α1]g(z)

)′
(

H l,m
p [α1]h(z)

)
+
(

H l,m
p [α1]g(z)

) − pγ


≥ 0.

Since

1
p(1− γ)

 z
(

H l,m
p [α1]h(z)

)′
− z
(

H l,m
p [α1]g(z)

)′
(

H l,m
p [α1]h(z)

)
+
(

H l,m
p [α1]g(z)

) − pγ


=

1
p(1− γ)

[
p+∑

∞
n=2(n+ p−1)φnan+p−1zn−1− z̄p

zp ∑
∞
n=1(n+ p−1)φnbn+p−1zn−1

1+∑
∞
n=2 φnan+p−1zn−1 + z̄p

zp ∑
∞
n=1 φnbn+p−1zn−1

− pγ

]
= 1
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at z = 0, the above required condition is equivalent to

(2.3)
1

p(1− γ)

 z
(

H l,m
p [α1]h(z)

)′
− z
(

H l,m
p [α1]g(z)

)′
(

H l,m
p [α1]h(z)

)
+
(

H l,m
p [α1]g(z)

) − pγ

 6= ξ −1
ξ +1

,

|ξ |= 1, ξ 6=−1, 0 < |z|< 1.

Simple algebraic manipulation in (2.3) yields

0 6= (ξ +1)
(

z
(

H l,m
p [α1]h(z)

)′
− z
(

H l,m
p [α1]g(z)

)′
− pγH l,m

p [α1]h(z)− pγH l,m
p [α1]g(z)

)
− (ξ −1)p(1− γ)H l,m

p [α1]h(z)− (ξ −1)p(1− γ)H l,m
p [α1]g(z)

= H l,m
p [α1]h(z)∗

(
(ξ +1)

(
zp

(1− z)2 −
(1− p)zp

(1− z)

)
− (2pγ + pξ − p)zp

(1− z)

)
− H l,m

p [α1]g(z)∗

(
(ξ̄ +1)

(
zp

(1− z)2 −
(1− p)zp

(1− z)

)
+

(2pγ + pξ̄ − p)zp

(1− z)

)

= H l,m
p [α1]h(z)∗

[
2p(1− γ)zp +(ξ −2p+2pγ +1)zp+1

(1− z)2

]
− H l,m

p [α1]g(z)∗
[

2p(ξ + γ)z̄p +(ξ −2pξ −2pγ +1)z̄p+1

(1− z̄)2

]
.

The coefficient bound for class T ∗H(p,α1,γ) is determined in the following theorem. Fur-
thermore, we use the coefficient condition to obtain extreme points, convex combination
and distortion bounds.

Theorem 2.3. Let f = h+ ḡ be given by (1.4). Then f ∈ T ∗H(p,α1,γ) if and only if

(2.4)
∞

∑
n=2

(
n+ p (1− γ)−1

p (1− γ)
|an+p−1|+

n+ p (1+ γ)−1
p (1− γ)

|bn+p−1|
)
|φn| ≤ 1− 1+ γ

1− γ
|bp|

where |bp|< (1− γ)/(1+ γ) , 0≤ γ < 1 and φn is given by (1.2).

Proof. Since T ∗H(p,α1,γ) ⊂ S∗H(p,α1,γ), sufficiency part follows from Theorem 2.1. To
prove the necessity part, suppose that f ∈ T ∗H(p,α1,γ). Then we obtain

Re
(

pzp−∑
∞
n=2(n+ p−1)|an+p−1|φnzn+p−1−∑

∞
n=1(n+ p−1)|b̄n+p−1|φ̄nz̄n+p−1

zp−∑
∞
n=2 |an+p−1|φnzn+p−1 +∑

∞
n=1 |b̄n+p−1|φ̄nz̄n+p−1

)
≥ pγ,

and the result follows by letting r→ 1− along real axis.

Let clco T ∗H(p,α1,γ) denote the closed convex hull of T ∗H(p,α1,γ). Now we determine
the extreme points of clco T ∗H(p,α1,γ).

Theorem 2.4. Let f be given by (1.4). Then f ∈ clco T ∗H(p,α1,γ) if and only if f can be
expressed in the form

(2.5) f =
∞

∑
n=1

(Xn+p−1hn+p−1 +Yn+p−1gn+p−1) ,
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where

hp(z) = zp, hn+p−1(z) = zp− p(1− γ)
[n+ p(1− γ)−1]|φn|

zn+p−1 (n = 2,3, ...),

gn+p−1(z) = zp+
p(1− γ)

[n+ p(1+ γ)−1]|φn|
z̄n+p−1 (n = 1,2,3, ...),

φn is given by (1.2), and ∑
∞
n=1 (Xn+p−1 +Yn+p−1) = 1, with Xn+p−1 ≥ 0,Yn+p−1 ≥ 0. In

particular, the extreme points of T ∗H(p,α1,γ) are hn+p−1 and gn+p−1.

Proof. Let f be of the form (2.5), then we have

f (z) = Xphp(z)+
∞

∑
n=2

Xn+p−1

(
zp− p(1− γ)

[n+ p(1− γ)−1] |φn|
zn+p−1

)
+

∞

∑
n=1

Yn+p−1

(
zp +

p(1− γ)
[n+ p(1+ γ)−1] |φn|

z̄n+p−1
)

= zp−
∞

∑
n=2

p(1− γ)
[n+ p(1− γ)−1] |φn|

Xn+p−1zn+p−1

+
∞

∑
n=1

p(1− γ)
[n+ p(1+ γ)−1] |φn|

Yn+p−1z̄n+p−1.(2.6)

Furthermore, let

|an+p−1|=
p(1− γ)

[n+ p(1− γ)−1] |φn|
Xn+p−1 and |bn+p−1|=

p(1− γ)
[n+ p(1+ γ)−1] |φn|

Yn+p−1.

Then
∞

∑
n=2

[n+ p (1− γ)−1] |φn|
p (1− γ)

(
p(1− γ)

[n+ p(1− γ)−1] |φn|
Xn+p−1

)
+

∞

∑
n=1

[n+ p (1+ γ)−1] |φn|
p (1− γ)

(
p(1− γ)

[n+ p(1+ γ)−1] |φn|
Yn+p−1

)
=

∞

∑
n=2

Xn+p−1 +
∞

∑
n=1

Yn+p−1 = 1−Xp ≤ 1.

Thus f ∈ clco T ∗H(p,α1,γ).
Conversely, suppose that f ∈ clco T ∗H(p,α1,γ). Set

Xn+p−1 =
[n+ p (1− γ)−1]|φn||an+p−1|

p (1− γ)
(n = 2,3, ...),

Yn+p−1 =
[n+ p (1+ γ)−1]|φn||bn+p−1|

p (1− γ)
(n = 1,2, ...),

and define Xp = 1−∑
∞
n=2 Xn+p−1−∑

∞
n=1 Yn+p−1. Then,

f (z) = zp−
∞

∑
n=2
|an+p−1|zn+p−1 +

∞

∑
n=1
|bn+p−1|z̄n+p−1

= zp−
∞

∑
n=2

p (1− γ)Xn+p−1

[n+ p (1− γ)−1]|φn|
zn+p−1 +

∞

∑
n=1

p (1− γ)Yn+p−1

[n+ p (1+ γ)−1]|φn|
z̄n+p−1
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= Xpzp +
∞

∑
n=2

Xn+p−1

(
zp− p (1− γ)

[n+ p (1− γ)−1]|φn|
zn+p−1

)
+

∞

∑
n=1

Yn+p−1

(
zp +

p (1− γ)
[n+ p (1+ γ)−1]|φn|

z̄n+p−1
)

=
∞

∑
n=1

(Xn+p−1hn+p−1 +Yn+p−1gn+p−1)

as required.

Theorem 2.5. The class T ∗H(p,α1,γ) is closed under convex combination.

Proof. For i = 1,2,3, ..., suppose that fi(z) ∈ T ∗H(p,α1,γ) , where fi is given by

fi(z) = zp−
∞

∑
n=2
|ai,n+p−1|zn+p−1 +

∞

∑
n=1
|bi,n+p−1|z̄n+p−1 .

By Theorem 2.3,

(2.7)
∞

∑
n=2

n+ p (1− γ)−1
p (1− γ)

|φn||ai,n+p−1|+
∞

∑
n=1

n+ p (1+ γ)−1
p (1− γ)

|φn||bi,n+p−1| ≤ 1.

For ∑
∞
i=1 ti = 1, 0≤ ti ≤ 1, the convex combination of fi may be written as,

∞

∑
i=1

ti fi(z) = zp−
∞

∑
n=2

(
∞

∑
i=1

ti|ai,n+p−1|

)
zn+p−1 +

∞

∑
n=1

(
∞

∑
i=1

ti|bi,n+p−1|

)
z̄n+p−1 .

Then, by (2.7)

∞

∑
n=2

[n+ p (1− γ)−1]|φn|
p (1− γ)

(∣∣∣∣∣ ∞

∑
i=1

ti|ai,n+p−1|

∣∣∣∣∣
)

+
∞

∑
n=1

[n+ p (1+ γ)−1]|φn|
p (1− γ)

(∣∣∣∣∣ ∞

∑
i=1

ti|bi,n+p−1|

∣∣∣∣∣
)

=
∞

∑
i=1

ti

(
∞

∑
n=2

[n+ p (1− γ)−1]|φn|
p (1− γ)

|ai,n+p−1|+
∞

∑
n=1

[n+ p (1+ γ)−1]]|φn|
p (1− γ)

|bi,n+p−1|

)

≤
∞

∑
i=1

ti = 1.

Hence, ∑
∞
i=1 ti fi(z) ∈ T ∗H(p,α1,γ).

In the last theorem below we give distortion inequalities for f in the class T ∗H(p,α1,γ).

Theorem 2.6. If f ∈ T ∗H(p,α1,γ) with φn ≥ φ2 , then for |z|= r < 1,

| f (z)| ≤ (1+ |bp|)rp + rp+1
(

p (1− γ)
[p (1− γ)+1]|φ2|

−
p (1+ γ)|bp|

[p (1− γ)+1]|φ2|

)
and

| f (z)| ≥ (1−|bp|)rp− rp+1
(

p (1− γ)
[p (1− γ)+1]|φ2|

−
p (1+ γ)|bp|

[p (1− γ)+1]|φ2|

)
.
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Proof. Since

p (1− γ)+1
p (1− γ)

|φ2|
∞

∑
n=2

(|an+p−1|+ |bn+p−1|)

≤
∞

∑
n=2

n+ p (1− γ)−1
p (1− γ)

(|an+p−1|+ |bn+p−1|) |φn|

≤
∞

∑
n=2

(
n+ p (1− γ)−1

p (1− γ)
|an+p−1|+

n+ p (1+ γ)−1
p (1− γ)

|bn+p−1|
)
|φn|,

the result of Theorem 2.3 gives

(2.8)
∞

∑
n=2

(|an+p−1|+ |bn+p−1|)≤
p (1− γ)

[p (1− γ)+1]|φ2|

(
1− 1+ γ

1− γ
|bp|
)

.

Next, again since f ∈ T ∗H(p,α1,γ), we have from (2.8) and |z|= r that

| f (z)|=

∣∣∣∣∣zp−
∞

∑
n=2
|an+p−1|zn+p−1 +

∞

∑
n=1
|bn+p−1|z̄n+p−1

∣∣∣∣∣
≤ |zp|+

∞

∑
n=2
|an+p−1| |z|n+p−1 +

∞

∑
n=1
|bn+p−1| |z̄|n+p−1

= rp +
∞

∑
n=2
|an+p−1|rn+p−1 +

∞

∑
n=1
|bn+p−1|rn+p−1

≤ (1+ |bp|)rp +

(
∞

∑
n=2

(|an+p−1|+ |bn+p−1|)

)
rp+1

≤ (1+ |bp|)rp + rp+1
(

p (1− γ)
[p (1− γ)+1]|φ2|

−
p (1+ γ)|bp|

[p (1− γ)+1]|φ2|

)
which gives the first result.

In a similar manner, we obtain the following lower bound.

| f (z)| ≥ rp−
∞

∑
n=2
|an+p−1|rn+p−1−

∞

∑
n=1
|bn+p−1|rn+p−1

= (1−|bp|)rp−
∞

∑
n=2

(|an+p−1|+ |bn+p−1|)rn+p−1

≥ (1−|bp|)rp− rp+1
(

p (1− γ)
[p (1− γ)+1]|φ2|

−
p (1+ γ)|bp|

[p (1− γ)+1]|φ2|

)
.
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