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Abstract. A new subclass of multivalent harmonic functions defined by convolution is in-
troduced in this paper. The subclass generates known subclasses of multivalent harmonic
functions, and thus provides a unified treatment in the study of these subclasses. Sufficient
coefficient conditions are obtained that are also shown to be necessary when the functions
have negative coefficients. Growth estimates and extreme points are also determined. In
addition conditions for starlikeness of the Dziok-Srivastava linear operator involving the
generalized hypergeometric functions are discussed.
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1. Introduction

Harmonic mappings are important in the study of minimal surfaces due to their role [17]
in parametrizing minimal surfaces. Although harmonic mappings need not be analytic,
they have been studied from the perspective of geometric function theory as generalizations
of conformal mappings. The seminal works of Clunie and Sheil-Small [16] as well as
Sheil-Small [29] showed that while certain classical results for conformal mappings have
analogues for harmonic mappings, many other basic questions remain unsolved.

A multivalent harmonic function f in a simply connected domain can be expressed in
the form f = h + g, where both h and g are analytic. The function h is called the analytic
part while g is the co-analytic part of f . Denote by S0

H(m), m ≥ 1, the class of multivalent
harmonic functions f = h+g, where

h(z) = zm +
∞

∑
n=2

an+m−1zn+m−1 and g(z) =
∞

∑
n=2

bn+m−1zn+m−1,z ∈U,

normalized by the conditions h(0) = h′(0) = · · ·= h(m−1)(0) = h(m)(0)−m! = 0 and g(0) =
g′(0) = · · ·= gm(0) = 0.
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Convexity and starlikeness are well-known hereditary properties of analytic univalent
functions f in the unit disk U. In other words, if f maps U onto a convex domain, then the
image of every subdisk |z| < r < 1 is also a convex domain. Likewise, if f with f (0) =
0 maps U onto a domain starlike with respect to the origin, the image of every subdisk
|z| < r < 1 is also a domain starlike with respect to the origin. However these hereditary
properties do not extend to harmonic mappings. Chuaqui et al. [15] considered starlike
and convex harmonic mappings that do inherit the hereditary properties. They called such
functions fully starlike and fully convex harmonic mappings respectively.

Various subclasses of harmonic univalent functions have been introduced and studied
by several authors [2, 7, 10–12, 14, 19–24, 26, 27, 31, 33]. In particular, the investigation
by Silverman [31] gives a sufficient coefficient condition for harmonic functions f = h+g
to belong to the well-known classes S∗

0

H and K0
H . The proof of the coefficient condition

in [31] for the class S∗
0

H rests on showing that ∂/∂θ(arg f (reiθ )) > 0,0 < r < 1,0 ≤ θ <
2π. The latter condition is equivalent to the analytic description in [15] for fully starlike
harmonic functions. Therefore the coefficient condition for S∗

0

H obtained in [31] is sufficient
for functions to be fully starlike. It is known that fully starlike harmonic functions need not
be univalent. Thus the coefficient bounds in [31] also provides a sufficient condition for
univalence of fully starlike functions. Fully convex harmonic functions on the other hand
are known to be univalent. In this instance, the coefficient bound for convexity obtained by
Silverman [31] will not only be sufficient for fully convex harmonic functions, but in the
case of harmonic functions f = h + g with negative coefficients, the coefficient condition
will also be necessary. Thus the coefficient condition obtained in [31] is necessary and
sufficient for fully convex harmonic functions with negative coefficients.

Several authors [3–6, 13, 20, 25, 28] have investigated various subclasses of multivalent
harmonic functions. In this work, we introduce a new subclass of multivalent harmonic
functions defined by convolution.

Definition 1.1. Let σ be a real constant with |σ |= 1 and 0≤ α < 1. Let Φσ (z) = φ1(z)+
σφ2(z) be a given multivalent harmonic function in U = {z : |z|< 1}, where φ1 and φ2 are
of the form

(1.1) φ1(z) = zm +
∞

∑
n=2

An+m−1zn+m−1 and φ2(z) = zm +
∞

∑
n=2

Bn+m−1zn+m−1.

A multivalent harmonic function f = h+g ∈ S0
H(m) where

(1.2) h(z) = zm +
∞

∑
n=2

an+m−1zn+m−1, g(z) =
∞

∑
n=2

bn+m−1zn+m−1,

belongs to the class S0
H(Φσ ,m,α) if Φσ ∗ f ∈ S0

H(m) satisfies the inequality

(1.3) Re

{
z(h∗φ1)′(z)−σz(g∗φ2)′(z)
(h∗φ1)(z)+σ(g∗φ2)(z)

}
> mα, (z ∈U).

Here ∗ is the convolution operator given by

(Φσ ∗ f )(z) = (φ1 +σφ2)∗ (h+g)(z)

= zm +
∞

∑
n=2

an+m−1An+m−1zn+m−1 +σ

∞

∑
n=2

bn+m−1Bn+m−1zn+m−1.
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The subclasses S0
H(m,α) of multivalent harmonic starlike functions and K0

H(m,α) of
multivalent harmonic convex functions investigated by Ahuja and Jahangiri [5] can in fact
be expressed in the form

(1.4) S0
H(Φ1,m,α) = S0

H(m,α) and S0
H(Φ−1,m,α) = K0

H(m,α)

with

Φ1(z) =
zm

1− z
+

zm

1− z
and

Φ−1(z) =
1
m

[ zm

(1− z)2 −
(1−m)zm

(1− z)

]
− 1

m

[ zm

(1− z)2 −
(1−m)zm

(1− z)

]
,

respectively. It is clear then that the subclass S0
H(Φσ ,m,α) can generate known subclasses

of multivalent harmonic mappings, and provides a unified treatment in the study of these
subclasses.

In Section 2 of this paper, a necessary and sufficient convolution condition is obtained
for S0

H(Φσ ,m,α) which as an application yields a sufficient coefficient condition for the
class. In Section 3 an appropriate general class T S0

H(Φσ ,m,α) of harmonic functions with
negative coefficients is defined, and necessary and sufficient coefficient conditions are ob-
tained. Section 3 is also devoted to determining growth estimates and extreme points for
the class. In Section 4, conditions for starlikeness of the Dziok-Srivastava linear operator
involving the generalized hypergeometric functions are discussed. Since many operators
can be expressed in terms of the hypergeometric functions, the results obtained here will be
useful for such operators.

2. Main results

We now derive a convolution characterization for functions in the class S0
H(Φσ ,m,α).

Theorem 2.1. Let f = h+g ∈ S0
H(m). Then f ∈ S0

H(Φσ ,m,α) if and only if

(h∗φ1)∗

[
zm + x+1−2m+2mα

2m−2mα
zm+1

(1− z)2

]
−σ(g∗φ2)∗

[
x+α

1−α
zm− (2m−1)x−1+2mα

2m−2mα
zm+1

(1− z)2

]
6= 0,

where |x|= 1,0 < |z|< 1.

Proof. A necessary and sufficient condition for f = h + g to be in the class S0
H(Φσ ,m,α),

with h and g of the form (1.2), is given by (1.3). Since

z(h∗φ1)′(z)−σz(g∗φ2)′(z)
(h∗φ1)(z)+σ(g∗φ2)(z)

= m

at z = 0, the condition (1.3) is equivalent to
(2.1)

1
m(1−α)

{
z(h∗φ1)′(z)−σz(g∗φ2)′(z)
(h∗φ1)(z)+σ(g∗φ2)(z)

−mα

}
6= x−1

x+1
; |x|= 1,x 6=−1,0 < |z|< 1.

By a simple algebraic manipulation, (2.1) yields

0 6= (x+1)[z(h∗φ1)′(z)−σz(g∗φ2)′(z)]−mα(x+1)[(h∗φ1)(z)+σ(g∗φ2)(z)]

−m(x−1)(1−α)[(h∗φ1)(z)+σ(g∗φ2)(z)]
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= (h∗φ1)∗

[
(x+1)

(
zm

(1− z)2 −
(1−m)zm

1− z

)
− (xm+2mα−m)zm

1− z

]

−σ(g∗φ2)∗

[
(x+1)

(
zm

(1− z)2 −
(1−m)zm

1− z

)
+

(xm+2mα−m)zm

1− z

]
.

The latter condition together with (1.3) for x =−1 establishes the result for all |x|= 1.
Sufficient coefficient conditions for the multivalent harmonic starlike functions and mul-

tivalent harmonic convex functions were obtained in [5]. Here an application of Theorem
2.1 yields a sufficient coefficient condition for multivalent harmonic functions to belong to
the class S0

H(Φσ ,m,α).

Theorem 2.2. Let f = h+g ∈ S0
H(m). Then f ∈ S0

H(Φσ ,m,α) if
∞

∑
n=2

n+m(1−α)−1
m(1−α)

|an+m−1||An+m−1|+
∞

∑
n=2

n+m(1+α)−1
m(1−α)

|bn+m−1||Bn+m−1| ≤ 1.

Proof. For h and g given by (1.2), Theorem 2.1 gives∣∣∣∣∣(h∗φ1)∗

[
zm + x+1−2m+2mα

2m−2mα
zm+1

(1− z)2

]
−σ(g∗φ2)∗

[
x+α

1−α
zm− (2m−1)x−1+2mα

2m−2mα
zm+1

(1− z)2

]∣∣∣∣∣
=

∣∣∣∣∣zm +
∞

∑
n=2

[
n+(n−1)

x+1−2m+2mα

2m−2mα

]
an+m−1An+m−1zn+m−1

−σ

∞

∑
n=2

[
n

x+α

1−α
− (n−1)

(2m−1)x−1+2mα

2m−2mα

]
bn+m−1Bn+m−1zn+m−1

∣∣∣∣∣
> |zm|

[
1−

∞

∑
n=2

n+m(1−α)−1
m(1−α)

|an+m−1||An+m−1|

−
∞

∑
n=2

n+m(1+α)−1
m(1−α)

|bn+m−1||Bn+m−1|
]
.

The last expression is non-negative by hypothesis, and hence by Theorem 2.1, it follows
that f ∈ S0

H(Φσ ,m,α).
The sufficient coefficient conditions for the classes S0

H(m,α) (and K0
H(m,α)) can be

obtained from Theorem 2.2 on using the relations (1.4). These are given in the following
two corollaries:

Corollary 2.1. [5] Let f = h+g ∈ S0
H(m). Then f ∈ S0

H(m,α) if
∞

∑
n=2

n+m(1−α)−1
m(1−α)

|an+m−1|+
∞

∑
n=2

n+m(1+α)−1
m(1−α)

|bn+m−1| ≤ 1.

Corollary 2.2. [5] Let f = h+g ∈ S0
H(m). Then f ∈ K0

H(m,α) if
∞

∑
n=2

(n+m−1)(n+m(1−α)−1)
m2(1−α)

|an+m−1|

+
∞

∑
n=2

(n+m−1)(n+m(1+α)−1)
m2(1−α)

|bn+m−1| ≤ 1.
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3. Harmonic maps with negative coefficients

Following the work of Silverman [30], several subclasses of analytic functions with negative
coefficients have been introduced and studied. A unified class of analytic p-valent functions
with negative coefficients defined by convolution was introduced in [9] that included many
well-known subclasses of analytic functions with negative coefficients as special cases. In
this section, we shall devote attention to the subclass T S0

H(Φσ ,m,α) of S0
H(Φσ ,m,α) con-

sisting of multivalent harmonic functions f = h+ ḡ of the form

(3.1) h(z) = zm−
∞

∑
n=2

an+m−1zn+m−1, g(z) = σ

∞

∑
n=2

bn+m−1zn+m−1,

where an+m−1 ≥ 0, bn+m−1 ≥ 0. Let Φσ (z) = φ1(z) + σφ2(z) where φ1 and φ2 are of the
form

(3.2) φ1(z) = zm +
∞

∑
n=2

An+m−1zn+m−1, φ2(z) = zm +
∞

∑
n=2

Bn+m−1zn+m−1,

with An+m−1 ≥ 0,Bn+m−1 ≥ 0. The subclass T S0
H(Φσ ,m,α) includes as special cases the

subclasses T S0
H(m,α) and T K0

H(m,α).

Theorem 3.1. For f of the form (3.1), f ∈ T S0
H(Φσ ,m,α) if and only if

(3.3)
∞

∑
n=2

n+m(1−α)−1
m(1−α)

an+m−1An+m−1 +
∞

∑
n=2

n+m(1+α)−1
m(1−α)

bn+m−1Bn+m−1 ≤ 1.

Proof. If f belongs to T S0
H(Φσ ,m,α), then (1.3) is equivalent to

Re ψ(z) > 0

for z ∈U , where ψ = F/G and

F(z) = m(1−α)zm−
∞

∑
n=2

(n+m(1−α)−1)anAn+m−1zn+m−1

−
∞

∑
n=2

(n+m(1+α)−1)bn+m−1Bn+m−1zn+m−1

G(z) = zm−
∞

∑
n=2

an+m−1φn+m−1zn+m−1 +
∞

∑
n=2

bn+m−1φn+m−1zn+m−1.

Letting z→ 1− through real values yields condition (3.3). Conversely, for h and g given by
(3.1),∣∣∣∣∣(h∗φ1)∗

[
zm + x+1−2m+2mα

2m−2mα
zm+1

(1− z)2

]
−σ(g∗φ2)∗

[
x+α

1−α
zm− (2m−1)x−1+2mα

2m−2mα
zm+1

(1− z)2

]∣∣∣∣∣
> |z|

[
1−

∞

∑
n=2

n+m(1−α)−1
m(1−α)

|an+m−1||An+m−1|

−
∞

∑
n=2

n+m(1+α)−1
m(1−α)

|bn+m−1||Bn+m−1|
]

which is non-negative by hypothesis, thus proving sufficiency of condition (3.3).
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Corollary 3.1. Let Φσ be of the form (3.2) with An+m−1 ≥ Bm+1,Bn+m−1 ≥ Bm+1, (n≥ 2).
If f ∈ T S0

H(Φσ ,m,α), then for |z|= r < 1,

rm− m(1−α)
(1+m(1−α))Bm+1

rm+1 ≤ | f (z)| ≤ rm +
m(1−α)

(1+m(1−α))Bm+1
rm+1.

The result is sharp with equality for f (z) = zm− m(1−α)
(1+m(1−α))Bm+1

zm+1.

Proof. We have

[1+m(1−α)]Bm+1

[
∞

∑
n=2

(an+m−1 +bn+m−1)

]

≤
∞

∑
n=2

[(n+m(1−α)−1)an+m−1An+m−1 +(n+m(1+α)−1)bn+m−1Bn+m−1]

≤ m(1−α).

Thus,

| f (z)|=

∣∣∣∣∣zm−
∞

∑
n=2

an+m−1zn+m−1 +σ

∞

∑
n=2

bn+m−1zn+m−1

∣∣∣∣∣
≤ rm + rm+1

[
∞

∑
n=2

(an+m−1 +bn+m−1)

]

≤ rm +
m(1−α)

[1+m(1−α)]Bm+1
rm+1.

The sharp lower bound is obtained in a similar manner.
We now determine its extreme points.

Theorem 3.2. Let

hm(z) := zm,hn+m−1(z) := zm− m(1−α)
[n+m(1−α)−1]An+m−1

zn+m−1,

and

gn+m−1(z) := zm +
m(1−α)

σ [n+m(1+α)−1]Bn+m−1
zn+m−1, (n = 2,3, . . .).

A function f ∈ T S0
H(Φσ ,m,α) if and only if f can be expressed in the form

f (z) =
∞

∑
n=1

(λn+m−1hn+m−1(z)+ γn+m−1gn+m−1(z)),

where λn+m−1 ≥ 0,γn+m−1 ≥ 0,λm = 1−∑
∞
n=2(λn+m−1 +γn+m−1) and γm = 0. In particular,

the extreme points of T S0
H(Φσ ,m,α) are {hn+m−1} and {gn+m−1}.

Proof. Let

f (z) =
∞

∑
n=1

(λn+m−1hn+m−1(z)+ γn+m−1gn+m−1(z))

= zm−
∞

∑
n=2

λn+m−1
m(1−α)

(n+m(1−α)−1)An+m−1
zn+m−1
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+σ

∞

∑
n=1

γn+m−1
m(1−α)

(n+m(1+α)−1)Bn+m−1
zn+m−1.

Since
∞

∑
n=2

n+m(1−α)−1
m(1−α)

λn+m−1
m(1−α)

(n+m(1−α)−1)An+m−1
An+m−1

+
∞

∑
n=2

n+m(1+α)−1
m(1−α)

γn+m−1
m(1−α)

(n+m(1+α)−1)Bn+m−1
Bn+m−1

=
∞

∑
n=2

(λn+m−1 + γn+m−1) = 1−λm ≤ 1,

it follows from Theorem 3.1 that f ∈ T S0
H(Φσ ,m,α).

Conversely, if f ∈ T S0
H(Φσ ,m,α), then

an+m−1 ≤
m(1−α)

(n+m(1−α)−1)An+m−1
, bn+m−1 ≤

m(1−α)
(n+m(1+α)−1)Bn+m−1

.

Set

λn+m−1 =
(n+m(1−α)−1)

m(1−α)
an+m−1An+m−1,

γn+m−1 =
(n+m(1+α)−1)

m(1−α)
bn+m−1Bn+m−1

and

λm = 1−
∞

∑
n=2

(λn+m−1 + γn+m−1), γm = 0.

Then it is easily seen that ∑
∞
n=1(λn+m−1hn+m−1(z)+ γn+m−1gn+m−1(z)) = f (z).

4. The Dziok-Srivastava linear operator

Let us denote by S(m) the class of all analytic functions f in U of the form

f (z) = zm +
∞

∑
n=2

an+m−1zn+m−1.

For α j ∈ C ( j = 1,2, . . . , p) and βn ∈ C \ {0,−1,−2, . . .} (n = 1,2, . . .q), the gener-
alized hypergeometric function pFq(α1, . . . ,αp;β1, . . . ,βq;z) in U is defined by the infinite
series

pFq(α1, . . . ,αp;β1, . . . ,βq;z) :=
∞

∑
n=0

(α1)n · · ·(αp)n

(β1)n · · ·(βq)n

zn

n!
(p≤ q+1; p,q∈N0 := {0,1,2, . . .}),

where (a)n is the Pochhammer symbol given by

(a)n :=
Γ(a+n)

Γ(a)
=
{

1, (n = 0);
a(a+1)(a+2) · · ·(a+n−1), (n ∈ N).

It is known [32, p. 43] that the pFq series is absolutely convergent in C if p≤ q, and in U if
p = q+1. Furthermore, if

Re

(
q

∑
j=1

β j−
p

∑
j=1

α j

)
> 0,
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then the pFq series is absolutely convergent for |z| = 1. Corresponding to the function
pFq(α1, . . . ,αp;β1, . . . ,βq;z), the Dziok-Srivastava operator [18]

H(p,q)(α1, . . . ,αp;β1, . . . ,βq) : S(m)→ S(m)

is defined by the Hadamard product

H(p,q)(α1, . . . ,αp;β1, . . . ,βq) f (z) := zm
pFq(α1, . . . ,αp;β1, . . . ,βq;z)∗ f (z)

= zm +
∞

∑
n=2

(α1)n−1 . . .(αp)n−1

(β1)n−1 · · ·(βq)n−1

an+m−1zn+m−1

(n−1)!
.

For convenience, we write

z pFq[α;β ;z] := z pFq(α1, . . . ,αp;β1, . . . ,βq;z),

H p,q[α;β ] f (z) := H(p,q)(α1, . . . ,αp;β1, . . . ,βq) f (z).

Corresponding to f = h+g given by (1.2), we define an operator L on f given by

(4.1) L [ f ] = Φσ ∗ f = (φ1 +σφ2)∗ (h+g),

where

(4.2)
φ1(z) = zm

pFq[λ ;β ;z] = zm +∑
∞
n=2 An+m−1zn+m−1,

φ2(z) = zm
lFm[c;d;z] = zm +∑

∞
n=2 Bn+m−1zn+m−1,

and

(4.3) An+m−1 =
(λ1)n−1 · · ·(λp)n−1

(β1)n−1 · · ·(βq)n−1

1
(n−1)!

, Bn+m−1 =
(c1)n−1 · · ·(cl)n−1

(d1)n−1 · · ·(dm)n−1

1
(n−1)!

.

Here we are certainly assuming that none of the denominator parameters can be zero or a
negative integer. A similar operator to L defined by (4.1) was studied by Ahuja et al. [8].
Harmonic starlikeness and convexity of integral operators related to hypergeometric series
was also recently investigated in [1]. It is interesting to note that the functions φ1 and φ2
considered in [1] are taken to be integral operators associated with the Gauss hypergeometric
functions.

Theorem 4.1. Let f = h + g ∈ S0
H(m) be of the form (1.2), where the coefficients an+m−1

and bn+m−1 satisfy

(4.4) |an+m−1| ≤
m(1−α)

n+m(1−α)−1
, and |bn+m−1| ≤

m(1−α)
n+m(1+α)−1

, (n≥ 2).

Let φ1 and φ2 of the form (4.2) satisfy

q

∑
j=1

β j >
p

∑
j=1
|λ j|,

m

∑
j=1

d j >
l

∑
j=1
|c j|,

where β j > 0 ( j = 1, . . . ,q) and d j > 0 ( j = 1, . . . ,m). If

(4.5) pFq[|λ |;β ;1]+l Fm[|c|;d;1]≤ 3

holds, then L [ f ] ∈ SH(m,α).
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Proof. In view of Theorem 2.2, it suffices to show that S≤ m(1−α), where
(4.6)

S :=
∞

∑
n=2

(n+m(1−α)−1)|an+m−1||An+m−1|+
∞

∑
n=2

(n+m(1+α)−1)|bn+m−1||Bn+m−1|,

where An+m−1 and Bn+m−1 are given by (4.3). Thus

S≤ m(1−α)
∞

∑
n=2

[|An+m−1|+ |Bn+m−1|]

≤ m(1−α)

{
∞

∑
n=2

(|λ1|)n−1 · · ·(|λp|)n−1

(β1)n−1 · · ·(βq)n−1

1
(n−1)!

+
∞

∑
n=2

(|c1|)n−1 · · ·(|cl |)n−1

(d1)n−1 · · ·(dm)n−1

1
(n−1)!

}
= m(1−α)

{
pFq[|λ |;β ;1]−1+l Fm[|c|;d;1]−1

}
≤ m(1−α),

provided (4.5) holds.
Note that the hypergeometric condition (4.5) is independent of α.

Example 4.1. Let l = 2 = p, m = 1 = q, β > 1+ |λ |, and d > 1+ |c| in Theorem 4.1. The
Gauss summation formula [32, p. 30] gives

2F1(a,b;c;1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

, Re(c−a−b) > 0.

Using the property that Γ(z + 1) = zΓ(z) and the Gauss summation formula, the condition
(4.5) reduces to

β −1
β −|λ |−1

+
d−1

d−|c|−1
≤ 3.
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