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1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic functions in
the complex plane. We adopt the standard notations in the Nevanlinna theory of meromor-
phic functions as explained in [5], [6] and [15]. It will be convenient to let E denote any
set of positive real numbers of finite linear measure, not necessarily the same at each oc-
currence. For a nonconstant meromorphic function h, we denote by T (r,h) the Nevanlinna
characteristic of h and by S(r,h) any quantity satisfying S(r,h) = o{T (r,h)} as r→∞,r 6∈ E.

Let f and g be two nonconstant meromorphic functions, and let a be a finite value. We
say that f and g share the value a CM, provided that f − a and g− a have the same zeros
with the same multiplicities. Similarly, we say that f and g share a IM, provided that f −a
and g−a have the same zeros ignoring multiplicities. In addition, we say that f and g share
∞ CM, if 1/ f and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/ f and 1/g
share 0 IM (see [16]). We say that a is a small function of f , if a is a meromorphic function
satisfying T (r,a) = S(r, f ) (see [15]). We also need the following two definitions.

Definition 1.1. [1, 8] Let p be a positive integer and a∈C∪{∞}. Then by Np)(r,1/( f −a))
we denote the counting function of those zeros of f −a (counted with proper multiplicities)
whose multiplicities are not greater than p, by N p)(r,1/( f −a)) we denote the correspond-
ing reduced counting function (ignoring multiplicities). By N(p(r,1/ ( f −a)) we denote the
counting function of those zeros of f − a (counted with proper multiplicities) whose mul-
tiplicities are not less than p, by N(p(r,1/( f − a)) we denote the corresponding reduced
counting function (ignoring multiplicities).
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Definition 1.2. Let a be an any value in the extended complex plane, and let k be an arbi-
trary nonnegative integer. We define

Nk

(
r,

1
f −a

)
= N

(
r,

1
f −a

)
+N(2

(
r,

1
f −a

)
+ · · ·+N(k

(
r,

1
f −a

)
.

In 1976, Yang asked the following question.

Question 1.1. [17] What can be said about the relationship between two entire functions f
and g, if f , g share 0 CM and f (n), g(n) share 1 CM, where n is a nonnegative integer, and
2δ (0, f ) > 1 ?

In 1990, Yi proved the following theorem, which answered Question 1.1.

Theorem 1.1. [18] Let f and g be two nonconstant entire functions. Assume that f , g share
0 CM and f (n), g(n) share 1 CM and 2δ (0, f ) > 1, where n is a nonnegative integer. Then
either f (n)g(n) = 1 or f = g.

In 1997, Lahiri posed the following question.

Question 1.2. [7] What can be said about the relationship between two meromorphic func-
tions whose non-linear differential polynomials share 1 CM ?

In 2002, Fang and Fang proved the following result.

Theorem 1.2. [4] Let f and g be two nonconstant meromorphic functions and n ≥ 13 be
an integer. If f n( f −1)2 f ′ and gn(g−1)2g′ share 1 CM, then f = g.

In 2004, Lin and Yi proved the following result, which corresponds to Theorem B in
view of fixed point.

Theorem 1.3. [8] Let f and g be two nonconstant meromorphic functions and n ≥ 13 be
an integer. If f n( f −1)2 f ′− z and gn(g−1)2g′− z share 0 CM, then f = g.

We will deal with Question 1.2. To this end we employ the idea of weighted sharing of
values which measures how close a shared value is to being shared IM or to being shared
CM. The notion is explained in the following definition.

Definition 1.3. [9] Let k be a nonnegative integer or infinity. For any a ∈ C ∪ {∞}, we
denote by Ek(a, f ) the set of all a-points of f , where an a-point of multiplicity m is counted
m times if m≤ k, and k +1 times if m > k. If Ek(a, f ) = Ek(a,g), we say that f , g share the
value a with weight k.

Remark 1.1. Definition 1.1 implies that if f , g share a value a with weight k, then z0 is a
zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g− a with multiplicity
m(≤ k), and z0 is a zero of f −a with multiplicity m(> k), if and only if it is a zero of g−a
with multiplicity n(> k), where m is not necessarily equal to n. Throughout this paper, we
write f , g share (a,k) to mean that f , g share the value a with weight k. Clearly, if f , g
share (a,k), then f , g share (a, p) for all integer p, 0≤ p < k. Also we note that f , g share
a value a IM or CM if and only if f , g share (a,0) or (a,∞), respectively.

Using the idea of weighted sharing, many mathematicians in the world have got some
interesting results on uniqueness questions of meromorphic functions having weighted shar-
ing values by now (see [11] and [12], for example). In this direction, we recall the following
result proved by Lahiri and Sahoo in 2008, which improves Theorems 1.1–1.3 and deals
with Question 1.2.
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Theorem 1.4. [13, Theorem 1.1] Let f and g be two nonconstant meromorphic functions
and α 6≡ 0,∞ be a small function of f and g, and let n and k (≥ 2) be two positive integers
such that f n( f k− a) f ′−α and gn(gk− a)g′−α share (0,m), where a 6= 0 is a complex
number. Then f = g or f =−g, provided that one of the following three cases holds:

(i) m≥ 2 and n > max{4,k +10−2Θ(∞, f )−2Θ(∞,g)−min{Θ(∞, f ),Θ(∞,g)}};
(ii) m = 1 and n > max{4,3k/2+12−3Θ(∞, f )−3Θ(∞,g)};

(iii) m = 0 and n > {4,4k +22−5Θ(∞, f )−5Θ(∞,g)−min{Θ(∞, f ),Θ(∞,g)}}.
In this direction, Banerjee and Mukherjee proved the following result in 2008.

Theorem 1.5. [2, Theorem 1.1] Let f and g be two transcendental meromorphic functions,
and let α 6≡ 0,∞ be a small function of f and g. If f n(a f 2 + b f + c) f ′−α and gn(ag2 +
bg+ c)g′−α share (0,2), where a 6= 0 is a complex number, b and c are complex numbers
satisfying |b|+ |c| 6= 0. Then one of the following cases will hold:

(i) If b 6= 0, c = 0 and n > max{12−2Θ(∞, f )−2Θ(∞,g)−min{Θ(∞, f ),Θ(∞,g)},χ},
where n is an integer, Θ(∞, f )+ Θ(∞,g) > 0 and χ = 4/(Θ(∞, f )+ Θ(∞,g))−2,
then f = g.

(ii) If b 6= 0, c 6= 0 and n > [12−2Θ(∞, f )−2Θ(∞,g)}−min{Θ(∞, f ),Θ(∞,g)}], the
roots of az2 +bz+ c = 0 are distinct and one of f and g is a meromorphic function
that is not an entire function and has only multiple poles, then f = g.

(iii) If b 6= 0, c 6= 0, n > [12− 2Θ(∞, f )− 2Θ(∞,g)−min{Θ(∞, f ),Θ(∞,g)}] and the
roots of az2 +bz+ c = 0 coincides, then f = g.

(iv) If b = 0, c 6= 0 and n > [12−2Θ(∞, f )−2Θ(∞,g)−min{Θ(∞, f ),Θ(∞,g)}], then
either f = g or f =−g. Moreover, f =−g does not arise, if n is an even integer.

We will prove the following result, which improves Theorems 1.4–1.5 and deals with
Question 1.2.

Theorem 1.6. Let f and g be two nonconstant meromorphic functions. If f n( f k1 +a f k2 +
b) f ′−α and gn(gk1 +agk2 +b)g′−α share (0,m), where n, k1, k2 are three positive integers
such that n > k1 +2 and k1 > k2, a and b are complex numbers such that |a|+ |b| 6= 0, m is a
nonnegative integer, α(6≡ 0,∞) be a small function of f and g, and if the algebraic equation
ωk1 +aωk2 +b = 0 has no multiple roots, then

(1.1)
f n+k1+1

n+ k1 +1
+

a f n+k2+1

n+ k2 +1
+

b f n+1

n+1
=

gn+k1+1

n+ k1 +1
+

agn+k2+1

n+ k2 +1
+

bgn+1

n+1
,

provided that one of the following three cases holds.
(i) m≥ 2 and n > max{χ1,χ2} where

(1.2) χ1 = k1 +10−δ (0, f )−2Θ(0, f )−2Θ(∞, f )−δ (0,g)−2Θ(0,g)−3Θ(∞,g)

and

(1.3) χ2 = k1 +10−δ (0,g)−2Θ(0,g)−2Θ(∞,g)−δ (0, f )−2Θ(0, f )−3Θ(∞, f ).

(ii) m = 1 and n > max{χ3,χ4}−1, where

(1.4) χ3 = 12+
3k1

2
−4Θ(0, f )−3Θ(∞, f )−3Θ(0,g)−3Θ(∞,g)

and

(1.5) χ4 = 12+
3k1

2
−4Θ(0,g)−3Θ(∞,g)−3Θ(0, f )−3Θ(∞, f ).
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(iii) m = 0 and n > max{χ5,χ6}, where

(1.6) χ5 = 21+4k1−6Θ(0, f )−6Θ(∞, f )−5Θ(0,g)−5Θ(∞,g)

and

(1.7) χ6 = 21+4k1−6Θ(0,g)−6Θ(∞,g)−5Θ(0, f )−5Θ(∞, f ).

By Theorem 1.6 we get the following uniqueness theorem.

Theorem 1.7. Let f and g be two nonconstant meromorphic functions such that f n( f k1 +
a f k2 +b) f ′−α and gn(gk1 +agk2 +b)g′−α share (0,m), where α 6≡ 0,∞ is a small function
of f and g, and n, k1, k2 are positive integers such that n > k1 + 2 and k1 > k2, m is a
nonnegative integer, a and b are two complex numbers satisfying |a|+ |b| 6= 0, such that the
algebraic equation ωk1 + aωk2 + b = 0 has no multiple roots. Suppose that one of (i)-(iii)
in Theorem 1.6 holds. Then

(i) If a = 0 and Θ(∞, f ) > 2/(n + 2), then f = tg, where t is a constant satisfying
tk1 = 1.

(ii) If b = 0 and Θ(∞, f ) > 2/(n+k2 +1), then f = tg, where t is a constant satisfying
tk1−k2 = 1.

(iii) If a 6= 0 and b 6= 0, and if g is a meromorphic function that has only multiple poles
and

(1.8) N(r, | f /g = η j,g 6= ∞) = S(r, f /g)

for l +1≤ j≤ n+k1 +1, where N(r, | f /g = η j,g 6= ∞) denotes the reduced count-
ing function of those η j-points of f/g which are not poles of g, and η j (l +1≤ j≤
n+k1 +1) are n+k1− l +1 distinct roots of ωn+k1+1 = 1 that are not the common
roots of ωn+k1+1 = 1 and ωn+k2+1 = 1, then f = tg, where t is a constant satisfying
tk1 = tk2 = 1.

Remark 1.2. Let f and g be two nonconstant meromorphic functions, and let

F =
f n+3

n+3
− 2 f n+2

n+2
+

f n+1

n+1
, G =

gn+3

n+3
− 2gn+2

n+2
+

gn+1

n+1
.

In Theorem 1.2, the condition that f n( f −1)2 f ′ and gn(g−1)2g′ share 1 CM is equivalent to
the condition that F ′ and G′ share 1 CM, in Theorem 1.3, the condition that f n( f −1)2 f ′−z
and gn(g−1)2g′− z share 0 CM is equivalent to the condition that F ′− z and G′− z share 0
CM. Thus Theorems 1.2 and 1.3 improve Theorem 1.1 for n = 1. Similarly we can see that
Theorems 1.4 improves Theorem 1.3, Theorem 1.5 improves Theorem 1.4, and Theorem
1.7 improves Theorem 1.5. Thus the differential polynomials appeared in Theorems 1.2–
1.5 and Theorems 1.6 and 1.7 are important.

Remark 1.3. The following result can be found in [18]: If and only if

bk1−k2

ak1
6= (−1)k1 k2

k2 (k1− k2)k1−k2

kk1
1

,

the algebraic equation ωk1 +aωk2 +b = 0 has k1 distinct simple roots and no multiple roots,
where k1 and k2 are two positive integer such that k1 > k2, a and b are two nonzero complex
numbers.
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2. Some lemmas

Lemma 2.1. [14] Let f be a nonconstant meromorphic function, and let

F =
p

∑
k=0

ak f k
/ q

∑
j=0

b j f j

be an irreducible rational function in f with constant coefficients {ak} and {b j}, where
ap 6= 0 and bq 6= 0. Then T (r,F) = d T (r, f )+O(1), where d = max{p,q}.

Lemma 2.2. Let f and g be two nonconstant meromorphic functions and α 6≡ 0,∞ be a
small function of f and g. If n, k1, k2 are three positive integers such that n≥ 4 and k1 > k2,
and if the algebraic equation ωk1 + aωk2 + b = 0 has no multiple roots, where a and b are
two complex numbers such that |a|+ |b| 6= 0, then f n( f k1 +a f k2 +b) f ′gn(gk1 +agk2 +b)g′ 6≡
α2.

Remark 2.1. Lemma 2.2 improves Lemma 2.8 in [2]. For convenience we will give the
proof of Lemma 2.2, the tools and methods of the proof are the same as those in the proof
of [2, Lemma 2.8] originally.

Proof. Suppose that

(2.1) f n( f k1 +a f k2 +b) f ′gn(gk1 +agk2 +b)g′ = α
2.

Let z0 6∈ S0 be a zero of f with multiplicity p, where S0 is a set defined as

(2.2) S0 = {z : α(z) = 0}∪{z : α(z) = ∞}.

Then it follows from (2.1) that z0 is a pole of g with multiplicity q, say, such that

(2.3) np+ p−1 = nq+ k1q+q+1,

By rewriting (2.3) as

(2.4) k1q+2 = (n+1)(p−q),

we get q≥ (n−1)/k1. This together with (2.4) implies

(2.5) p≥ 1
n+1

·
(

(n+ k1 +1)(n−1)
k1

+2
)

=
n+ k1−1

k1
.

Let z1 6∈ S0 be a zero of f k1 +a f k2 +b with multiplicity p1. Then it follows from (2.1) that
z1 is a pole of g with multiplicity q1, say. This together with (2.1) implies that 2p1− 1 =
(n+ k1 +1)q1 +1≥ n+ k1 +2. Thus

(2.6) p1 ≥
n+ k1 +3

2
.
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Let z2 6∈ S0 be a pole of f . Then it follows from (2.1) that z2 is either a zero of g′ or a zero
of gn(gk1 +agk2 +b). Thus from (2.5)–(2.6) and Lemma 2.1 we get

N(r, f ) ≤ N
(

r,
1
g

)
+ N

(
r,

1
gk1 + agk2 + b

)
+ N0

(
r,

1
g′

)
+ S(r, f ) + S(r,g)

≤ k1

n + k1 − 1
N

(
r,

1
g

)
+

2
n + k1 + 3

N
(

r,
1

gk1 + agk2 + b

)
+ N0

(
r,

1
g′

)
+ S(r, f ) + S(r,g)

≤
(

k1

n + k1 − 1
+

2k1

n + k1 + 3

)
T (r,g) + N0

(
r,

1
g′

)
+ S(r, f ) + S(r,g),

where N0(r,1/g′) denotes the reduced counting function of those zeros of g′ which are not
zeros of g(gk1 +agk2 +b).

Let

(2.7) f k1 +a f k2 +b = ( f −µ1)( f −µ2) · · ·( f −µk1),

where µ1, µ2, · · · , µk1−1, µk1 are k1 distinct roots of the algebraic equation

ω
k1 +aω

k2 +b = 0.

We discuss the following two cases.

Case 1. Suppose that b 6= 0. Then µ j 6= 0 for 1 ≤ j ≤ k1. By (2.5)–(2.7) and the second
fundamental theorem we get

k1T (r, f ) ≤ N(r, f ) + N
(

r,
1
f

)
+

k1

∑
j=1

N
(

r,
1

f − µ j

)
− N0

(
r,

1
f ′

)
+ S(r, f )

≤
(

k1

n + k1 − 1
+

2k1

n + k1 + 3

)
{T (r, f ) + T (r,g)}

+ N0

(
r,

1
g′

)
− N0

(
r,

1
f ′

)
+ S(r, f ) + S(r,g).

Similarly

k1T (r,g) ≤
(

k1

n + k1 − 1
+

2k1

n + k1 + 3

)
{T (r, f ) + T (r,g)}

+ N0

(
r,

1
f ′

)
− N0

(
r,

1
g′

)
+ S(r, f ) + S(r,g).

From the above inequality we get

k1{T (r, f ) + T (r,g)} ≤
(

2k1

n + k1 − 1
+

4k1

n + k1 + 3

)
{T (r, f ) + T (r,g)}

+ S(r, f ) + S(r,g).

From (2.8) we get

k1 ≤
2k1

n+ k1−1
+

4k1

n+ k1 +3
,
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and so

(2.8)
2

n+ k1−1
+

4
n+ k1 +3

≥ 1,

which contradicts the assumptions n≥ 4 and k1 ≥ 2.

Case 2. Suppose that b = 0. Then |a| 6= 0. From the condition that the algebraic equation
ωk1 + aωk2 + b = 0 has no multiple roots we get k2 = 1. Without loss of generality, let
µ j 6= 0 for 1≤ j ≤ k1−1 and µk1 = 0. Also (2.1) can be rewritten as

(2.9) f n+1( f k1−1 +a) f ′gn+1(gk1−1 +a)g′ = α
2.

Proceeding as in Case 1, we can get (2.8) from (2.9), which is impossible. Lemma 2.2 is
thus completely proved.

Lemma 2.3. [10] Let f and g be two nonconstant meromorphic functions sharing (1,2). If
f 6≡ g and f g 6≡ 1, then

T (r)≤ N2

(
r,

1
f

)
+N2

(
r,

1
g

)
+N2(r, f )+N2(r,g)+S(r),

where T (r) = max{T (r, f ),T (r,g)}, S(r) = o{T (r)}, as r −→ ∞, possibly outside a set of
finite linear measure.

Lemma 2.4. [16, Lemma 1.10] Let f1 and f2 be two nonconstant meromorphic functions
such that f1 + f2 = 1. Then

T (r, f1)≤ N
(

r,
1
f1

)
+N

(
r,

1
f2

)
+N(r, f1)+S(r, f1).

Lemma 2.5. Let

(2.10) F =
f n+k1+1

n+ k1 +1
+

a f n+k2+1

n+ k2 +1
+

b f n+1

n+1
and

(2.11) G =
gn+k1+1

n+ k1 +1
+

agn+k2+1

n+ k2 +1
+

bgn+1

n+1
,

where k1, k2, n are positive integers such that n > k1 +2 and k1 > k2, a and b are complex
numbers such that |a|+ |b| 6= 0. If F ′ = G′, then F = G.

Remark 2.2. Lemma 2.5 improves [2, Lemma 2.9]. For convenience we will give the proof
of Lemma 2.5, the tools and methods of the proof are the same as those in the proof of [2,
Lemma 2.9] originally.

Proof. By (2.11), (2.12) and the condition F ′ = G′ we know that f and g share ∞ CM and

(2.12) F−G = c,

where c is some constant. From (2.11), (2.12) and Lemma 2.1 we get

(2.13) T (r,F) = (n+k1 +1)T (r, f )+O(1) = T (r,G)+O(1) = (n+k1 +1)T (r,g)+O(1).

Let

(2.14) F1 =
f k1

n+ k1 +1
+

a f k2

n+ k2 +1
+

b
n+1
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and

(2.15) G1 =
gk1

n+ k1 +1
+

agk2

n+ k2 +1
+

b
n+1

.

If c 6= 0, from (2.13)-(2.16) and Lemma 2.4 we get

(n + k1 + 1)T (r, f ) ≤ N
(

r,
1
F

)
+ N

(
r,

1
G

)
+ N(r,F) + S(r, f1)

≤ N
(

r,
1
f

)
+ N

(
r,

1
F1

)
+ N

(
r,

1
g

)
+ N

(
r,

1
G1

)
+ N(r, f ) + S(r, f )

≤ (k1 + 2)T (r, f ) + (k1 + 1)T (r,g) + S(r, f )
= (2k1 + 3)T (r, f ) + S(r, f ),

which implies n + k1 + 1 ≤ 2k1 + 3, and so n ≤ k1 + 2, this contradicts the condition n >
k1 +2. Thus c = 0. This together with (2.12) reveals the conclusion of Lemma 2.5.

Lemma 2.6. Let

(2.16) F0 =
F ′

α
and G0 =

G′

α
,

where

(2.17) F =
f n+k1+1

n+ k1 +1
+

a f n+k2+1

n+ k2 +1
+

b f n+1

n+1

and

(2.18) G =
gn+k1+1

n+ k1 +1
+

agn+k2+1

n+ k2 +1
+

bgn+1

n+1
,

in which f and g are nonconstant meromorphic functions, α 6≡ 0,∞ is a small function of f
and g, and k1, k2, n are positive integers. Then

(2.19) T (r,F)≤ N
(

r,
1
F

)
+T (r,F0)−N

(
r,

1
F0

)
+S(r,F)

and

(2.20) T (r,G)≤ N
(

r,
1
G

)
+T (r,G0)−N

(
r,

1
G0

)
+S(r,G).

Proof. By (2.16)–(2.19) and the first fundamental theorem, we get

T (r,F) = T
(

r,
1
F

)
+ O(1)

= N
(

r,
1
F

)
+ m

(
r,

1
F

)
+ O(1)

≤ N
(

r,
1
F

)
+ m

(
r,

F0

F

)
+ m

(
r,

1
F0

)
+ O(1)

≤ N
(

r,
1
F

)
+ T (r,F0)− N

(
r,

1
F0

)
+ S(r,F),

which implies (2.19). Similarly we get (2.20). This proves Lemma 2.6.
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Lemma 2.7. [3] Let f and g be two nonconstant meromorphic functions sharing (1,m),
where m is a nonnegative integer, and let

H =
(

f ′′

f ′
− 2 f ′

f −1

)
−

(
g′′

g′
− 2g′

g−1

)
.

Suppose that H 6≡ 0. If m = 1, then

T (r, f ) ≤ N2

(
r,

1
f

)
+ N2

(
r,

1
g

)
+ N2(r, f ) + N2(r,g)

+
1
2

N
(

r,
1
f

)
+

1
2

N(r, f ) + S(r, f ) + S(r,g).

If m = 0, then

T (r, f ) ≤ N2

(
r,

1
f

)
+ N2

(
r,

1
g

)
+ N2(r, f ) + N2(r,g) + 2N

(
r,

1
f

)
+ N

(
r,

1
g

)
+ 2N(r, f ) + N(r,g) + S(r, f ) + S(r,g).

Lemma 2.8. [20] Let s > 0 and t are relatively prime integers, and let c be a complex
number such that cs = 1. Then there exists one and only one common zero of ωs− 1 and
ω t − c.

3. Proof of theorems

Proof of Theorem 1.6. Let F0 and G0 be defined as in (2.16), where F and G are defined as
in (2.17) and (2.18) respectively. We discuss the following three cases.

Case 1. Suppose that m ≥ 2. Then from (2.16)–(2.18), Lemma 2.2, Lemma 2.3 and the
condition that F ′−α and G′−α share (0,m) we know that either F ′ = G′ or

(3.1) T0(r) ≤ N2

(
r,

1
F0

)
+ N2

(
r,

1
G0

)
+ N2(r,F0) + N2(r,G0) + S(r,F0) + S(r,G0),

where

(3.2) T0(r) = max{T (r,F0),T (r,G0)}.
If F ′ = G′, from Lemma 2.5 we get the conclusion of Theorem 1.6. Next we suppose that
F ′ 6≡ G′. Then (3.1) holds. From (2.16), (2.17) and Lemma 2.6 we get (2.19) and (2.20),
where

N
(

r,
1
F

)
− N

(
r,

1
F0

)
= N

(
r,

1
f

)
+ N

(
r,1/{ f k1

n + k1 + 1
+

a f k2

n + k2 + 1
+

b
n + 1

}
)

− N
(

r,
1

f k1 + a f k2 + b

)
− N

(
r,

1
f ′

)
+ S(r, f )

≤ k1T (r, f ) + N
(

r,
1
f

)
− N

(
r,

1
f k1 + a f k2 + b

)
− N

(
r,

1
f ′

)
+ S(r, f )
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From (2.16)–(2.18), (3.1) and [15, Theorem 1.24] we get

T (r,F0) ≤ 2N
(

r,
1
f

)
+ N

(
r,

1
f k1 + a f k2 + b

)
+ N

(
r,

1
f ′

)
+ 2N(r, f ) + 2N

(
r,

1
g

)
+ N

(
r,

1
gk1 + agk2 + b

)
+ N

(
r,

1
g′

)
+ 2N(r,g) + S(r, f ) + S(r,g)

≤ 2N
(

r,
1
f

)
+ N

(
r,

1
f k1 + a f k2 + b

)
+ N

(
r,

1
f ′

)
+ 2N(r, f )

+ 2N
(

r,
1
g

)
+ N

(
r,

1
g

)
+ 3N(r,g) + k1T (r,g) + S(r, f ) + S(r,g).

Thus from (2.19) and Lemma 2.1 we get

nT (r, f ) ≤ (4− δ (0, f )− 2Θ(0, f )− 2Θ(∞, f ) + ε)T (r, f )

+ (k1 + 6− δ (0,g)− 2Θ(0,g)− 3Θ(∞,g) + ε)T (r,g) + S(r, f ) + S(r,g)

≤ (k1 + 10− δ (0, f )− 2Θ(0, f )− 2Θ(∞, f )− δ (0,g)− 2Θ(0,g))T (r)

+ (2ε − 3Θ(∞,g))T (r) + S(r),

where and in what follows, T (r) = max{T (r, f ),T (r,g)} and S(r) = o{T (r)}, possibly out-
side a set of finite linear measure, ε is an arbitrary positive number. Similarly, from (2.20)
and Lemma 2.1 we have

nT (r,g) ≤ (k1 + 10− δ (0,g)− 2Θ(0,g)− 2Θ(∞,g)− δ (0, f )− 2Θ(0, f ))T (r)

+ (2ε − 3Θ(∞, f ))T (r) + S(r).

From the above inequalities we get

n≤ (k1 +10−δ (0, f )−2Θ(0, f )−2Θ(∞, f )−δ (0,g)−2Θ(0,g)−3Θ(∞,g))

and

n≤ k1 +10−δ (0,g)−2Θ(0,g)−2Θ(∞,g)−δ (0, f )−2Θ(0, f )−3Θ(∞, f ),

which contradicts the condition n > max{χ1,χ2}, where χ1 and χ2 are defined as in (1.2)
and (1.3) respectively.

Case 2. Suppose that m = 1. Let

(3.3) H0 =
(

F ′′0
F ′0
−

2F ′0
F0−1

)
−

(
G′′0
G′0
−

2G′0
G0−1

)
.



Uniqueness Results for a Nonlinear Differential Polynomial 737

Suppose that H0 6≡ 0. Then from Lemma 2.7 and the condition that F ′−α and G′−α share
(0,1) we get

T (r,F0) ≤ N2

(
r,

1
F0

)
+ N2

(
r,

1
G0

)
+ N2(r,F0) + N2(r,G0)

+
1
2

N
(

r,
1
F0

)
+

1
2

N(r,F0) + S(r,F0) + S(r,G0)

≤ 2N
(

r,
1
f

)
+ N

(
r,

1
f k1 + a f k2 + b

)
+ N

(
r,

f
f ′

)
+ 2N

(
r,

1
g

)
+ N

(
r,

1
gk1 + agk2 + b

)
+ N

(
r,

g
g′

)
+ 2N(r, f ) + 2N(r,g)

+
1
2

{
N

(
r,

1
f

)
+ N

(
r,

1
f k1 + a f k2 + b

)
+ N

(
r,

f
f ′

)}
+

1
2

N(r, f ) + S(r, f ) + S(r,g).

Proceeding as in Case 1, we get

N
(

r,
1
F

)
− N

(
r,

1
F0

)
≤ k1T (r, f ) + N

(
r,

1
f

)
− N

(
r,

1
f k1 + a f k2 + b

)
− N

(
r,

1
f ′

)
+ S(r, f )

= k1T (r, f ) + N
(

r,
1
f

)
− N

(
r,

1
f k1 + a f k2 + b

)
− N

(
r,

f
f ′

)
+ S(r, f ).

From Lemma 2.6 we get (2.19). From (2.19), Lemma 2.1 and the above two inequalities we
get

(n + k1 + 1)T (r, f ) ≤ k1T (r, f ) + 3N
(

r,
1
f

)
+ 2N

(
r,

1
g

)
+ N

(
r,

1
gk1 + agk2 + b

)
+ N

(
r,

g
g′

)
+ 2N(r, f ) + 2N(r,g)

+
1
2

(
N

(
r,

1
f

)
+ N

(
r,

1
f k1 + a f k2 + b

)
+ N

(
r,

f
f ′

))
+

1
2

N(r, f ) + S(r, f )

≤ k1T (r, f ) + 3N
(

r,
1
f

)
+ 2N

(
r,

1
g

)
+ k1T (r,g) + N(r,g)

+ N
(

r,
1
g

)
+ 2N(r, f ) + 2N(r,g) +

1
2

N
(

r,
1
f

)
+

k1

2
T (r, f )

+
1
2

(
N(r, f ) + N

(
r,

1
f

))
+

1
2

N(r, f ) + S(r, f ) + S(r,g),
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i.e.,

(n + 1)T (r, f ) ≤ 4N
(

r,
1
f

)
+ 3N(r, f ) + 3N

(
r,

1
g

)
+ 3N(r,g)

+ k1T (r,g) +
k1

2
T (r, f ) + S(r, f ) + S(r,g)

≤
(

4(1−Θ(0, f )) + 3(1−Θ(∞, f )) +
k1

2
+ ε

)
T (r, f )

+ {3(1−Θ(0,g)) + 3(1−Θ(∞,g) + k1 + ε)}T (r,g) + S(r, f ) + S(r,g)
≤ {4(1−Θ(0, f )) + 3(1−Θ(∞, f )) + 3(1−Θ(0,g))}T (r)

+ 3(1−Θ(∞,g))T (r) +
(

3k1

2
+ 2ε

)
T (r) + S(r).

Similarly

(n + 1)T (r,g) ≤ {4(1−Θ(0,g)) + 3(1−Θ(∞,g)) + 3(1−Θ(0, f ))}T (r)

+ 3(1−Θ(∞, f ))T (r) +
(

3k1

2
+ 2ε

)
T (r) + S(r).

From the above two inequalities we get

(3.4) n+1≤ 4(1−Θ(0, f ))+3(1−Θ(∞, f ))+3(1−Θ(0,g))+3(1−Θ(∞,g))+
3k1

2
and

(3.5) n+1≤ 4(1−Θ(0,g))+3(1−Θ(∞,g))+3(1−Θ(0, f ))+3(1−Θ(∞, f ))+
3k1

2
.

Let χ3 and χ4 be defined as in (1.4) and (1.5) respectively. From (3.4), (3.5) and the con-
dition n + 1 > max{χ3,χ4} we get a contradiction. Thus H0 = 0, this together with (3.3)
gives

(3.6)
1

F0−1
=

A
G0−1

+B,

where A and B are constants and A 6= 0. From (3.6) we see that F and G share 1 CM, which
implies that

(3.7) N
(

r,
1

F ′−α

)
−NE(r,α) = S(r, f )

and

(3.8) N
(

r,
1

G′−α

)
−NE(r,α) = S(r,g),

where NE(r,α) denotes the counting function of those common zeros of F0−α and G0−α,
each such common zero has the same multiplicities related to F0−α and G0−α, and is
counted according to its multiplicity. Next in the same manner as in Case 1 we can get from
(3.7) and (3.8) that F ′ = G′, this together with Lemma 2.5 gives the conclusion of Theorem
1.6.
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Case 3. Suppose that m = 0 and set (3.3). Suppose that H0 6≡ 0. Then by Lemma 2.7 and in
the same manner as in Case 2 we get

(n + 1)T (r, f ) ≤ 2k1T (r, f ) + 2k1T (r,g) + 6N
(

r,
1
f

)
+ 6N(r, f )

+ 5N
(

r,
1
g

)
+ 5N(r,g) + S(r, f ) + S(r,g)

≤ {2k1 + 6(1−Θ(0, f ) + 6(1−Θ(∞, f )) + ε)}T (r, f )
+ {2k1 + 5(1−Θ(0,g) + 5(1−Θ(∞,g)) + ε}T (r,g) + S(r, f ) + S(r,g)

≤ {22+4k1−6Θ(0, f )−6Θ(∞, f )−5Θ(0,g)−5Θ(∞,g)+2ε}T (r)+S(r),

where ε is an arbitrary positive number. Similarly

(n+1)T (r,g)≤ {22+4k1−6Θ(0,g)−6Θ(∞,g)−5Θ(0, f )−5Θ(∞, f )+2ε}T (r)+S(r).

From the above inequalities we have

(3.9) n≤ 21+4k1−6Θ(0, f )−6Θ(∞, f )−5Θ(0,g)−5Θ(∞,g)

and

(3.10) n≤ 21+4k1−6Θ(0,g)−6Θ(∞,g)−5Θ(0, f )−5Θ(∞, f ).

Let χ5 and χ6 be defined as in (1.6) and (1.7). From (3.9), (3.10) and the condition n >
max{χ5,χ6} we get a contradiction. Thus H0 = 0. Next from the end of Case 2 we get the
conclusion of Theorem 1.6. Theorem 1.6 is thus completely proved.
Proof of Theorem 1.7. By Theorem 1.6 we get (1.1). We discuss the following three cases.

Case 1. Suppose that a = 0 and b 6= 0. Then (1.1) is rewritten as

(3.11) f n+1
(

f k1

n+ k1 +1
+

b
n+1

)
= gn+1

(
gk1

n+ k1 +1
+

b
n+1

)
.

Let

(3.12) h =
g
f
,

and let u1, u2, · · · , uk1−1, uk1 be k1 distinct roots of the algebraic equation

(3.13)
ωk1

n+ k1 +1
+

b
n+1

= 0.

From (3.11)–(3.12) we get

(3.14) gk1(1−hn+k1+1) =
b(n+ k1 +1)

n+1
· (hn+1−1)hk1 .

If h is a constant such that hn+k1+1 6= 1, from (3.14) we get

(3.15) gk1 =
b(n+ k1 +1)(hn+1−1)hk1

(n+1)(1−hn+k1+1)
.

From (3.15) we know that g is a constant, which is impossible. Thus hn+k1+1 = 1. This
together with (3.14) and h 6≡ 0,∞ implies hn+1− 1 = 0. Thus hk1 = 1, which and (3.12)
reveals the conclusion (i) of Theorem 1.7.
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Suppose that h is not a constant. By rewriting (3.14) as (3.15) we know that every zero of
h−uk (1≤ k≤ n+1) is of multiplicity≥ k1 ≥ 2, this together with the second fundamental
theorem gives

(n− 1)T (r,h) ≤
n+1

∑
k=1

N
(

r,
1

h− uk

)
+ S(r,h)

≤ 1
2

n+1

∑
k=1

N
(

r,
1

h− uk

)
+ S(r,h)

≤ n + 1
2

T (r,h) + S(r,h),

i.e.,
n−3

2
T (r,h) = S(r,h),

which and the condition n > 4 implies T (r,h) = S(r,h), and so h is a constant, this is impos-
sible.

Case 2. Suppose that a 6= 0 and b = 0. Then (1.1) is rewritten as

(3.16) f n+k2+1
(

f k1−k2

n+ k1 +1
+

a
n+ k2 +1

)
= gn+k2+1

(
gk1−k2

n+ k1 +1
+

a
n+ k2 +1

)
.

Next we set (3.12). Then h 6≡ 0,∞. From (3.12) and (3.16) we get

(3.17) (n+ k2 +1)(1−hn+k1+1)gk1−k2 = a(n+ k1 +1)(hn+k2+1−1)hk1−k2 .

Suppose that h is a constant. If hn+k1+1 6= 1, by rewriting (3.17) as

(3.18) gk1−k2 =
a(n+ k1 +1)(hn+k2+1−1)hk1−k2

(n+ k2 +1)(1−hn+k1+1)
,

we know that g is a constant, which is impossible. Thus hn+k1+1 = 1, and so it follows from
(3.17) that hn+k2+1 = 1. Thus hk1−k2 = 1. This together with (3.12) reveals the conclusion
(ii) of Theorem 1.7.

Suppose that h is not a constant. If k1− k2 = 1, then (3.18) is rewritten as

(3.19) g =
a(n+ k2 +2)h(hn+k2+1−1)
(n+ k2 +1)(1−hn+k2+2)

.

From Lemma 2.8, we know that ω = 1 is the only common root of ωn+k2+1 = 1 and
ωn+k2+2 = 1. This together with (3.19) and Lemma 2.1 implies

(3.20) T (r,g) = (n+ k2 +1)T (r,h)+O(1)

and

(3.21) N(r,g) =
n+k2+1

∑
k=1

N(r,
1

h−υk ),
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where υ = exp((2πi)/(n+ k2 +2)). From (3.19)–(3.21) and the second fundamental theo-
rem we get

n + k2 − 1
n + k2 + 1

T (r,g) + O(1) = (n + k2 − 1)T (r,h)

≤
n+k2+1

∑
k=1

N
(

r,
1

h− υk

)
+ S(r,h)

≤ N(r,g) + S(r,g)
≤ {1−Θ(∞,g) + ε}T (r,g) + S(r,g),

which implies Θ(∞,g)≤ 2/(n+k2 +1), from this and the condition Θ(∞,g) > 2/(n+k2 +
1) we get a contradiction.

If k1− k2 ≥ 2, by rewriting (3.17) as (3.18) and from the fact that there exists at most
k1− k2 distinct common roots of ωn+k1+1 = 1 and ωn+k2+1 = 1 such that they are the roots
of ωk1−k2 = 1, we know that every zero of h−υk (1≤ k≤ n+k2 +1) is of multiplicity≥ 2,
where υ1, υ2, · · · , υn+k2 , υn+k2+1 are n + k2 + 1 distinct simple roots of ωn+k2+1 = 1, but
they are not the roots of ωk1−k2 = 1. Thus from (3.18) and the second fundamental theorem
we get

(n + k2 − 1)T (r,h) ≤
n+k2+1

∑
k=1

N
(

r,
1

h− υk

)
+ S(r,h)

≤ 1
2

n+k2+1

∑
k=1

N
(

r,
1

h− υk

)
+ S(r,h)

≤ n + k2 + 1
2

T (r,h) + S(r,h),

i.e.,

(3.22) (n+ k2−3)T (r,h) = S(r,h).

From (3.22) and the condition n > 4 we know that h is a constant, which contradicts the
above supposition.

Case 3. Suppose that a 6= 0 and b 6= 0. By rewriting (1.1) we get

(3.23) A f n+k1+1 +B f n+k2+1 +C f n+1 = Agn+k1+1 +Bgn+k2+1 +Cgn+1,

where

(3.24) A =
1

n+ k1 +1
, B =

a
n+ k2 +1

, C =
b

n+1
.

Let

(3.25) η =
f
g
.

Then η 6≡ 0,∞. From (3.23) and (3.25) we get

(3.26) Agk1(ηn+k1+1−1)+Bgk2(ηn+k2+1−1)+C(ηn+1−1) = 0.

Suppose that η is not a constant. By rewriting (3.26) we get

(3.27) Agk1 =−Bgk2 · η
n+k2+1−1

ηn+k1+1−1
− C(ηn+1−1)

ηn+k1+1−1
.
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Next we denote by {1,η1,η2, · · · ,ηl} ⊆ {η : ηk1−k2 = 1} the set of the distinct common
roots of ηn+k2+1 = 1 and ηn+k1+1 = 1, where l is some positive integer satisfying 1 ≤ l ≤
k1−k2, and let ηl+1,ηl+2, · · · ,ηn+k1 ,ηn+k1+1 6∈ {ω : ωn+k2+1 = 1} be n+k1− l +1 distinct
roots of ωn+k1+1 = 1. Let z1 6∈ {z : ηn+k1+1(z)= 1} be a pole of g of multiplicity p≥ 2. Then
it follows from (3.27) that k1 p≤ k2 p, i.e, k1 ≤ k2, which contradicts the condition k1 > k2.
This together with (1.8), (3.27) and the condition that every pole of g is of multiplicity ≥ 2
gives

(3.28) N
(

r,
1

h−η j

)
= N(2

(
r,

1
h−η j

)
+S(r,h)

for l + 1 ≤ j ≤ n + k1 + 1. Thus from (3.28) we have Θ(ηk,η) ≥ 1/2 for l + 1 ≤ k ≤

n + k1 + 1. This together with the fact
n+k1+1

∑
k=l+1

Θ(ηk,η) ≤ 2 implies (n + k1− l + 1)/2 ≤ 2,

i.e, n+k1 ≤ l +3. Thus from l ≤ k1−k2 we get n≤ 3−k2, which contradicts the condition
n > 4.

Suppose that η is a constant. Then η 6= 0,∞. If ηn+k1+1−1 6= 0, by rewriting (3.26) as
(3.27) we know that g is a constant, which is impossible. If ηn+k1+1−1 = 0 and ηn+k2+1−
1 6= 0, then from (3.26) we get

gk2 =− C(ηn+1−1)
B(ηn+k2+1−1)

,

which implies that g is a constant, this is impossible. If ηn+k1+1−1 = 0 and ηn+k2+1−1 =
0, from (3.26) we get ηn+1 = 1. Thus ηk1 = ηk2 = 1. This together with (3.25) reveals the
conclusion (iii) of Theorem 1.7. Theorem 1.7 is thus completely proved.

4. Concluding remarks

Regarding the above Theorem 1.6, we pose the following question.

Question 4.1. Whether the conditions with χ1, χ2, · · · , χ6 in Theorem 1.6 are sharp or not?

Regarding the above Theorem 1.7, we make the following conjecture.

Conjecture 4.1. If we remove the condition (1.8), then the case (iii) in Theorem 1.7 will
hold.
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