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Abstract. A group G is said to be (2,3, t)-generated if it can be generated by two elements
x and y such that o(x) = 2, o(y) = 3 and o(xy) = t. In the present article, we investigate
(2,3, t)-generations for the Held’s sporadic simple group He, where t is a divisor of |He|.
Most of the computations were carried out with the aid of computer algebra system GAP
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1. Introduction

A group G is said to be (2,3)-generated if it can be generated by an involution x and an
element y of order 3. If o(xy) = t, we also say G is (2,3, t)-generated. The (2,3)-generation
problem has attracted a wide attention of group theorists. One reason is that (2,3)-generated
groups are homomorphic images of the modular group PSL(2,Z), which is the free product
of two cyclic groups of order two and three. The connection with Hurwitz groups and
Riemann surfaces also plays a role. Recall that a (2,3,7)-generated group G which gives rise
to compact Riemann surface of genus greater than 2 with automorphism group of maximal
order, is called Hurwitz group.

Miller [19] proved that the alternating groups An, n 6= 6,7,8 are (2,3)-generated. Macbe-
ath in [18] showed that the projective special linear group PSL(2,q), q 6= 9 are (2,3)-
generated. Woldar [27] determined that all sporadic simple groups, with the exception of
M11, M22, M23 and McL are (2,3)-generated. In addition to the above, a large number of
classical linear groups and Lie groups are (2,3)-generated (see [11]). Recently, Liebeck and
Shalev in [17] have presented some new probabilistic, non-constructive, methods regarding
generations of finite simple groups. In the context of (2,3)-generations they show that all
finite classical groups are (2,3)-generated, with the exception of PSp(4,2k) and PSp(4,3k)
and finitely many other groups. For the literature concerning the generation of finite simple
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groups by two elements and related ones we encourage the reader to consult [10] in addition
to the references cited above.

The Held group He is a sporadic simple group of order 4030387200 = 21033527317. The
group He was discovered by Held [15] while attempting to characterize the Mathieu group
M24 as a simple group with involution centralizer of type 21+6

+ .L3(2). The centralizer of an
element x in the 7A conjugacy class of the Monster group M is He×〈x〉. The group He has
been explicitly constructed as the subgroup of Fischer group Fi′24 stabilizing a set of 2058
Fischer’s 3-transpositions in Fi24.

It is well known that the group He has exactly 11 conjugacy classes of maximal sub-
groups as determined by Butler [7] and listed in the ATLAS [9]. Held himself determined
much of the local structure of the group as well as the conjugacy classes of its elements.
Thompson computed the character table of the group He. The Held group He has exactly
two conjugacy classes of involutions denoted by 2A and 2B.

Moori in [21] determined the (2,3, p)-generations of the smallest Fischer group F22. In
[13], Ganief and Moori established (2,3, t)-generations of the third Janko group J3. In 2002,
Ashrafi [6] computed the (p,q,r)-generations for the group He where p, q and r are distinct
primes. The present paper is devoted to the (2,3, t)-generations of He, where t is any divisor
of |He|. We will also give the generating triples for He. For more information regarding the
study of (2,3)-generations and generation of a group by its conjugate involutions as well as
computational techniques, the reader is referred to [1–5, 13, 21, 22, 27].

For basic properties of the group He and information on its subgroups the reader is re-
ferred to [7, 15]. The ATLAS of Finite Groups [9] is an important reference and we adopt
its notation for subgroups, conjugacy classes, etc. Computations were carried out with the
aid of GAP [23].

2. Preliminary results

Throughout this paper our notation is standard and taken mainly from [3, 5, 6, 13, 21, 25].
In particular, for a finite group G with C1,C2, . . . ,Ck conjugacy classes of its elements and
gk a fixed representative of Ck, we denote ∆(G) = ∆G(C1,C2, . . . ,Ck) the number of dis-
tinct tuples (g1,g2, . . . ,gk−1) with gi ∈ Ci such that g1g2 . . .gk−1 = gk. It is well known
that ∆G(C1,C2, . . . ,Ck) is structure constant for the conjugacy classes C1,C2, . . . ,Ck and can
easily be computed from the character table of G (see [16, p. 45]) by the following formula

∆G(C1,C2, . . . ,Ck) =
|C1||C2| . . . |Ck−1|

|G|
×

m

∑
i=1

χi(g1)χi(g2) . . .χi(gk−1)χi(gk)
[χi(1G)]k−2

where χ1,χ2, . . . ,χm are the irreducible complex characters of G. Further let ∆∗(G) =
∆∗G(C1,C2, . . . ,Ck) denote the number of distinct tuples (g1,g2, . . . ,gk−1) with gi ∈ Ci and
g1g2 . . .gk−1 = gk such that G = 〈g1,g2, . . . ,gk−1〉. If ∆∗G(C1,C2, . . . ,Ck) > 0, then we say
that G is (C1,C2, . . . ,Ck)-generated. If H is any subgroup of G containing the fixed element
gk ∈Ck, then ΣH(C1,C2, · · · ,Ck−1,Ck) denotes the number of distinct tuples (g1,g2, · · · ,gk−1)
∈C1×C2×·· ·×Ck−1 such that g1g2 · · ·gk−1 = gk and 〈g1,g2, · · · ,gk−1〉≤H where ΣH(C1,C2,
· · · ,Ck) is obtained by summing the structure constants ∆H(c1,c2, · · · ,ck) of H over all H-
conjugacy classes c1,c2, · · · ,ck−1 satisfying ci ⊆ H ∩Ci for 1≤ i≤ k−1.

A general conjugacy class of elements of order n in G is denoted by nX . For example
2A represents the first conjugacy class of involutions in a group G. In most instances it
will be clear from the context to which conjugacy classes we are referring. Thus we shall



On the Simple Sporadic Group He Generated by the (2,3, t) Generators 747

often suppress the conjugacy classes, using ∆(G) and ∆∗(G) as abbreviated notation for
∆G(lX ,mY,nZ) and ∆∗G(lX ,mY,nZ), respectively.

The following results in certain situations are very effective at establishing non-generations.

Theorem 2.1. (Scott’s Theorem, [8] and [24]) Let x1,x2, . . . ,xm be elements generating a
group G with x1x2· · ·xn = 1G, and V be an irreducible module for G of dimension n≥ 2. Let
CV (xi) denote the fixed point space of 〈xi〉 on V , and let di be the codimension of CV (xi) in
V . Then d1 +d2 + · · ·+dm ≥ 2n .

Lemma 2.1. (Woldar [27]) Let G be a finite centerless group and suppose lX, mY , nZ are
G-conjugacy classes for which ∆∗(G) = ∆∗G(lX ,mY,nZ) < |CG(z)|,z ∈ nZ. Then ∆∗(G) = 0
and therefore G is not (lX ,mY,nZ)-generated.

The following result will be crucial in determining generating triples.

Theorem 2.2. (Moori [14]) Let G be a finite group and H a subgroup of G containing a
fixed element x such that gcd(o(x), [NG(H):H]) = 1. Then the number h of conjugates of
H containing x is χH(x), where χH is the permutation character of G with action on the
conjugates of H. In particular,

h =
m

∑
i=1

|CG(x)|
|CNG(H)(xi)|

,

where x1, . . . ,xm are representatives of the NG(H)-conjugacy classes that fuse to the G-class
[x]G.

In the course of our work we will frequently apply Scott’s Theorem to the complex
irreducible 51-dimensional module V of He. For the reader’s convenience, we record in
Table I below all values dnX for relevant conjugacy classes nX of the Held group He.

Table 1. The codimensions dnX = dim(V/CV (nX))

d2A d2B d3A d3B d8A d10A d12A d12B d14A d14B d15A

20 24 30 34 44 44 44 46 47 47 46

3. (2,3, t)-Generations of He

The Held group He has exactly two conjugacy classes of elements of order 2 and 3 each. The
group He acts on a set Ω of 2058 points. The point stabilizer of this action is isomorphic to
S4(4):2 and the orbits of point stabilizer on Ω are of lengths 1, 136, 136, 425 and 1360. The
permutation character of He on Ω (the set of conjugates of S4(4):2) is given by χS4(4):2 =
1a+51ab+680a+1275a.

In this section we investigate the (2,3, t)-generations of the Held’s group He where t is
a divisor of |He|. It is a well known fact that if G is (2,3, t)-generated simple group, then
1/2 + 1/3 + 1/t < 1. It follows that in (2,3, t)-generations of the Held group He, we only
need to consider t ∈ {7,8,10,12,14,15,17,21,28}.

Lemma 3.1. The Held’s group He is (2X ,3Y,7Z)-generated if and only if X = Y = B and
Z ∈ {D,E}.
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Proof. This has been proved in [27] and [6].

Lemma 3.2. The sporadic group He is (2X ,3Y,8A)-generated if and only if the ordered
pair (X ,Y ) = (B,B).

Proof. For the triple (2B,3A,8A), non-generation follows immediately since the structure
constant ∆(2B,3A,8A) = 0.

If the group He is (pX ,qY,rZ)-generated, then dpX +dqY +drZ ≥ 102 by Scott’s theorem.
It is clear from Table I that the triples (2A,3A,8A) and (2A,3B,8A) violate Scott’s theorem
and are therefore not generating triples for He.

Finally, we consider the triple (2B,3B,8A). Amongst the maximal subgroups of He with
order divisible by 2×3×8, the only maximal subgroups having non-empty intersection with
each conjugacy class in this triple are isomorphic to H1 ∼= 22·L3(4).S3, H2 ∼= 26:3·S6 (two
non-conjugate copies), H3 ∼= 21+6

+ .L3(2) and H4 ∼= 72:2L2(7). We see that ∆(He) = 272,
Σ(H2) = 24, Σ(H3) = 16 and Σ(H1) = 0 = Σ(H4). Now since Σ(H1) = 0 = Σ(H4), it follows
that H1 and H4 are not (2B,3B,8A)-generated. A fixed element of order 8 in He is contained
in a unique copy of each H2 and H3. Therefore, ∆∗(He)≥ 272−2(24)−1(16) > 0 and the
(2B,3B,8A)-generation of He follows. This completes the proof.

Lemma 3.3. The group He is (2X ,3Y,10A)-generated, where X ,Y ∈ {A,B}, if and only if
X = Y = B.

Proof. The structure constant ∆He(2A,3B,10A) = 0, proving the non-generation of He by
this triple. The triples (2A,3A,10A) and (2B,3A,10A) violate Scott’s theorem, resulting in
the non-generation of He by these triples.

Finally, we calculate ∆He(2B,3B,10A) = 460. The maximal subgroups of He that may
contain (2B,3B,10A)-generated subgroups are isomorphic to 22·L3(4).S3, 26:3·S6 (two non-
conjugate classes), 3·S7 and 52:4A4. Our calculations show that Σ(22·L3(4).S3) = 0 =
Σ(52:4A4), Σ(26:3·S6) = 20 and Σ(3·S7) = 30. Further a fixed element of order 10 is con-
tained in a unique conjugate copy of each 26:3·S6 and in χ3·S7(3A) = 2 (see [1]) conjugate
copies of 3·S7. Hence 26:3·S6 and 3·S7 with their conjugates contribute at most 2×20 and
2×30, respectively, to ∆He(2B,3B,10A) and we obtain ∆∗He(2B,3B,10A)≥ 360. Therefore,
He is (2B,3B,10A)-generated and the result follows.

Lemma 3.4. The group He is (2X ,3Y,12Z)-generated for X ,Y,Z ∈ {A,B}, if and only if
X = Y = B.

Proof. Scott’s theorem eliminates the cases (2A,3A,12A),(2A,3B,12A),(2A,3B,12B),
(2B,3A,12A),(2B,3A,12B).

Next, we consider the triples (2B,3B,12A) and (2B,3B,12B). We calculate the struc-
ture constants ∆He(2B,3B,12A) = 372 and ∆He(2B,3B,12B) = 248. Observe that the only
maximal subgroups of He which meet each of the classes in these triples are 22·L3(4).S3,
26:3·S6 (two non-conjugate classes), 3·S7 and S4×L3(2). We calculate that

∆
∗
He(2B,3B,12A)≥ ∆(He)−Σ(22·L3(4).S3)−4Σ(26:3·S6)−Σ(3·S7)−Σ(S4×L3(2))

= 372−4(12)−24 > 0,

∆
∗
He(2B,3B,12B)≥ ∆(He)−Σ(22·L3(4).S3)−2Σ(26:3·S6)−Σ(3·S7)−Σ(S4×L3(2))

= 348−2(4)−8 > 0.
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Hence the group He is (2B,3B,12Z)-generated for all Z ∈ {A,B}
Finally, the non-generation of He by the triple (2A,3A,12B) is immediate since ∆He(2A,

3A,12B) = 0. Hence the lemma follows.

Lemma 3.5. The group He is (2X ,3Y,14Z)-generated, where X ,Y ∈ {A,B} and Z ∈ {A,B,
C,D}, if and only if Y = B.

Proof. Let 14R denote the class 14A or 14B and 14S denote the class 14C or 14D. The non-
generation of He by the triple (2A,3A,14S) is clear as the structure constant ∆He(2A,3A,14S)
= 0. Further, an application of Scott’s theorem shows that He is not (2A,3A,14R)-generated.
Next consider the triple (2B,3A,14S). For this triple we obtain that ∆He(2B,3A,14R) =
14 < 56 = |CHe(14R)|. So, by Lemma 2.2, ∆∗He(2B,3A,14R) = 0 and the group He is not
(2B,3A,14R)-generated.

For the triple (2B,3A,14S), the only maximal subgroup M of He, up to isomorphism,
that may admit (2B,3A,14S)-generation is isomorphic to 71+2

+ :(S3×3). Further, an element
of order 14 is contained in a unique conjugate class of M. We calculate

∆
∗
He(2B,3A,14S)≤ ∆He(2B,3A,14S)−ΣM(2B,3A,14S) = 0

and so ∆∗(He) = 0, proving that (2B,3A,14S) is not a generating triple of He.
Next we show that the group He is (2X ,3B,14R)-generated. The only maximal sub-

groups of He that may contain (2X ,3B,14R)-generated proper subgroups are isomorphic to
H1 ∼= 22.L3(4).S3, H2 ∼= S4×L3(2) and H3 ∼= 7:3×L3(2). Our calculations give ∆He(2A,3B,
14R) = 56, ∆He(2B,3B,14R) = 504 and Σ(H1) = Σ(H2) = Σ(H3) = 0. So, the group He is
(2X ,3B,14R)-generated as ∆∗He(2X ,3B,14R) = ∆He(2X ,3B,14R) > 0.

Finally, consider the case (2X ,3B,14S). In this case we have ∆He(2A,3B,14S) = 49
and ∆He(2B,3B,14S) = 392. The proper subgroups of He that may admit (2X ,3B,14S)-
generation of He are contained in the maximal subgroups isomorphic to M1 ∼= 21+6

+ .L3(2),
M2 ∼= 72:2L2(7) and M3 ∼= 71+2:(S3×3). We calculate ΣM1(2A,3B,14S) = 7, ΣM1(2B,3B,
14S) = 14, ΣM2(2B,3B,14S) = 0 = ΣM3(2B,3B,14S). Therefore,

∆
∗
He(2A,3B,14S)≥ ∆He(2A,3B,14S)−ΣM1(2A,3B,14S) = 49−7 > 0,

∆
∗
He(2B,3B,14S)≥ ∆He(2B,3B,14S)−ΣM1(2B,3B,14S) = 392−14 > 0.

Hence, the group He is (2X ,3B,14S)-generated and the result follows.

Lemma 3.6. The group He is (2X ,3Y,15A)-generated, where X ,Y ∈ {A,B}, if and only if
X = Y = B.

Proof. An application of Scott’s theorem eliminates the cases (2A,3A,15A),(2A,3B,15A)
and (2B,3A,15A). Next we consider the triple (2B,3B,15A). From the list of maximal
subgroups of He, we observe that, up to isomorphism, H1 ∼= 22.L3(4).S3, H2 ∼= 26:3·S6
(two non-conjugate classes), and H3 ∼= 3·S7 are the only maximal subgroups that admit
(2B,3B,15A)-generated subgroups. We calculate ∆He(2B,3B,15A)= 390, ΣH1(2B,3B,15A)
= 45, ΣH2(2B,3B,15A) = 15 and ΣH3(2B,3B,15A) = 0. We compute

∆
∗
He(2B,3B,15A)≥ ∆He(2B,3B,15A)−2ΣH1(2B,3B,15A)−4ΣH2(2B,3B,15A)

−ΣH3(2B,3B,15A) = 390−2(45)−4(15) > 0.

This shows that (2B,3B,15A) is a generating pair of He, proving the lemma.

Lemma 3.7. The group He is (2X ,3Y,17Z)-generated if and only if (X ,Y ) /∈{(A,A),(B,A)}.
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Proof. See [6].

Lemma 3.8. The group He is (2X ,3Y,21Z)-generated for all X ,Y ∈ {A,B} and Z ∈ {A,B,
C,D}, except when (X ,Y,Z) = (A,A,Z),(B,A,A),(B,A,B),(A,B,C) or (A,B,D).

Proof. Let 21U denote the class 21A or 21B and 21V denote the class 21C or 21D. The non-
generation of He by the triples (2A,3A,21U), (2B,3A,21U) and (2A,3A,21V ) is immediate
as the values of structure constant for each of these triple is zero.

Next consider the triple (2B,3A,21V ). We compute ∆He(2B,3A,21V ) = 21 and observe
that the only maximal subgroups of He having non-empty intersection with the conjugacy
classes in this triple are isomorphic to 22·L3(4).S3, 71+2

+ :(S3×3) and S4×L3(2). However,
we obtain

Σ(22·L3(4).S3) = Σ(71+2
+ :(S3×3)) = Σ(S4×L3(2)) = 0.

Therefore,
∆
∗
He(2B,3A,21V ) = ∆He(2B,3A,21V ) = 21,

proving that (2B,3A,21V ) is a generating triple for He.
Now we show that He is (2B,3B,21U)-generated. We observe from the fusion maps

into He that if M is a maximal subgroup with non-empty intersection with the classes in
this triple, then M is isomorphic to either 3·S7 or 71+2

+ :(S3× 3). However, we obtain that
ΣM(2B,3B,21U) = 0 for both the these maximal subgroups and hence

∆
∗
He(2B,3B,21U) = ∆He(2B,3B,21U) = 378,

proving the generation of He by the triple (2B,3B,21U).
For the triples (2A,3B,21U) and (2B,3B,21V ), the maximal subgroups that may contain

(2A,3B,21U)-, and (2B,3B,21V )-generated proper subgroups are isomorphic to 22·L3(4).S3,
3·S7, S4×L3(2) and 7:3×L3(2). We obtain

∆
∗
He(2A,3B,21U)≥ ∆(He)−Σ(3·S7)−2Σ(7:3×L3(2))56−14−2(7) > 0,

∆
∗
He(2B,3B,21V )≥ ∆(He)−Σ(22·L3(4).S3)−Σ(S4×L3(2)) = 427−63−7 > 0.

Therefore, the triples (2A,3B,21U) and (2B,3B,21V ) are the generating triples for He,
proving the lemma.

Finally we consider the triple (2A,3B,21V ). Here we have

∆He(2A,3B,21V ) = 42.

We prove that He is not (2A,3B,21V )-generated by constructing the (2A,3B,21V )-generated
subgroup of the group He explicitly. We use the ”standard generators” of the group He given
by Wilson in [25] and also available in [26]. The group He has a 51-dimensional irreducible
representation over GF(2). Using this representation we generate He = 〈a,b〉, where a and
b are 51×51 matrices over GF(2) with orders 2 and 7 respectively such that ab has order
17. Using GAP, we see that a ∈ 2A, b ∈ 7A. We produce c = (a2b5a3)4, d = (b−15ab3)4,
e = (ab−7(ab)−19a−5b−10c−a−cd−19)−28, z = ae such that c,d,e ∈ 3B and z ∈ 21V . Let
H = 〈a,e〉 then H < He with |H| = 241920. We compute that ΣH(2A,3B,21V ) = 21 and
z is contained in exactly two conjugate copies of H. Thus the total contribution from H
to the distinct ordered pairs (α,β ) with α ∈ 2A, β ∈ 3B such that αβ = z is equal to
2× 21 and consequently, we obtain that ∆∗He(2A,3B,21V ) = 0. Hence the group He is not
(2A,3B,21V )-generated. This completes the lemma.
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Lemma 3.9. The group He is (2X ,3Y,28Z)-generated, where X ,Y,Z ∈ {A,B} except when
(2X ,3Y,28Z) = (2A,3A,28Z).

Proof. The non-generation of He by the triple (2A,3A,28Z) is immediate since

∆He(2A,3A,28Z) = 0.

The maximal subgroups of He having elements of order 28 are isomorphic to H1 ∼= 22·L3(4)
.S3, H2 ∼= S4×L3(2), H3 ∼= 7:3×L3(2). We now consider following three cases.

Case (2B,3A,28Z): The maximal subgroups that contain possible (2B,3A,28Z)-generated
subgroups are isomorphic to H1 and H2. However, ΣH1(2B,3A,28Z)= 0 = ΣH2(2B,3A,28Z)
and hence ∆∗He(2B,3A,28Z) = ∆He(2B,3A,28Z) = 28. Therefore, the group He is (2B,3A,
28Z)-generated.

Case (2A,3B,28Z): We calculate that ∆He(2A,3B,28Z) = 56. Any maximal subgroup with
non-empty intersection with the classes 2A, 3B and 28Z is isomorphic to H1, H2 or H3. Our
calculations gives ΣH2(2A,3B,28Z) = 0 = ΣH3(2A,3B,28Z) and ΣH1(2A,3B,28Z) = 28.
Thus ∆∗He(2A,3B,28Z)≥ ∆He(2A,3B,28Z)−ΣH1(2A,3B,28Z) > 0, proving the generation
of He by this triple.

Case (2B,3B,28Z): The (2B,3B,28Z)-generated proper subgroups of He are contained
in the maximal subgroups isomorphic to H1 and H2. A simple computation reveals that
∆He(2B,3B,28Z) = 308, ΣH1(2B, 3B,28Z) = 0 and ΣH2(2B,3B,28Z) = 28. We obtain
∆∗He(2B,3B,28Z)≥ 280, proving generation of He by this triple.

We now state our main results of this section.

Theorem 3.1. The Held group He is not (2A,3A, tX)-generated for any integer t. Moreover,
the group He is (2B,3B, tX)-generated for t ≥ 7.

Proof. This follows from Lemmas 3.1−3.9.

Theorem 3.2. The Held group He is (2A,3B, tX)-generated if and only if tX∈{14,17,21AB,
28}. Moreover, the group He is (2B,3A, tX)-generated if and only if tX∈{21CD,28}.

Proof. The proof follows from the Lemmas 3.1−3.9.

4. On the ranks of Held group He

We know that two involutions cannot possibly generate a finite simple group as they gener-
ate a dihedral group. So we would like to investigate the generation by three involutions. It
is well known that sporadic simple groups are generated by three involutions. For example
Moori [22] proved that the Fischer group F22 can be generated by three conjugate involu-
tions. The work of Liebeck and Shalev shows that all but finitely many simple classical
groups can be generated by three involutions (see [17]). However, the problem of finding
simple classical groups which can be generated by three conjugate involutions is still very
much open.

The problem of generating a group by a set of involutions of minimal size is closely
related to the (2,3, t)-generation of the group. Let G be a finite group. We denote the
rank of G in a conjugacy class X by rank(G : X), the minimum number of elements of X
generating G. In this section we determine rank(G:X) where X is an involution in the group
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He. Of course, rank(G : X)≤ 2 implies G is cyclic or dihedral. The following result is quite
useful in this context.

Lemma 4.1. [3, 12] Let G be a (2X ,3Y, tZ)-generated finite simple group. Then G is
(2X ,2X ,2X ,(tZ)3)-generated.

Proof. Let x ∈ 2X , y ∈ 3Y with G = 〈x,y〉 such that z = xy ∈ tZ. Then 〈x,xy,xy2〉 is a non-
trivial normal subgroup of G, whence G = 〈x,xy,xy2〉. Also, xxyxy2

= (xy)3 = z3, proving
the result.

Corollary 4.1. rank(He : 2A) = 3 = rank(He : 2B).

Proof. The first equality follows via application of Lemma 4.1 to the (2A,3B,21A)-generation
of He established in Lemma 3.8. The second equality follows by applying Lemma 4.1 to
the (2B,3B,7D)-generation cited in Lemma 3.1.
Acknowledgement. The authors are grateful to the referees for their helpful comments and
suggestions.
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