BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On Linear Preservers of lgw-Majorization on M_{n,m}

¹A. Armandnejad and ²A. Salemi

¹Department of Mathematics, Vali-e-Asr University of Rafsanjan, 7713936417, Rafsanjan, Iran ²Department of Mathematics, Shahid Bahonar University of Kerman, 7619614111, Kerman, Iran ¹armandnejad@mail.vru.ac.ir, ²salemi@mail.uk.ac.ir

Abstract. Let $\mathbf{M}_{n,m}$ be the set of all $n \times m$ matrices with entries in \mathbb{F} , where \mathbb{F} is the field of real or complex numbers. For $A, B \in \mathbf{M}_{n,m}$, we say that B is lgw-majorized (left generalized weakly majorized) by A if there exists an $n \times n$ g-row stochastic (generalized row stochastic) matrix R such that B = RA. In this paper, we characterize all linear operators that strongly preserve lgw-majorization on $\mathbf{M}_{n,m}$ and all linear operators that strongly preserve left weak matrix majorization on \mathbf{M}_n .

2010 Mathematics Subject Classification: Primary: 15A03, 15A04, 15A51

Keywords and phrases: Linear preserver, strong linear preserver, g-row stochastic matrices, lgw-majorization.

1. Introduction

Suppose that $\mathbf{M}_n := \mathbf{M}_{n,n}$. A matrix $R \in \mathbf{M}_n$ is a generalized row stochastic matrix (g-row stochastic, for short) if Re = e, where $e = (1, 1, ..., 1)^t$, see [8]. Recall that R is row stochastic if it has nonnegative entries and Re = e. Given $A, B \in \mathbf{M}_{n,m}$, B is said to be left (respectively right) weakly matrix majorized by A, and write $A \succ_{lw} B$ (respectively $A \succ_{rw} B$) if there exists a row stochastic matrix R such that B = RA (respectively B = AR), see [9, 12].

A linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ preserves an order relation \succ in $\mathbf{M}_{n,m}$, if $T(X) \succ T(Y)$ whenever $X \succ Y$. Also, T is said to strongly preserve \succ if

$$X \succ Y \iff T(X) \succ T(Y).$$

In [7], Beasley, Lee and Lee proved that if a linear operator $T : \mathbf{M}_n \to \mathbf{M}_n$ strongly preserves right weak matrix majorization, then there exist a permutation P and an invertible matrix $M \in \mathbf{M}_n$ such that T(X) = MXP for every X in span (\mathbf{R}_n) , where \mathbf{R}_n is the set of all $n \times n$ row stochastic matrices. Recently Hasani and Radjabalipour in [10] showed that

$$T(X) = MXP, \quad \forall X \in \mathbf{M}_n.$$

Communicated by Lee See Keong.

Received: December 27, 2008; Revised: May 15, 2010.

 $T : \mathbf{M}_n \to \mathbf{M}_n$ strongly preserves left weak matrix majorization, then there exist a permutation *P* and an invertible matrix $M \in \mathbf{M}_n$ such that

(1.1)
$$T(X) = PXM, \quad \forall X \in \mathbf{M}_n.$$

Definition 1.1. Let $A, B \in \mathbf{M}_{n,m}$. The matrix B is said to be lgw-majorized by A if there exists an $n \times n$ g-row stochastic matrix R such that B = RA (denoted $A \succ_{lgw} B$). Analogously, B is said to be rgw-majorized (right generalized weakly majorized) by A (denoted $A \succ_{rgw} B$) if there exists an $m \times m$ g-row stochastic matrix R such that B = AR.

The notions of rgw and lgw-majorization were motivated by the concepts of right and left weak matrix majorization which were introduced in [9] and [12] respectively. In [5] the authors introduced the notion of lgw-majorization on \mathbf{M}_n and characterized its strong linear preservers. Also, in [1], all strong linear preservers of rgw-majorization on $M_{n,m}$ were characterized. We would like to point out that there is no duality between the cases of rgw and lgw-majorization and that the proofs are essentially different. In this paper, we will show that a linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ strongly preserves lgw-majorization if and only if there exist invertible matrices A and B such that A is g-row stochastic and T(X) = AXBfor every X in $\mathbf{M}_{n,m}$. Also, we prove that the relation (1.1) (one of the theorems in [10]) may be obtained as a corollary of our Proposition 2.1. For more information on the type of majorization and linear preservers of majorization see [2, 3, 4, 11].

Throughout this paper, **GR**_n is the set of all $n \times n$ g-row stochastic matrices, $e = (1, ..., 1)^t \in \mathbb{F}^n$ and $\mathbf{J} = ee^t \in \mathbf{M}_n$.

2. lgw-Majorization

In this section, we state some properties of lgw-majorization on $\mathbf{M}_{n,m}$. Also we characterize all linear operators on $\mathbf{M}_{n,m}$ that strongly preserve lgw-majorization. First we state some lemmas.

Lemma 2.1. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator that strongly preserves lgw-majorization. *Then* T *is invertible.*

Proof. Suppose T(A) = 0. Notice that since T is linear, we have T(0) = 0 = T(A). Then it is obvious that $T(0) \succ_{lgw} T(A)$. Therefore, $0 \succ_{lgw} A$ because T strongly preserves lgw-majorization. Then, there exists an $n \times n$ g-row stochastic matrix R such that A = R0. So, A = 0, and hence T is invertible.

The set of g-row stochastic matrices and the lgw-majorization relation on $\mathbf{M}_{n,m}$ has the following properties. Proofs are not given.

Remark 2.1. Let A and B be two g-row stochastic matrices. Then AB and A^{-1} (if A is invertible) are g-row stochastic matrices too.

Remark 2.2. Let $X, Y \in \mathbf{M}_{n,m}$, $A, B \in \mathbf{GR}_n$, $C \in \mathbf{M}_m$, and $\alpha, \beta \in \mathbb{F}$ such that A, B, and C are invertible and $\alpha \neq 0$. Then the following conditions are equivalent.

1. $X \succ_{lgw} Y$. 2. $AX \succ_{lgw} BY$. 3. $\alpha X + \beta \mathbf{J}_{n,m} \succ_{lgw} \alpha Y + \beta \mathbf{J}_{n,m}$. 4. $XC \succ_{lgw} YC$. Here \mathbf{I} is the $n \times m$ matrix all of whose

Here $\mathbf{J}_{n,m}$ is the $n \times m$ matrix all of whose entries are equal to one.

Now, we characterize the linear operators preserving lgw-majorization on \mathbb{F}^n .

Lemma 2.2. Let $x \in \mathbb{F}^n$. Then $x \succ_{lgw} y$ for every $y \in \mathbb{F}^n$ if and only if $x \notin \text{span}\{e\}$.

Proof. If $x \succ_{lgw} y$ for every $y \in \mathbb{F}^n$, it is clear that $x \notin \text{span}\{e\}$. Conversely, let $x = (x_1, \ldots, x_n)^t \notin \text{span}\{e\}$. Then x has at least two distinct components such as x_k and x_l . Let $y = (y_1, \ldots, y_n)^t$ be an arbitrary vector in \mathbb{F}^n . For every i, j $(1 \le i, j \le n)$, put $r_{ik} = (y_i - x_l)/(x_k - x_l)$, $r_{il} = (-y_i + x_k)/(x_k - x_l)$, and $r_{ij} = 0$ if $j \ne k, l$. It is easy to show that, $R = [r_{ij}] \in \mathbf{GR}_n$ and Rx = y. Then $x \succ_{lgw} y$.

Lemma 2.3. A nonzero linear operator $T : \mathbb{F}^n \to \mathbb{F}^n$ preserves lgw-majorization if and only if $x \notin \text{span}\{e\}$ implies that $T(x) \notin \text{span}\{e\}$.

Proof. Let *T* preserve lgw-majorization. Suppose that $x \notin \operatorname{span}\{e\}$, then $x \succ_{lgw} y$ for every $y \in \mathbb{F}^n$ by Lemma 2.2. Therefore $T(x) \succ_{lgw} T(y)$ for every $y \in \mathbb{F}^n$. Assume, if possible, $T(x) \in \operatorname{span}\{e\}$, then T(y) = T(x) for every $y \in \mathbb{F}^n$, and hence T = 0, which is a contradiction. Then, $T(x) \notin \operatorname{span}\{e\}$. Conversely, letting $x \notin \operatorname{span}\{e\}$ implies that $T(x) \notin \operatorname{span}\{e\}$. Assume that $x \succ_{lgw} y$. If $x \in \operatorname{span}\{e\}$, then x = y and hence T(x) = T(y). If $x \notin \operatorname{span}\{e\}$, then $T(x) \notin \operatorname{span}\{e\}$ by hypothesis. So $T(x) \succ_{lgw} z$ for every $z \in \mathbb{F}^n$ by Lemma 2.2, and hence $T(x) \succ_{lgw} T(y)$. Then *T* preserves lgw-majorization.

Theorem 2.1. A linear operator $T : \mathbb{F}^n \to \mathbb{F}^n$ preserves lgw-majorization if and only if one of the following assertions holds.

- (i) There exists $R \in \mathbf{M}_n$ such that $\ker(R) = \operatorname{span}\{e\}$, $e \notin \operatorname{Im}(R)$, and T(x) = Rx for every $x \in \mathbb{F}^n$.
- (ii) There exist an invertible matrix $R \in \mathbf{GR}_n$ and $\alpha \in \mathbb{F}$ such that $T(x) = \alpha Rx$ for every $x \in \mathbb{F}^n$.

Proof. If *T* satisfies (i) or (ii), it is easy to show that *T* preserves lgw-majorization. Conversely, let *T* preserve lgw-majorization. If T = 0, we may choose $\alpha = 0$. So suppose that $T \neq 0$. Let *A* be the matrix representation of *T* with respect to the canonical basis of \mathbb{F}^n . If *T* is invertible, then there exists $b \in \mathbb{F}^n$ such that Ab = e. So b = re, for some nonzero $r \in \mathbb{F}$, by Lemma 2.3. Then $Ae = \frac{1}{r}e$ and hence $T(x) = \alpha Rx$, where $\alpha = \frac{1}{r}$ and $R = (rA) \in \mathbf{GR}_n$ is invertible. If *T* is singular, then by Lemma 2.3, ker(T) = span{e} and $e \notin \text{Im}(T)$. So ker(A) = span{e} and $e \notin \text{Im}(A)$.

Corollary 2.1. If $T : \mathbb{F}^n \to \mathbb{F}^n$ is a nonzero linear preserver of lgw-majorization, then rank(*T*) is equal to *n* or n - 1.

Proof. By Theorem 2.1, $ker(T) = \{0\}$ or $ker(T) = span\{e\}$. Then rank(T) = n or rank(T) = n-1.

Now, we state the following two lemmas to prove the main theorem of this paper.

Lemma 2.4. For every invertible matrix $A \in \mathbf{GR}_n$, the following assertions are true.

- (i) If AR = RA for every g-row stochastic matrix R, then A = I.
- (ii) If $(x + Ay) \succ_{lgw} (Rx + ARy)$ for every $R \in \mathbf{GR}_n$ and every $x, y \in \mathbb{F}^n$, then A = I.

Proof. (i) For every i $(1 \le i \le n)$ assume that R_i is the matrix with e as i^{th} column and 0 elsewhere. Then $R_i \in \mathbf{GR}_n$. Since $A \in \mathbf{GR}_n$ is invertible and $AR_i = R_iA$ for every i $(1 \le i \le n)$, it is easy to see that A = I.

(ii) Observe that since A is invertible, condition (ii) can be rewritten as follows:

$$x + y \succ_{lgw} Rx + ARA^{-1}y, \forall R \in \mathbf{GR}_n, \forall x, y \in \mathbb{F}^n.$$

Put $x = e - e_i$ and $y = e_i$ in the above relation, where $\{e_1, \ldots, e_n\}$ is the canonical basis of \mathbb{F}^n . Thus, $e \succ_{lgw} [e - (R - ARA^{-1})e_i]$ for every i $(1 \le i \le n)$. So $(R - ARA^{-1})e_i = 0$ for every i $(1 \le i \le n)$. Therefore, RA = AR for every $R \in \mathbf{GR}_n$, and hence A = I by part (i).

Lemma 2.5. Let $A \in M_n$. If ker $(A) = \text{span}\{e\}$, then there exist some $x_0, y_0 \in \mathbb{F}^n$ and $R_0 \in \mathbf{GR}_n$ such that $R_0 x_0 + AR_0 y_0$ is not lgw-majorized by $x_0 + Ay_0$.

Proof. Assume if possible,

(2.1)
$$x + Ay \succ_{lgw} Rx + ARy, \forall x, y \in \mathbb{F}^n, \forall R \in \mathbf{GR}_n$$

If $e \in \text{Im}(A)$, then there exists $y_0 \in \mathbb{F}^n$ such that $Ay_0 = e$. Put x = 0 and $y = y_0$ in (2.1). So $e = Ay_0 \succ_{lgw} ARy_0$, and hence $ARy_0 = e$ for every $R \in \mathbf{GR}_n$. Then Ay = e for every $y \in \mathbb{F}^n$, which is a contradiction. If $e \notin \text{Im}(A)$, then $\mathbb{F}^n = \text{Im}(A) \bigoplus \text{span}\{e\}$. So for every i $(1 \le i \le n)$, there exist $y_i \in \mathbb{F}^n$ and $r_i \in \mathbb{F}$ such that $e_i = Ay_i + r_i e$, where e_i is the i^{th} vector in the canonical basis of \mathbb{F}^n . Put $x = e - (e_i - r_i e)$ and $y = y_i$ in (2.1). Then

(2.2)
$$r_i e - R e_i + A R y_i = 0, \ \forall R \in \mathbf{GR}_n.$$

For every j $(1 \le j \le n, j \ne i)$, put $R_j = ee_j^t$ in (2.2). Then $r_i = 0$ for every i $(1 \le i \le n)$. Therefore, $Ay_i = e_i$ for every i $(1 \le i \le n)$. It thus follows that $Im(A) = \mathbb{F}^n$, which is a contradiction.

Remark 2.3. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. For every i, j $(1 \le i, j \le m)$, consider the embedding $E^j : \mathbb{F}^n \to \mathbf{M}_{n,m}$ and the projection $E_i : \mathbf{M}_{n,m} \to \mathbb{F}^n$ which are defined by $E^j(x) = xe_j^t$ and $E_i(X) = Xe_i$, respectively. Put $T_i^j = E_i T E^j$ for every i, j $(1 \le i, j \le m)$. If $X = [x_1| \dots |x_m] \in \mathbf{M}_{n,m}$, where x_i is the i^{th} column of X, then

$$T(X) = T([x_1|...|x_m]) = \left[\sum_{j=1}^m T_1^j(x_j)|...|\sum_{j=1}^m T_m^j(x_j)\right].$$

Moreover, if *T* preserves lgw-majorization, then for every i, j $(1 \le i, j \le m)$ T_i^j preserves lgw-majorization too.

Now, we state the main theorem of this section.

Theorem 2.2. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. Then T strongly preserves lgwmajorization if and only if T(X) = AXB for every $X \in \mathbf{M}_{n,m}$, where $A \in \mathbf{GR}_n$ and $B \in \mathbf{M}_m$ are invertible.

Proof. If m = 1, the result is proved by Theorem 2.1. So we may suppose that $m \ge 2$. As the sufficiency of the condition is easy to see, only we prove the necessity of the condition. Suppose that T strongly preserves lgw-majorization. Since T_i^j preserves lgw-majorization for every i, j ($1 \le i, j \le m$), then, by Theorem 2.1, there exist $\alpha_i^j \in \mathbb{F}$ and $A_i^j \in \mathbf{M}_n$ such that $T_i^j(x) = \alpha_i^j A_i^j x$, where either $A_i^j \in \mathbf{GR}_n$ is invertible or ker $(A_i^j) = \text{span}\{e\}$ and $e \notin \text{Im}(A_i^j)$. Then

(2.3)
$$T(X) = \left[\sum_{j=1}^m \alpha_i^j A_i^j x_j | \dots | \sum_{j=1}^m \alpha_m^j A_m^j x_j \right].$$

Now, we consider three steps for the proof.

Step 1. In this step, we will show that if there exist *p* and $q (1 \le p, q \le m)$ such that $\alpha_p^q \ne 0$ and $A_p^q \in \mathbf{GR}_n$ is invertible, then for every $j (1 \le j \le m), A_p^j = A_p^q$.

If $\alpha_p^j = 0$, without loss of generality, we can choose $A_p^j = A_p^q$. Suppose that $\alpha_p^j \neq 0$. For every $x, y \in \mathbb{F}^n$, put $X = xe_q^t + ye_j^t$. Then $T(X) \succ_{lgw} T(RX)$ for all $R \in \mathbf{GR}_n$, and hence by (2.3)

$$\begin{aligned} &\alpha_p^q A_p^q x + \alpha_p^j A_p^j y \succ_{lgw} \alpha_p^q A_p^q R x + \alpha_p^j A_p^j R y, \forall x, y \in \mathbb{F}^n, \forall R \in \mathbf{GR}_n \\ &\Rightarrow x + (A_p^q)^{-1} A_p^j (\frac{\alpha_p^j}{\alpha_p^q} y) \succ_{lgw} R x + (A_p^q)^{-1} A_p^j R (\frac{\alpha_p^j}{\alpha_p^q} y), \forall x, y \in \mathbb{F}^n, \forall R \in \mathbf{GR}_n \\ &\Rightarrow x + (A_p^q)^{-1} A_p^j y \succ_{lgw} R x + (A_p^q)^{-1} A_p^j R y, \forall x, y \in \mathbb{F}^n, \forall R \in \mathbf{GR}_n. \end{aligned}$$

So by Lemma 2.5, A_p^j is invertible, and hence, by Lemma 2.4, $A_p^j = A_p^q$. Set $A_p = A_p^q$. Then

$$T(X) = \left[\sum_{j=1}^m \alpha_1^j A_1^j x_j | \dots | A_p \sum_{j=1}^m \alpha_p^j x_j | \dots | \sum_{j=1}^m \alpha_m^j A_m^j x_j \right].$$

Step 2. In this step we will show that for every *i* and *j* $(1 \le i, j \le m)$, $A_i^j \in \mathbf{GR}_n$ is invertible if $\alpha_i^j \ne 0$. Assume if possible there exist *r* and *s* $(1 \le r, s \le m)$ such that $ker(A_r^s) = \text{span}\{e\}$ and $\alpha_r^s \ne 0$. Without loss of generality, we can assume that r = m. Then by step 1, for every j $(1 \le j \le m)$ we obtain $ker(A_m^j) = \text{span}\{e\}$. Now, we construct a nonzero $n \times m$ matrix *U* such that T(U) = 0. Consider the vectors

$$b_1 = \begin{pmatrix} \alpha_1^1 \\ \vdots \\ \alpha_{m-1}^1 \end{pmatrix}, \dots, b_m = \begin{pmatrix} \alpha_1^m \\ \vdots \\ \alpha_{m-1}^m \end{pmatrix} \in \mathbb{F}^{m-1}.$$

It is clear that $\{b_1, \ldots, b_m\}$ is a linearly dependent set in \mathbb{F}^{m-1} . So there exist (not all zero) $\lambda_1, \ldots, \lambda_m \in \mathbb{F}$ such that

$$\sum_{j=1}^m \lambda_j \alpha_i^j = 0 , \forall i \in \{1, \ldots, m-1\}.$$

Now, define $U := [\lambda_1 e | \dots | \lambda_m e] \in \mathbf{M}_{n,m}$. It is clear that, $U \neq 0$ and

$$T(U) = \left[\sum_{j=1}^{m} \lambda_j \alpha_1^j A_1^j e | \dots | \sum_{j=1}^{m} \lambda_j \alpha_m^j A_m^j e\right].$$

We will show that T(U) = 0. Since ker $(A_m^j) = \text{span}\{e\}$, it is clear that $\sum_{j=1}^m \lambda_j \alpha_m^j A_m^j e = 0$ and hence the last column of T(U) is zero. Now, for every k $(1 \le k \le m-1)$, we consider the k^{th} column of T(U).

Case 1. Let $\alpha_k^l \neq 0$ and $A_k^l \in \mathbf{GR}_n$ be invertible for some l $(1 \le l \le m)$. Then, by step 1

$$\sum_{j=1}^m \lambda_j \alpha_k^j A_k^j e = A_k^l (\sum_{j=1}^m \lambda_j \alpha_k^j) e = 0.$$

So the k^{th} column of T(U) is 0.

Case 2. Suppose that $\alpha_k^j A_k^j$ is non invertible for every j $(1 \le j \le m)$. Then span $\{e\} \subseteq \ker(\alpha_k^j A_k^j)$, by Theorem 2.1. So $\sum_{j=1}^m \lambda_j \alpha_k^j A_k^j e = 0$, and hence the k^{th} column of T(U) is 0. Therefore T(U) = 0. But by Lemma 2.1, we know that T is invertible and hence a contradiction is obtained. So for every i and j $(1 \le i, j \le m)$, $A_i^j \in \mathbf{GR}_n$ is invertible if $\alpha_i^j \ne 0$. Then, by step 1, there exist invertible matrices $A_i \in \mathbf{GR}_n$ $(1 \le i \le m)$ such that $T(X) = T[x_1| \dots |x_m] = [A_1Xa_1| \dots |A_mXa_m]$, where $a_i = (\alpha_i^1, \dots, \alpha_i^m)^t$ for every i $(1 \le i \le m)$.

Step 3. In this step, we will show that $A_i = A_1$ for every $i \ (1 \le i \le m)$. First, we show that rank $[a_1| \dots |a_m] \ge 2$. Assume, if possible, $\{a_1, \dots, a_m\} \subseteq \text{span}\{a\}$ for some $a \in \mathbb{F}^m$. Since $m \ge 2$, then we may choose a nonzero vector $b \in (\text{span}\{a\})^{\perp}$. Define $X_0 := e_1 b^i \in \mathbf{M}_{n,m}$. It is clear that $X_0 \ne 0$ and $T(X_0) = 0$, which is a contradiction and hence $\text{rank}[a_1| \dots |a_m] \ge 2$. Without loss of generality, we can assume that $\{a_1, a_2\}$ is a linearly independent set. Let $X \in \mathbf{M}_{n,m}$ and $R \in \mathbf{GR}_n$ be arbitrary. Then

$$(2.4) X \succ_{lgw} RX \Rightarrow T(X) \succ_{lgw} T(RX)$$
$$\Rightarrow [A_1Xa_1|...|A_mXa_m] \succ_{lgw} [A_1RXa_1|...|A_mRXa_m]$$
$$\Rightarrow A_1Xa_1 + A_2Xa_2 \succ_{lgw} A_1RXa_1 + A_2RXa_2$$
$$\Rightarrow Xa_1 + (A_1^{-1}A_2)Xa_2 \succ_{lgw} RXa_1 + (A_1^{-1}A_2)RXa_2.$$

Since $\{a_1, a_2\}$ is linearly independent, for every $x, y \in \mathbb{F}^n$, there exists $B_{x,y} \in \mathbf{M}_{n,m}$ such that $B_{x,y} a_1 = x$ and $B_{x,y} a_2 = y$. Putting $X = B_{x,y}$ in (2.4), we see that

$$B_{x,y} a_1 + (A_1^{-1} A_2) B_{x,y} a_2 \succ_{lgw} RB_{x,y} a_2 + (A_1^{-1} A_2) RB_{x,y} a_2 \Rightarrow$$
$$x + (A_1^{-1} A_2) y \succ_{lgw} Rx + (A_1^{-1} A_2) Ry, \forall R \in \mathbf{GR}_n.$$

Then, by Lemma 2.4, $A_1^{-1}A_2 = I$, and hence $A_2 = A_1$. Since *T* is invertible, it is easy to see that $a_i \neq 0$ for every i ($3 \le i \le m$). Consequently $\{a_1, a_i\}$ or $\{a_2, a_i\}$ is a linearly independent set. By a similar argument as in the above, we conclude that $A_i = A_1$ or $A_i = A_2$. Let $A = A_1$. It follows that $A_i = A$ for every i ($1 \le i \le m$). Therefore,

$$T(X) = [AXa_1 \mid \ldots \mid AXa_m] = AXB,$$

where $B = [a_1 | \dots | a_m]$ is an invertible matrix in \mathbf{M}_m .

The following statements show that every strong linear preserver of left weak matrix majorization is a strong linear preserver of lgw-majorization but the converse is false.

Lemma 2.6. For every g-row stochastic matrix $R \in \mathbf{GR}_n$, there exist row stochastic matrices $R_1, \ldots, R_4 \in \mathbf{M}_n(\mathbb{R})$ and scalars $r_1, \ldots, r_4 \in \mathbb{C}$ such that $\sum_{i=1}^4 r_i = 1$ and $R = \sum_{i=1}^4 r_i R_i$.

Proof. Let R = A + iB, where A and B are real $n \times n$ matrices. Since we know that Re = e, we obtain that Ae = e and Be = 0. Assume that $A = [a_{i,j}]$ and $B = [b_{i,j}]$. Put $\alpha = \max\{0, -a_{i,j} : 1 \le i, j \le n\}$ and $\beta = \max\{-b_{i,j} : 1 \le i, j \le n\}$. Define $R_1 := (1/(1 + n\alpha))(A + \alpha \mathbf{J})$ and $R_2 = R_3 := (1/n)\mathbf{J}$. Also, $R_4 := (1/(n\beta))(B + \beta \mathbf{J})$ if $\beta \ne 0$, and $R_4 := (1/n)\mathbf{J}$ if $\beta = 0$. It is clear that R_1, \ldots, R_4 are row stochastic matrices and

$$R = A + iB = (1 + n\alpha)R_1 + (-n\alpha)R_2 + (in\beta)R_3 + (-in\beta)R_4.$$

Proposition 2.1. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator that strongly preserves left weak matrix majorization. Then T strongly preserves lgw-majorization.

Proof. Let $A \succ_{lgw} B$. Then there exists a g-row stochastic matrix R such that B = RA. For the g-row stochastic matrix R, there exist scalars r_1, \ldots, r_4 and row stochastic matrices R_1, \ldots, R_4 such that $\sum_{i=1}^4 r_i = 1$ and $R = \sum_{i=1}^4 r_i R_i$ by Lemma 2.6. For every i $(1 \le i \le 4)$, $A \succ_{lw} R_i A$ and hence $T(A) \succ_{lw} T(R_i A)$. Then there exist row stochastic matrices S_i $(1 \le i \le 4)$, such that $T(R_i A) = S_i T(A)$. Put $S = \sum_{i=1}^4 r_i S_i$. It is clear that S is a g-row stochastic matrix and T(B) = ST(A). Therefore, $T(A) \succ_{lgw} T(B)$. On the other hand, replacing T by T^{-1} , in a similar fashion we conclude that $A \succ_{lgw} B$ whenever $T(A) \succ_{lgw} T(B)$. Then T strongly preserves lgw-majorization.

Example 2.1. Let the linear operator $T : \mathbf{M}_2 \to \mathbf{M}_2$ be such that T(X) = AX for every $X \in \mathbf{M}_2$, where

$$A = \left(\begin{array}{cc} 1 & 0\\ -1 & 2 \end{array}\right).$$

It is clear that T strongly preserves lgw-majorization by Theorem 2.2. But T does not preserve left weak matrix majorization because

$$\left(\begin{array}{cc}1&0\\0&0\end{array}\right) \succ_{lw} \left(\begin{array}{cc}0&0\\1&0\end{array}\right) \text{ and } T\left(\begin{array}{cc}1&0\\0&0\end{array}\right) \not\succ_{lw} T\left(\begin{array}{cc}0&0\\1&0\end{array}\right).$$

Now, we state the following corollary which characterizes all linear operators that strongly preserve left weak matrix majorization on M_n .

Remark 2.4. Let A be an invertible row stochastic matrix. If A^{-1} is row stochastic matrix, then A is a permutation.

Corollary 2.2. [10, Theorem 5.2] A linear operator $T : \mathbf{M}_n \to \mathbf{M}_n$ strongly preserves left weak matrix majorization \succ_{lw} if and only if T(X) = PXL, where P is permutation and $L \in \mathbf{M}_n$ is invertible.

Proof. Suppose that *T* strongly preserves left weak matrix majorization. Then *T* strongly preserves lgw-majorization by Proposition 2.1. Therefore in view of Theorem 2.2, there exist invertible matrices $A \in \mathbf{GR}_n$ and $B \in \mathbf{M}_n$ such that T(X) = AXB for all $X \in \mathbf{M}_n$. For every row stochastic matrix *R*, it is clear that $I \succ_{lw} R$. So $T(I) \succ_{lw} T(R)$ for every row stochastic matrix *R*. Consequently $AIB \succ_{lw} ARB$, and hence ARA^{-1} is a row stochastic matrix. Similarly, *A* is a row stochastic matrix too, and hence *A* is a permutation matrix.

3. Rank-1-preserver and lgw-majorization

In this section, we are using the structure of rank-1-preservers on $\mathbf{M}_{n,m}$ to study the strong linear preservers of lgw-majorization. This comment has been suggested by one of the anonymous referees. We recall that a rank-k-preserver is a linear operator T on $\mathbf{M}_{n,m}$ such that rank(T(A)) = k whenever rank(A) = k. The following notations are fixed through this section.

For every $A \in \mathbf{M}_{n,m}$, the notation $\mathscr{R}(A)$ is denoted for the set of all rows of A. The symbol \mathbb{F}_m is used for the set of all $1 \times m$ row vectors with entries in \mathbb{F} . Let $E \subseteq \mathbb{F}_m$, the cardinal

number of E is denoted by |E| and the g-convex hull of E is the following set:

$$g\text{-conv}(E) = \left\{ \sum_{i=1}^{n} r_i x_i : r_i \in \mathbb{F}, x_i \in E, n \in \mathbb{N}, \sum_{i=1}^{n} r_i = 1 \right\}$$

Let $A, B \in \mathbf{M}_{n,m}$. One can easily show that $A \succ_{lgw} B$ if and only if $\mathscr{R}(B) \subset \operatorname{g-conv}(\mathscr{R}(A))$.

Proposition 3.1. For every $A \in \mathbf{M}_{n,m}$, the following assertions are true.

- (i) $\{B \in \mathbf{M}_{n,m} : A \succ_{lgw} B\} = \{A\}$ if and only if $|\mathscr{R}(A)| = 1$.
- (ii) $\{B \in \mathbf{M}_{n,m} : A \succ_{lgw} B\}$ is a subspace of $\mathbf{M}_{n,m}$ with dimension n if and only if $\operatorname{rank}(A) = 1$ and $|\mathscr{R}(A)| > 1$.

Proof. It is easy to show that (i) holds, so just we prove (ii). Assume that $\operatorname{rank}(A) = 1$ and $|\mathscr{R}(A)| > 1$, then there exist a nonzero $x \in \mathbb{F}_m$ and scalars $r_1, \ldots, r_n \in \mathbb{F}$ (not all equal) such that $A = (r_1 x, \ldots, r_n x)^t$ Then $\mathscr{R}(A) = \{r_1 x, \ldots, r_n x\}$ and there exist $r_i, r_j \in \{r_1, \ldots, r_n\}$ such that $r_i \neq r_j$. Since $r_i \neq r_j$, we have g-conv $(\{r_i x, r_j x\}) = \{\alpha x : \alpha \in \mathbb{F}\}$. Therefore

$$\{B \in \mathbf{M}_{n,m} : A \succ_{lgw} B\} = \{B \in \mathbf{M}_{n,m} : \mathscr{R}(B) \subset g\text{-conv}(\mathscr{R}(A))\} \\ = \{B \in \mathbf{M}_{n,m} : \mathscr{R}(B) \subset \{\alpha x : \alpha \in \mathbb{F}\}\} \\ = \operatorname{span}\left\{ \begin{pmatrix} x \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ x \end{pmatrix} \right\},$$

which is a subspace of $\mathbf{M}_{n,m}$ with dimension *n*. Conversely, if rank(A) > 1, then there exist $x, y \in \mathbb{F}_m$ such that $\{x, y\} \subset \mathscr{R}(A)$ and $\{x, y\}$ is a linearly independent set. If $W = \{B \in \mathbf{M}_{n,m} : A \succ_{lgw} B\}$ is a subspace of $\mathbf{M}_{n,m}$, then it is clear that $0 \in \operatorname{g-conv}\{\mathscr{R}(A)\}$ and hence

$$\left\{ \left(\begin{array}{c} x\\0\\\vdots\\0\end{array}\right), \dots, \left(\begin{array}{c} 0\\\vdots\\0\\x\end{array}\right), \left(\begin{array}{c} y\\0\\\vdots\\0\end{array}\right) \right\}$$

is a linearly independent set in W. Thus dim $W \ge n+1$.

Proposition 3.2. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. If T strongly preserves \succ_{lgw} , then T is a rank-1-preserver.

Proof. Assume that $A \in \mathbf{M}_{n,m}$ and rank(A) = 1. Now, we consider two cases for the proof.

Case 1. Suppose that $|\mathscr{R}(A)| = 1$. Then by part (i) of Proposition 3.1, $\{B \in \mathbf{M}_{n,m} : A \succ_{lgw} B\} = \{A\}$. Since *T* is invertible, we have $T(A) \neq 0$ and hence $\operatorname{rank}(T(A)) \geq 1$. Assume if possible $\operatorname{rank}(T(A)) > 1$. By part (i) of Proposition 3.1 and invertibility of *T*, there exists $B \in \mathbf{M}_{n,m}$ such that $T(A) \succ_{lgw} T(B)$ and $T(B) \neq T(A)$. Since *T* strongly preserves \succ_{lgw} , we have $A \succ_{lgw} B$. By hypothesis of this case A = B which is a contradiction. Then $\operatorname{rank}(T(A)) = 1$.

Case 2. Suppose that $|\mathscr{R}(A)| > 1$. Then by part (ii) of Proposition 3.1, $W = \{B \in \mathbf{M}_{n,m} : A \succ_{lgw} B\}$ is a subspace of $\mathbf{M}_{n,m}$ with dimension *n*. So $T(W) = \{T(B) : A \succ_{lgw} B\} =$

762

 ${T(B): T(A) \succ_{lgw} T(B)}$ is a subspace of $\mathbf{M}_{n,m}$ with dimension *n*. Therefore by part (ii) of Proposition 3.1, rank(T(A)) = 1 and $|\mathscr{R}(T(A))| > 1$.

The following theorem characterizes all rank-*k*-preservers on $\mathbf{M}_{n,m}(\mathbb{C})$.

Theorem 3.1. [6, Theorem 3] If T is a rank-k-preserver on $\mathbf{M}_{n,m} := \mathbf{M}_{n,m}(\mathbb{C})$, then there exist invertible matrices $U \in \mathbf{M}_n$ and $V \in \mathbf{M}_m$ such that either

$$T(X) = UXV, \forall X \in \mathbf{M}_{n,m},$$

or

$$m = n$$
 and $T(X) = UX^{t}V, \forall X \in \mathbf{M}_{n,m}$

where A^t denotes the transpose of A.

Lemma 3.1. [5, Lemma 2.4] Let A and B be two invertible matrices. Then the linear operator $T: M_n \rightarrow M_n$ defined by $T(X) = AX^t B$ for all $X \in M_n$, is not a strong linear preserver of \succ_{lgw} .

Now, we are ready to give another proof of Theorem 2.2, in the case $\mathbb{F} = \mathbb{C}$ by using the structure of rank-1-preservers.

Theorem 3.2. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. Then T strongly preserves \succ_{lgw} if and only if there exist invertible matrices $A \in \mathbf{GR}_n$ and $B \in \mathbf{M}_m$ such that T(X) = AXB for all $X \in \mathbf{M}_{n,m}$.

Proof. Assume that *T* strongly preserves \succ_{lgw} . By Proposition 3.2, Theorem 3.1 and Lemma 3.1, there exist invertible matrices $U \in \mathbf{M}_n$ and $V \in \mathbf{M}_m$ such that T(X) = UXV for all $X \in \mathbf{M}_{n,m}$. Since *U* is invertible, so there exists a unique $x_0 \in \mathbb{C}^n$ such that $Ux_0 = e$. Put $X = [x_0|0] \in \mathbf{M}_{n,m}$. It is clear that $X \succ_{lgw} RX$ for every $R \in \mathbf{GR}_n$. Then $T(X) \succ_{lgw} T(RX)$ and hence $U[x_0|0]V \succ_{lgw} UR[x_0|0]V$ for every $R \in \mathbf{GR}_n$. It follows that $e = Ux_0 \succ_{lgw} URx_0$ for every $R \in \mathbf{GR}_n$. Therefore $x_0 = \lambda e$ for some $\lambda \in \mathbb{C}$. Put $A = \lambda U$ and $B = (1/\lambda)V$. It is clear that $A \in \mathbf{GR}_n$ and T(X) = AXB for all $X \in \mathbf{M}_{n,m}$.

Acknowledgement. The authors are very grateful to the anonymous referees for their constructive comments (in suggesting a shorter proof for Lemma 2.6 and giving useful suggestion for the proof of Theorem 3.2).

References

- [1] A. Armandnejad, Right GW-majorization on $\mathbf{M}_{n,m}$, Bull. Iranian Math. Soc. 35 (2009), no. 2, 69–76.
- [2] A. Armandnejad and H. R. Afshin, Linear functions preserving multivariate and directional majorization, *Iran. J. Math. Sci. Inform.* 5 (2010), no. 1, 1–5.
- [3] A. Armandnejad and H. Heydari, Linear functions preserving gd-majorization from $\mathbf{M}_{n,m}$ to $\mathbf{M}_{n,k}$, Bull. Iranian Math. Soc. **37** (2011), no. 1, 215–224.
- [4] A. Armandnejad and A. Salemi, The structure of linear preservers of gs-majorization, Bull. Iranian Math. Soc. 32 (2006), no. 2, 31–42.
- [5] A. Armandnejad and A. Salemi, Strong linear preservers of GW-majorization on M_n, J. Dyn. Syst. Geom. Theor. 5 (2007), no. 2, 165–168.
- [6] L. B. Beasley, Linear operators on matrices: the invariance of rank-k matrices, *Linear Algebra Appl.* 107 (1988), 161–167.
- [7] L. B. Beasley, S.-G. Lee and Y.-H. Lee, A characterization of strong preservers of matrix majorization, *Linear Algebra Appl.* 367 (2003), 341–346.
- [8] H. Chiang and C.-K. Li, Generalized doubly stochastic matrices and linear preservers, *Linear Multilinear Algebra* 53 (2005), no. 1, 1–11.

A. Armandnejad and A. Salemi

- [9] G. Dahl, Matrix majorization, Linear Algebra Appl. 288 (1999), no. 1–3, 53–73.
- [10] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, *Electron. J. Linear Algebra* 15 (2006), 260–268 (electronic).
- [11] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix majorization on \mathbb{R}^p , *Electron. J. Linear Algebra* **18** (2009), 88–97.
- [12] F. D. Martínez Pería, P. G. Massey and L. E. Silvestre, Weak matrix majorization, *Linear Algebra Appl.* 403 (2005), 343–368.