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Abstract. Let Mn,m be the set of all n×m matrices with entries in F, where F is the field of
real or complex numbers. For A,B ∈Mn,m, we say that B is lgw-majorized (left generalized
weakly majorized) by A if there exists an n×n g-row stochastic (generalized row stochastic)
matrix R such that B = RA. In this paper, we characterize all linear operators that strongly
preserve lgw-majorization on Mn,m and all linear operators that strongly preserve left weak
matrix majorization on Mn.
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1. Introduction

Suppose that Mn := Mn,n. A matrix R ∈Mn is a generalized row stochastic matrix (g-row
stochastic, for short) if Re = e, where e = (1,1, ...,1)t , see [8]. Recall that R is row stochastic
if it has nonnegative entries and Re = e. Given A,B ∈Mn,m, B is said to be left (respectively
right) weakly matrix majorized by A, and write A�lw B (respectively A�rw B) if there exists
a row stochastic matrix R such that B = RA (respectively B = AR), see [9, 12].

A linear operator T : Mn,m→Mn,m preserves an order relation� in Mn,m, if T (X)�T (Y )
whenever X � Y . Also, T is said to strongly preserve � if

X � Y ⇐⇒ T (X)� T (Y ).

In [7], Beasley, Lee and Lee proved that if a linear operator T : Mn → Mn strongly
preserves right weak matrix majorization, then there exist a permutation P and an invertible
matrix M ∈Mn such that T (X) = MXP for every X in span(Rn), where Rn is the set of all
n×n row stochastic matrices. Recently Hasani and Radjabalipour in [10] showed that

T (X) = MXP, ∀ X ∈ Mn.
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T : Mn→Mn strongly preserves left weak matrix majorization, then there exist a permuta-
tion P and an invertible matrix M ∈Mn such that

T (X) = PXM, ∀ X ∈ Mn.(1.1)

Definition 1.1. Let A,B∈Mn,m. The matrix B is said to be lgw-majorized by A if there exists
an n×n g-row stochastic matrix R such that B = RA (denoted A�lgw B). Analogously, B is
said to be rgw-majorized (right generalized weakly majorized) by A (denoted A �rgw B) if
there exists an m×m g-row stochastic matrix R such that B = AR.

The notions of rgw and lgw-majorization were motivated by the concepts of right and
left weak matrix majorization which were introduced in [9] and [12] respectively. In [5]
the authors introduced the notion of lgw-majorization on Mn and characterized its strong
linear preservers. Also, in [1], all strong linear preservers of rgw-majorization on Mn,m
were characterized. We would like to point out that there is no duality between the cases of
rgw and lgw-majorization and that the proofs are essentially different. In this paper, we will
show that a linear operator T : Mn,m→Mn,m strongly preserves lgw-majorization if and only
if there exist invertible matrices A and B such that A is g-row stochastic and T (X) = AXB
for every X in Mn,m. Also, we prove that the relation (1.1) (one of the theorems in [10])
may be obtained as a corollary of our Proposition 2.1. For more information on the type of
majorization and linear preservers of majorization see [2, 3, 4, 11].

Throughout this paper, GRn is the set of all n×n g-row stochastic matrices, e =(1, ...,1)t ∈
Fn and J = eet∈Mn.

2. lgw-Majorization

In this section, we state some properties of lgw-majorization on Mn,m. Also we characterize
all linear operators on Mn,m that strongly preserve lgw-majorization. First we state some
lemmas.

Lemma 2.1. Let T : Mn,m→Mn,m be a linear operator that strongly preserves lgw-majorization.
Then T is invertible.

Proof. Suppose T (A) = 0. Notice that since T is linear, we have T (0) = 0 = T (A). Then
it is obvious that T (0) �lgw T (A). Therefore, 0 �lgw A because T strongly preserves lgw-
majorization. Then, there exists an n× n g-row stochastic matrix R such that A = R0. So,
A = 0, and hence T is invertible.

The set of g-row stochastic matrices and the lgw-majorization relation on Mn,m has the
following properties. Proofs are not given.

Remark 2.1. Let A and B be two g-row stochastic matrices . Then AB and A−1 (if A is
invertible) are g-row stochastic matrices too.

Remark 2.2. Let X ,Y ∈Mn,m, A,B ∈ GRn, C ∈Mm, and α,β ∈ F such that A, B, and C
are invertible and α 6= 0. Then the following conditions are equivalent.

1. X �lgw Y .
2. AX �lgw BY .
3. αX +βJn,m �lgw αY +β Jn,m.
4. XC �lgw YC.
Here Jn,m is the n×m matrix all of whose entries are equal to one.



On Linear Preservers of lgw-Majorization on Mn,m 757

Now, we characterize the linear operators preserving lgw-majorization on Fn.

Lemma 2.2. Let x ∈ Fn. Then x�lgw y for every y ∈ Fn if and only if x /∈ span{e}.

Proof. If x �lgw y for every y ∈ Fn, it is clear that x /∈ span{e}. Conversely, let x =
(x1, . . . ,xn)t /∈ span{e}. Then x has at least two distinct components such as xk and xl .
Let y = (y1, . . . ,yn)t be an arbitrary vector in Fn. For every i, j (1 ≤ i, j ≤ n), put rik =
(yi− xl)/(xk− xl), ril = (−yi + xk)/(xk− xl), and ri j = 0 if j 6= k, l. It is easy to show that,
R = [ri j] ∈GRn and Rx = y. Then x�lgw y.

Lemma 2.3. A nonzero linear operator T : Fn→ Fn preserves lgw-majorization if and only
if x /∈ span{e} implies that T (x) /∈ span{e}.

Proof. Let T preserve lgw-majorization. Suppose that x /∈ span{e}, then x�lgw y for every
y ∈ Fn by Lemma 2.2. Therefore T (x) �lgw T (y) for every y ∈ Fn. Assume, if possible,
T (x) ∈ span{e}, then T (y) = T (x) for every y ∈ Fn, and hence T = 0, which is a contradic-
tion. Then, T (x) /∈ span{e}. Conversely, letting x /∈ span{e} implies that T (x) /∈ span{e}.
Assume that x �lgw y. If x ∈ span{e}, then x = y and hence T (x) = T (y). If x /∈ span{e},
then T (x) /∈ span{e} by hypothesis. So T (x) �lgw z for every z ∈ Fn by Lemma 2.2, and
hence T (x)�lgw T (y). Then T preserves lgw-majorization.

Theorem 2.1. A linear operator T : Fn→ Fn preserves lgw-majorization if and only if one
of the following assertions holds.

(i) There exists R ∈Mn such that ker(R) = span{e}, e /∈ Im(R), and T (x) = Rx for
every x ∈ Fn.

(ii) There exist an invertible matrix R∈GRn and α ∈ F such that T (x) = αRx for every
x ∈ Fn.

Proof. If T satisfies (i) or (ii), it is easy to show that T preserves lgw-majorization. Con-
versely, let T preserve lgw-majorization. If T = 0, we may choose α = 0. So suppose that
T 6= 0. Let A be the matrix representation of T with respect to the canonical basis of Fn. If
T is invertible, then there exists b ∈ Fn such that Ab = e. So b = re, for some nonzero r ∈ F,
by Lemma 2.3. Then Ae = 1

r e and hence T (x) = αRx, where α = 1
r and R = (rA) ∈ GRn

is invertible. If T is singular, then by Lemma 2.3, ker(T ) = span{e} and e /∈ Im(T ). So
ker(A) = span{e} and e /∈ Im(A).

Corollary 2.1. If T : Fn → Fn is a nonzero linear preserver of lgw-majorization, then
rank(T ) is equal to n or n−1.

Proof. By Theorem 2.1, ker(T )= {0} or ker(T )= span{e}. Then rank(T )= n or rank(T )=
n−1.

Now, we state the following two lemmas to prove the main theorem of this paper.

Lemma 2.4. For every invertible matrix A ∈GRn, the following assertions are true.
(i) If AR = RA for every g-row stochastic matrix R, then A = I.

(ii) If (x+Ay)�lgw (Rx+ARy) for every R ∈GRn and every x,y ∈ Fn, then A = I .

Proof. (i) For every i (1 ≤ i ≤ n) assume that Ri is the matrix with e as ith column and
0 elsewhere. Then Ri ∈ GRn. Since A ∈ GRn is invertible and ARi = RiA for every i
(1≤ i≤ n), it is easy to see that A = I.
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(ii) Observe that since A is invertible, condition (ii) can be rewritten as follows:

x+ y�lgw Rx+ARA−1y , ∀ R ∈GRn , ∀ x,y ∈ Fn.

Put x = e− ei and y = ei in the above relation, where {e1, . . . ,en} is the canonical basis of
Fn. Thus, e �lgw [e− (R−ARA−1)ei] for every i (1 ≤ i ≤ n). So (R−ARA−1)ei = 0 for
every i (1≤ i≤ n). Therefore, RA = AR for every R ∈GRn, and hence A = I by part (i).

Lemma 2.5. Let A ∈Mn. If ker(A) = span{e}, then there exist some x0,y0 ∈ Fn and R0 ∈
GRn such that R0x0 +AR0y0 is not lgw-majorized by x0 +Ay0.

Proof. Assume if possible,

x+Ay�lgw Rx+ARy,∀x,y ∈ Fn,∀R ∈GRn .(2.1)

If e ∈ Im(A), then there exists y0 ∈ Fn such that Ay0 = e. Put x = 0 and y = y0 in (2.1).
So e = Ay0 �lgw ARy0, and hence ARy0 = e for every R ∈ GRn. Then Ay = e for every
y ∈ Fn, which is a contradiction. If e /∈ Im(A), then Fn = Im(A)

⊕
span{e}. So for every i

(1≤ i≤ n), there exist yi ∈ Fn and ri ∈ F such that ei = Ayi + rie, where ei is the ith vector
in the canonical basis of Fn. Put x = e− (ei− rie) and y = yi in (2.1). Then

rie−Rei +ARyi = 0, ∀R ∈GRn.(2.2)

For every j (1 ≤ j ≤ n, j 6= i), put R j = eet
j in (2.2). Then ri = 0 for every i (1 ≤ i ≤ n).

Therefore, Ayi = ei for every i (1 ≤ i ≤ n). It thus follows that Im(A) = Fn, which is a
contradiction .

Remark 2.3. Let T : Mn,m → Mn,m be a linear operator. For every i, j (1 ≤ i, j ≤ m),
consider the embedding E j : Fn→Mn,m and the projection Ei : Mn,m→Fn which are defined
by E j(x) = xet

j and Ei(X) = Xei, respectively. Put T j
i = EiT E j for every i, j (1≤ i, j ≤ m).

If X = [x1| . . . |xm] ∈Mn,m, where xi is the ith column of X , then

T (X) = T ([x1| . . . |xm]) =

[
m

∑
j=1

T j
1 (x j)| . . . |

m

∑
j=1

T j
m(x j)

]
.

Moreover, if T preserves lgw-majorization, then for every i, j (1 ≤ i, j ≤ m) T j
i preserves

lgw-majorization too.

Now, we state the main theorem of this section.

Theorem 2.2. Let T : Mn,m→Mn,m be a linear operator. Then T strongly preserves lgw-
majorization if and only if T (X) = AXB for every X ∈Mn,m , where A ∈GRn and B ∈Mm
are invertible .

Proof. If m = 1, the result is proved by Theorem 2.1. So we may suppose that m ≥ 2. As
the sufficiency of the condition is easy to see, only we prove the necessity of the condition.
Suppose that T strongly preserves lgw-majorization. Since T j

i preserves lgw-majorization
for every i, j (1≤ i, j ≤m), then, by Theorem 2.1, there exist α

j
i ∈ F and A j

i ∈Mn such that
T j

i (x) = α
j

i A j
i x, where either A j

i ∈GRn is invertible or ker(A j
i ) = span{e} and e /∈ Im(A j

i ).
Then

T (X) =

[
m

∑
j=1

α
j

i A j
i x j| . . . |

m

∑
j=1

α
j

mA j
mx j

]
.(2.3)
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Now, we consider three steps for the proof.

Step 1. In this step, we will show that if there exist p and q (1≤ p,q≤m) such that α
q
p 6= 0

and Aq
p ∈GRn is invertible, then for every j (1≤ j ≤ m), A j

p = Aq
p.

If α
j
p = 0, without loss of generality, we can choose A j

p = Aq
p . Suppose that α

j
p 6= 0. For

every x,y ∈ Fn, put X = xet
q + yet

j. Then T (X) �lgw T (RX) for all R ∈ GRn, and hence by
(2.3)

α
q
pAq

px+α
j
pA j

py�lgw α
q
pAq

pRx+α
j
pA j

pRy,∀x,y ∈ Fn,∀R ∈GRn

⇒ x+(Aq
p)
−1A j

p(
α

j
p

α
q
p

y)�lgw Rx+(Aq
p)
−1A j

pR(
α

j
p

α
q
p

y),∀x,y ∈ Fn,∀R ∈GRn

⇒ x+(Aq
p)
−1A j

py�lgw Rx+(Aq
p)
−1A j

pRy,∀x,y ∈ Fn,∀R ∈GRn.

So by Lemma 2.5, A j
p is invertible, and hence, by Lemma 2.4, A j

p = Aq
p. Set Ap = Aq

p. Then

T (X) =

[
m

∑
j=1

α
j

1A j
1x j| . . . |Ap

m

∑
j=1

α
j
px j| . . . |

m

∑
j=1

α
j

mA j
mx j

]
.

Step 2. In this step we will show that for every i and j (1≤ i, j≤m), A j
i ∈GRn is invertible

if α
j

i 6= 0. Assume if possible there exist r and s (1≤ r,s≤m) such that ker(As
r) = span{e}

and αs
r 6= 0. Without loss of generality, we can assume that r = m. Then by step 1, for every

j (1≤ j ≤ m) we obtain ker(A j
m) = span{e}. Now, we construct a nonzero n×m matrix U

such that T (U) = 0. Consider the vectors

b1 =

 α1
1
...

α1
m−1

 , . . . ,bm =

 αm
1
...

αm
m−1

 ∈ Fm−1.

It is clear that {b1, . . . ,bm} is a linearly dependent set in Fm−1. So there exist (not all zero)
λ1, . . . ,λm ∈ F such that

m

∑
j=1

λ jα
j

i = 0 , ∀ i ∈ {1, . . . ,m−1}.

Now, define U := [λ1e| . . . |λme] ∈Mn,m. It is clear that, U 6= 0 and

T (U) =

[
m

∑
j=1

λ jα
j

1A j
1e| . . . |

m

∑
j=1

λ jα
j

mA j
me

]
.

We will show that T (U) = 0. Since ker(A j
m) = span{e}, it is clear that ∑

m
j=1 λ jα

j
mA j

me =0
and hence the last column of T (U) is zero. Now, for every k (1 ≤ k ≤ m−1), we consider
the kth column of T (U).

Case 1. Let α l
k 6= 0 and Al

k ∈GRn be invertible for some l (1≤ l ≤ m). Then, by step 1
m

∑
j=1

λ jα
j

k A j
ke = Al

k(
m

∑
j=1

λ jα
j

k )e = 0.
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So the kth column of T (U) is 0 .

Case 2. Suppose that α
j

k A j
k is non invertible for every j (1 ≤ j ≤ m). Then span{e} ⊆

ker(α j
k A j

k), by Theorem 2.1. So ∑
m
j=1 λ jα

j
k A j

ke = 0, and hence the kth column of T (U)
is 0. Therefore T (U) = 0. But by Lemma 2.1, we know that T is invertible and hence
a contradiction is obtained. So for every i and j (1 ≤ i, j ≤ m), A j

i ∈ GRn is invert-
ible if α

j
i 6= 0. Then, by step 1, there exist invertible matrices Ai ∈ GRn (1 ≤ i ≤ m)

such that T (X) = T [x1| . . . |xm] = [A1Xa1| . . . |AmXam], where ai = (α1
i , . . . ,αm

i )t for every i
(1≤ i≤ m).

Step 3. In this step, we will show that Ai = A1 for every i (1 ≤ i ≤ m). First, we show that
rank[a1| . . . |am] ≥ 2. Assume, if possible, {a1, . . . ,am} ⊆ span{a} for some a ∈ Fm. Since
m≥ 2, then we may choose a nonzero vector b ∈ (span{a})⊥. Define X0 := e1bt ∈Mn,m. It
is clear that X0 6= 0 and T (X0) = 0, which is a contradiction and hence rank[a1| . . . |am]≥ 2.
Without loss of generality, we can assume that {a1,a2} is a linearly independent set. Let
X ∈Mn,m and R ∈GRn be arbitrary. Then

X �lgw RX ⇒ T (X)�lgw T (RX)

⇒ [A1Xa1|...|AmXam]�lgw [A1RXa1|...|AmRXam]
⇒ A1Xa1 +A2Xa2 �lgw A1RXa1 +A2RXa2

⇒ Xa1 +(A−1
1 A2)Xa2 �lgw RXa1 +(A−1

1 A2)RXa2.(2.4)

Since {a1,a2} is linearly independent, for every x,y ∈ Fn, there exists Bx,y ∈Mn,m such
that Bx,y a1 = x and Bx,y a2 = y. Putting X = Bx,y in (2.4), we see that

Bx,y a1 +(A−1
1 A2) Bx,y a2 �lgw RBx,y a2 +(A−1

1 A2) RBx,y a2⇒

x+(A−1
1 A2) y�lgw Rx+(A−1

1 A2)Ry ,∀R ∈GRn.

Then, by Lemma 2.4, A−1
1 A2 = I, and hence A2 = A1. Since T is invertible, it is easy to see

that ai 6= 0 for every i (3≤ i≤m). Consequently {a1,ai} or {a2,ai} is a linearly independent
set. By a similar argument as in the above, we conclude that Ai = A1 or Ai = A2. Let A = A1.
It follows that Ai = A for every i (1≤ i≤ m) . Therefore,

T (X) = [AXa1 | . . . |AXam] = AXB,

where B = [a1| . . . | am] is an invertible matrix in Mm.
The following statements show that every strong linear preserver of left weak matrix

majorization is a strong linear preserver of lgw-majorization but the converse is false.

Lemma 2.6. For every g-row stochastic matrix R∈GRn, there exist row stochastic matrices
R1, . . . ,R4 ∈Mn(R) and scalars r1, . . . ,r4 ∈ C such that ∑

4
i=1 ri = 1 and R = ∑

4
i=1 riRi.

Proof. Let R = A+ iB, where A and B are real n×n matrices. Since we know that Re = e, we
obtain that Ae = e and Be = 0. Assume that A = [ai, j] and B = [bi, j]. Put α = max{0,−ai, j :
1 ≤ i, j ≤ n} and β = max{−bi, j : 1 ≤ i, j ≤ n}. Define R1 := (1/(1 + nα))(A + αJ) and
R2 = R3 := (1/n)J. Also, R4 := (1/(nβ ))(B + βJ) if β 6= 0, and R4 := (1/n)J if β = 0. It
is clear that R1, . . . ,R4 are row stochastic matrices and

R = A+ iB = (1+nα)R1 +(−nα)R2 +(inβ )R3 +(−inβ )R4.
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Proposition 2.1. Let T : Mn,m → Mn,m be a linear operator that strongly preserves left
weak matrix majorization. Then T strongly preserves lgw-majorization.

Proof. Let A �lgw B. Then there exists a g-row stochastic matrix R such that B = RA.
For the g-row stochastic matrix R, there exist scalars r1, . . . ,r4 and row stochastic matrices
R1, . . . ,R4 such that ∑

4
i=1 ri = 1 and R = ∑

4
i=1 riRi by Lemma 2.6. For every i (1 ≤ i ≤ 4),

A �lw RiA and hence T (A) �lw T (RiA). Then there exist row stochastic matrices Si (1 ≤
i≤ 4), such that T (RiA) = SiT (A). Put S = ∑

4
i=1 riSi. It is clear that S is a g-row stochastic

matrix and T (B) = ST (A). Therefore, T (A)�lgw T (B). On the other hand, replacing T by
T−1, in a similar fashion we conclude that A �lgw B whenever T (A) �lgw T (B). Then T
strongly preserves lgw-majorization.

Example 2.1. Let the linear operator T : M2 → M2 be such that T (X) = AX for every
X ∈M2, where

A =
(

1 0
−1 2

)
.

It is clear that T strongly preserves lgw-majorization by Theorem 2.2. But T does not
preserve left weak matrix majorization because(

1 0
0 0

)
�lw

(
0 0
1 0

)
and T

(
1 0
0 0

)
6�lw T

(
0 0
1 0

)
.

Now, we state the following corollary which characterizes all linear operators that strongly
preserve left weak matrix majorization on Mn.

Remark 2.4. Let A be an invertible row stochastic matrix. If A−1 is row stochastic matrix,
then A is a permutation.

Corollary 2.2. [10, Theorem 5.2] A linear operator T : Mn →Mn strongly preserves left
weak matrix majorization �lw if and only if T (X) = PXL, where P is permutation and
L ∈Mn is invertible.

Proof. Suppose that T strongly preserves left weak matrix majorization. Then T strongly
preserves lgw-majorization by Proposition 2.1. Therefore in view of Theorem 2.2, there
exist invertible matrices A ∈ GRn and B ∈Mn such that T (X) = AXB for all X ∈Mn. For
every row stochastic matrix R, it is clear that I �lw R. So T (I) �lw T (R) for every row
stochastic matrix R. Consequently AIB �lw ARB, and hence ARA−1 is a row stochastic
matrix for every row stochastic matrix R. It is easy to show that A−1 is a row stochastic
matrix. Similarly, A is a row stochastic matrix too, and hence A is a permutation matrix.

3. Rank-1-preserver and lgw-majorization

In this section, we are using the structure of rank-1-preservers on Mn,m to study the strong
linear preservers of lgw-majorization. This comment has been suggested by one of the
anonymous referees. We recall that a rank-k-preserver is a linear operator T on Mn,m such
that rank(T (A)) = k whenever rank(A) = k. The following notations are fixed through this
section.

For every A∈Mn,m, the notation R(A) is denoted for the set of all rows of A. The symbol
Fm is used for the set of all 1×m row vectors with entries in F. Let E ⊆ Fm, the cardinal
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number of E is denoted by |E| and the g-convex hull of E is the following set:

g-conv(E) =

{
n

∑
i=1

rixi : ri ∈ F,xi ∈ E ,n ∈ N,
n

∑
i=1

ri = 1

}
.

Let A,B∈Mn,m. One can easily show that A�lgw B if and only if R(B)⊂ g-conv(R(A)).

Proposition 3.1. For every A ∈Mn,m, the following assertions are true.
(i) {B ∈Mn,m : A�lgw B}= {A} if and only if |R(A)|= 1.

(ii) {B ∈ Mn,m : A �lgw B} is a subspace of Mn,m with dimension n if and only if
rank(A) = 1 and |R(A)|> 1.

Proof. It is easy to show that (i) holds, so just we prove (ii). Assume that rank(A) = 1 and
|R(A)|> 1, then there exist a nonzero x ∈ Fm and scalars r1, . . . ,rn ∈ F (not all equal) such
that A = (r1x, . . . ,rnx)t Then R(A) = {r1x, . . . ,rnx} and there exist ri,r j ∈ {r1, . . . ,rn} such
that ri 6= r j. Since ri 6= r j, we have g-conv({rix,r jx}) = {αx : α ∈ F}. Therefore

{B ∈Mn,m : A�lgw B}= {B ∈Mn,m : R(B)⊂ g-conv(R(A))}
= {B ∈Mn,m : R(B)⊂ {αx : α ∈ F}}

= span




x
0
...
0

 , . . . ,


0
...
0
x


,

which is a subspace of Mn,m with dimension n. Conversely, if rank(A) > 1, then there exist
x,y ∈ Fm such that {x,y} ⊂ R(A) and {x,y} is a linearly independent set. If W = {B ∈
Mn,m : A�lgw B} is a subspace of Mn,m, then it is clear that 0 ∈ g-conv{R(A)} and hence


x
0
...
0

 , . . . ,


0
...
0
x

 ,


y
0
...
0




is a linearly independent set in W . Thus dimW ≥ n+1.

Proposition 3.2. Let T : Mn,m→Mn,m be a linear operator. If T strongly preserves �lgw,
then T is a rank-1-preserver.

Proof. Assume that A ∈Mn,m and rank(A) = 1. Now, we consider two cases for the proof.

Case 1. Suppose that |R(A)| = 1. Then by part (i) of Proposition 3.1, {B ∈Mn,m : A �lgw
B} = {A}. Since T is invertible, we have T (A) 6= 0 and hence rank(T (A)) ≥ 1. Assume
if possible rank(T (A)) > 1. By part (i) of Proposition 3.1 and invertibility of T , there ex-
ists B ∈ Mn,m such that T (A) �lgw T (B) and T (B) 6= T (A). Since T strongly preserves
�lgw, we have A �lgw B. By hypothesis of this case A = B which is a contradiction. Then
rank(T (A)) = 1.

Case 2. Suppose that |R(A)| > 1. Then by part (ii) of Proposition 3.1, W = {B ∈Mn,m :
A �lgw B} is a subspace of Mn,m with dimension n. So T (W ) = {T (B) : A �lgw B} =
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{T (B) : T (A)�lgw T (B)} is a subspace of Mn,m with dimension n. Therefore by part (ii) of
Proposition 3.1, rank(T (A)) = 1 and |R(T (A))|> 1.

The following theorem characterizes all rank-k-preservers on Mn,m(C).

Theorem 3.1. [6, Theorem 3] If T is a rank-k-preserver on Mn,m := Mn,m(C), then there
exist invertible matrices U ∈Mn and V ∈Mm such that either

T (X) = UXV, ∀X ∈Mn,m,

or
m = n and T (X) = UX tV, ∀X ∈Mn,m,

where At denotes the transpose of A.

Lemma 3.1. [5, Lemma 2.4] Let A and B be two invertible matrices. Then the linear oper-
ator T : Mn→Mn defined by T (X) = AX tB for all X ∈Mn, is not a strong linear preserver
of �lgw.

Now, we are ready to give another proof of Theorem 2.2, in the case F = C by using the
structure of rank-1-preservers.

Theorem 3.2. Let T : Mn,m→Mn,m be a linear operator. Then T strongly preserves �lgw
if and only if there exist invertible matrices A ∈ GRn and B ∈Mm such that T (X) = AXB
for all X ∈Mn,m.

Proof. Assume that T strongly preserves �lgw. By Proposition 3.2, Theorem 3.1 and
Lemma 3.1, there exist invertible matrices U ∈Mn and V ∈Mm such that T (X) = UXV for
all X ∈Mn,m. Since U is invertible, so there exists a unique x0 ∈ Cn such that Ux0 = e. Put
X = [x0|0] ∈Mn,m. It is clear that X �lgw RX for every R ∈ GRn. Then T (X) �lgw T (RX)
and hence U [x0|0]V �lgw UR[x0|0]V for every R ∈GRn. It follows that e = Ux0 �lgw URx0
for every R ∈GRn. Then URx0 = e and hence Rx0 = x0 for all R ∈GRn. Therefore x0 = λe
for some λ ∈ C. Put A = λU and B = (1/λ )V . It is clear that A ∈ GRn and T (X) = AXB
for all X ∈Mn,m.
Acknowledgement. The authors are very grateful to the anonymous referees for their con-
structive comments (in suggesting a shorter proof for Lemma 2.6 and giving useful sugges-
tion for the proof of Theorem 3.2).
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