On Linear Preservers of lgw-Majorization on $\mathbf{M}_{n, m}$

${ }^{1}$ A. ARmandnejad And ${ }^{2}$ A. SALEMI
${ }^{1}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, 7713936417, Rafsanjan, Iran
${ }^{2}$ Department of Mathematics, Shahid Bahonar University of Kerman, 7619614111, Kerman, Iran
${ }^{1}$ armandnejad@ mail.vru.ac.ir, ${ }^{2}$ salemi@ mail.uk.ac.ir

Abstract

Let $\mathbf{M}_{n, m}$ be the set of all $n \times m$ matrices with entries in \mathbb{F}, where \mathbb{F} is the field of real or complex numbers. For $A, B \in \mathbf{M}_{n, m}$, we say that B is lgw-majorized (left generalized weakly majorized) by A if there exists an $n \times n$ g-row stochastic (generalized row stochastic) matrix R such that $B=R A$. In this paper, we characterize all linear operators that strongly preserve lgw-majorization on $\mathbf{M}_{n, m}$ and all linear operators that strongly preserve left weak matrix majorization on \mathbf{M}_{n}.

2010 Mathematics Subject Classification: Primary: 15A03, 15A04, 15A51
Keywords and phrases: Linear preserver, strong linear preserver, g-row stochastic matrices, lgw-majorization.

1. Introduction

Suppose that $\mathbf{M}_{n}:=\mathbf{M}_{n, n}$. A matrix $R \in \mathbf{M}_{n}$ is a generalized row stochastic matrix (g-row stochastic, for short) if $R e=e$, where $e=(1,1, \ldots, 1)^{t}$, see [8]. Recall that R is row stochastic if it has nonnegative entries and $R e=e$. Given $A, B \in \mathbf{M}_{n, m}, B$ is said to be left (respectively right) weakly matrix majorized by A, and write $A \succ_{l_{w}} B$ (respectively $A \succ_{r w} B$) if there exists a row stochastic matrix R such that $B=R A$ (respectively $B=A R$), see [9, 12].

A linear operator $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ preserves an order relation \succ in $\mathbf{M}_{n, m}$, if $T(X) \succ T(Y)$ whenever $X \succ Y$. Also, T is said to strongly preserve \succ if

$$
X \succ Y \Longleftrightarrow T(X) \succ T(Y)
$$

In [7], Beasley, Lee and Lee proved that if a linear operator $T: \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}$ strongly preserves right weak matrix majorization, then there exist a permutation P and an invertible matrix $M \in \mathbf{M}_{n}$ such that $T(X)=M X P$ for every X in $\operatorname{span}\left(\mathbf{R}_{n}\right)$, where \mathbf{R}_{n} is the set of all $n \times n$ row stochastic matrices. Recently Hasani and Radjabalipour in [10] showed that

$$
T(X)=M X P, \quad \forall X \in \mathbf{M}_{n}
$$

[^0]$T: \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}$ strongly preserves left weak matrix majorization, then there exist a permutation P and an invertible matrix $M \in \mathbf{M}_{n}$ such that
\[

$$
\begin{equation*}
T(X)=P X M, \quad \forall X \in \mathbf{M}_{n} . \tag{1.1}
\end{equation*}
$$

\]

Definition 1.1. Let $A, B \in \mathbf{M}_{n, m}$. The matrix B is said to be lgw-majorized by A if there exists an $n \times n$ g-row stochastic matrix R such that $B=R A$ (denoted $A \succ_{l g w} B$). Analogously, B is said to be rgw-majorized (right generalized weakly majorized) by A (denoted $A \succ_{r g w} B$) if there exists an $m \times m$ g-row stochastic matrix R such that $B=A R$.

The notions of rgw and lgw-majorization were motivated by the concepts of right and left weak matrix majorization which were introduced in [9] and [12] respectively. In [5] the authors introduced the notion of lgw-majorization on \mathbf{M}_{n} and characterized its strong linear preservers. Also, in [1], all strong linear preservers of rgw-majorization on $M_{n, m}$ were characterized. We would like to point out that there is no duality between the cases of rgw and lgw-majorization and that the proofs are essentially different. In this paper, we will show that a linear operator $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ strongly preserves lgw-majorization if and only if there exist invertible matrices A and B such that A is g-row stochastic and $T(X)=A X B$ for every X in $\mathbf{M}_{n, m}$. Also, we prove that the relation (1.1) (one of the theorems in [10]) may be obtained as a corollary of our Proposition 2.1. For more information on the type of majorization and linear preservers of majorization see [2, 3, 4, 11].

Throughout this paper, $\mathbf{G R}_{n}$ is the set of all $n \times n$ g-row stochastic matrices, $e=(1, \ldots, 1)^{t} \in$ \mathbb{F}^{n} and $\mathbf{J}=e e^{t} \in \mathbf{M}_{n}$.

2. lgw-Majorization

In this section, we state some properties of lgw-majorization on $\mathbf{M}_{n, m}$. Also we characterize all linear operators on $\mathbf{M}_{n, m}$ that strongly preserve lgw-majorization. First we state some lemmas.

Lemma 2.1. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear operator that strongly preserves lgw-majorization. Then T is invertible.

Proof. Suppose $T(A)=0$. Notice that since T is linear, we have $T(0)=0=T(A)$. Then it is obvious that $T(0) \succ_{l g w} T(A)$. Therefore, $0 \succ_{\operatorname{lgw}} A$ because T strongly preserves lgwmajorization. Then, there exists an $n \times n$ g-row stochastic matrix R such that $A=R 0$. So, $A=0$, and hence T is invertible.

The set of g-row stochastic matrices and the lgw-majorization relation on $\mathbf{M}_{n, m}$ has the following properties. Proofs are not given.
Remark 2.1. Let A and B be two g-row stochastic matrices. Then $A B$ and A^{-1} (if A is invertible) are g-row stochastic matrices too.

Remark 2.2. Let $X, Y \in \mathbf{M}_{n, m}, A, B \in \mathbf{G R}_{n}, C \in \mathbf{M}_{m}$, and $\alpha, \beta \in \mathbb{F}$ such that A, B, and C are invertible and $\alpha \neq 0$. Then the following conditions are equivalent.

1. $X \succ_{\operatorname{lgW}} Y$.
2. $A X \succ_{l g w} B Y$.
3. $\alpha X+\beta \mathbf{J}_{n, m} \succ_{l g w} \alpha Y+\beta \mathbf{J}_{n, m}$.
4. $X C \succ_{l g w} Y C$.

Here $\mathbf{J}_{n, m}$ is the $n \times m$ matrix all of whose entries are equal to one.

Now, we characterize the linear operators preserving lgw-majorization on \mathbb{F}^{n}.
Lemma 2.2. Let $x \in \mathbb{F}^{n}$. Then $x \succ_{\text {lgw }} y$ for every $y \in \mathbb{F}^{n}$ if and only if $x \notin \operatorname{span}\{e\}$.
Proof. If $x \succ_{\operatorname{lgw}} y$ for every $y \in \mathbb{F}^{n}$, it is clear that $x \notin \operatorname{span}\{e\}$. Conversely, let $x=$ $\left(x_{1}, \ldots, x_{n}\right)^{t} \notin \operatorname{span}\{e\}$. Then x has at least two distinct components such as x_{k} and x_{l}. Let $y=\left(y_{1}, \ldots, y_{n}\right)^{t}$ be an arbitrary vector in \mathbb{F}^{n}. For every $i, j(1 \leq i, j \leq n)$, put $r_{i k}=$ $\left(y_{i}-x_{l}\right) /\left(x_{k}-x_{l}\right), r_{i l}=\left(-y_{i}+x_{k}\right) /\left(x_{k}-x_{l}\right)$, and $r_{i j}=0$ if $j \neq k, l$. It is easy to show that, $R=\left[r_{i j}\right] \in \mathbf{G R}_{n}$ and $R x=y$. Then $x \succ_{l g w} y$.
Lemma 2.3. A nonzero linear operator $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ preserves lgw-majorization if and only if $x \notin \operatorname{span}\{e\}$ implies that $T(x) \notin \operatorname{span}\{e\}$.

Proof. Let T preserve lgw-majorization. Suppose that $x \notin \operatorname{span}\{e\}$, then $x \succ_{l g w} y$ for every $y \in \mathbb{F}^{n}$ by Lemma 2.2. Therefore $T(x) \succ_{\lg w} T(y)$ for every $y \in \mathbb{F}^{n}$. Assume, if possible, $T(x) \in \operatorname{span}\{e\}$, then $T(y)=T(x)$ for every $y \in \mathbb{F}^{n}$, and hence $T=0$, which is a contradiction. Then, $T(x) \notin \operatorname{span}\{e\}$. Conversely, letting $x \notin \operatorname{span}\{e\}$ implies that $T(x) \notin \operatorname{span}\{e\}$. Assume that $x \succ_{l g w} y$. If $x \in \operatorname{span}\{e\}$, then $x=y$ and hence $T(x)=T(y)$. If $x \notin \operatorname{span}\{e\}$, then $T(x) \notin \operatorname{span}\{e\}$ by hypothesis. So $T(x) \succ_{\operatorname{lgw}} z$ for every $z \in \mathbb{F}^{n}$ by Lemma 2.2, and hence $T(x) \succ_{l g w} T(y)$. Then T preserves lgw-majorization.

Theorem 2.1. A linear operator $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ preserves lgw-majorization if and only if one of the following assertions holds.
(i) There exists $R \in \mathbf{M}_{n}$ such that $\operatorname{ker}(R)=\operatorname{span}\{e\}, e \notin \operatorname{Im}(\mathrm{R})$, and $T(x)=R x$ for every $x \in \mathbb{F}^{n}$.
(ii) There exist an invertible matrix $R \in \mathbf{G R}_{n}$ and $\alpha \in \mathbb{F}$ such that $T(x)=\alpha R x$ for every $x \in \mathbb{F}^{n}$.

Proof. If T satisfies (i) or (ii), it is easy to show that T preserves lgw-majorization. Conversely, let T preserve lgw-majorization. If $T=0$, we may choose $\alpha=0$. So suppose that $T \neq 0$. Let A be the matrix representation of T with respect to the canonical basis of \mathbb{F}^{n}. If T is invertible, then there exists $b \in \mathbb{F}^{n}$ such that $A b=e$. So $b=r e$, for some nonzero $r \in \mathbb{F}$, by Lemma 2.3. Then $A e=\frac{1}{r} e$ and hence $T(x)=\alpha R x$, where $\alpha=\frac{1}{r}$ and $R=(r A) \in \mathbf{G R}_{n}$ is invertible. If T is singular, then by Lemma 2.3, $\operatorname{ker}(T)=\operatorname{span}\{e\}$ and $e \notin \operatorname{Im}(T)$. So $\operatorname{ker}(A)=\operatorname{span}\{e\}$ and $e \notin \operatorname{Im}(A)$.

Corollary 2.1. If $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is a nonzero linear preserver of lgw-majorization, then $\operatorname{rank}(T)$ is equal to n or $n-1$.

Proof. By Theorem 2.1, $\operatorname{ker}(T)=\{0\}$ or $\operatorname{ker}(T)=\operatorname{span}\{e\}$. Then $\operatorname{rank}(T)=n$ or $\operatorname{rank}(T)=$ $n-1$.

Now, we state the following two lemmas to prove the main theorem of this paper.
Lemma 2.4. For every invertible matrix $A \in \mathbf{G R}_{n}$, the following assertions are true.
(i) If $A R=R A$ for every g-row stochastic matrix R, then $A=I$.
(ii) If $(x+A y) \succ_{l g w}(R x+A R y)$ for every $R \in \mathbf{G R}_{n}$ and every $x, y \in \mathbb{F}^{n}$, then $A=I$.

Proof. (i) For every $i(1 \leq i \leq n)$ assume that R_{i} is the matrix with e as $i^{t h}$ column and 0 elsewhere. Then $R_{i} \in \mathbf{G R}_{n}$. Since $A \in \mathbf{G R}_{n}$ is invertible and $A R_{i}=R_{i} A$ for every i $(1 \leq i \leq n)$, it is easy to see that $A=I$.
(ii) Observe that since A is invertible, condition (ii) can be rewritten as follows:

$$
x+y \succ_{\operatorname{lgw}} R x+A R A^{-1} y, \forall R \in \mathbf{G R}_{n}, \forall x, y \in \mathbb{F}^{n} .
$$

Put $x=e-e_{i}$ and $y=e_{i}$ in the above relation, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the canonical basis of \mathbb{F}^{n}. Thus, $e \succ_{l g w}\left[e-\left(R-A R A^{-1}\right) e_{i}\right]$ for every $i(1 \leq i \leq n)$. So $\left(R-A R A^{-1}\right) e_{i}=0$ for every $i(1 \leq i \leq n)$. Therefore, $R A=A R$ for every $R \in \mathbf{G R}_{n}$, and hence $A=I$ by part (i).

Lemma 2.5. Let $A \in \boldsymbol{M}_{n}$. If $\operatorname{ker}(A)=\operatorname{span}\{e\}$, then there exist some $x_{0}, y_{0} \in \mathbb{F}^{n}$ and $R_{0} \in$ $\mathbf{G R}_{n}$ such that $R_{0} x_{0}+A R_{0} y_{0}$ is not lgw-majorized by $x_{0}+A y_{0}$.
Proof. Assume if possible,

$$
\begin{equation*}
x+A y \succ_{l g w} R x+A R y, \forall x, y \in \mathbb{F}^{n}, \forall R \in \mathbf{G R}_{n} . \tag{2.1}
\end{equation*}
$$

If $e \in \operatorname{Im}(A)$, then there exists $y_{0} \in \mathbb{F}^{n}$ such that $A y_{0}=e$. Put $x=0$ and $y=y_{0}$ in (2.1). So $e=A y_{0} \succ_{l g w} A R y_{0}$, and hence $A R y_{0}=e$ for every $R \in \mathbf{G R}_{n}$. Then $A y=e$ for every $y \in \mathbb{F}^{n}$, which is a contradiction. If $e \notin \operatorname{Im}(A)$, then $\mathbb{F}^{n}=\operatorname{Im}(A) \oplus \operatorname{span}\{e\}$. So for every i $(1 \leq i \leq n)$, there exist $y_{i} \in \mathbb{F}^{n}$ and $r_{i} \in \mathbb{F}$ such that $e_{i}=A y_{i}+r_{i} e$, where e_{i} is the $i^{t h}$ vector in the canonical basis of \mathbb{F}^{n}. Put $x=e-\left(e_{i}-r_{i} e\right)$ and $y=y_{i}$ in (2.1). Then

$$
\begin{equation*}
r_{i} e-R e_{i}+A R y_{i}=0, \forall R \in \mathbf{G R}_{n} \tag{2.2}
\end{equation*}
$$

For every $j(1 \leq j \leq n, j \neq i)$, put $R_{j}=e e_{j}^{t}$ in (2.2). Then $r_{i}=0$ for every $i(1 \leq i \leq n)$. Therefore, $A y_{i}=e_{i}$ for every $i(1 \leq i \leq n)$. It thus follows that $\operatorname{Im}(A)=\mathbb{F}^{n}$, which is a contradiction.

Remark 2.3. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear operator. For every $i, j(1 \leq i, j \leq m)$, consider the embedding $E^{j}: \mathbb{F}^{n} \rightarrow \mathbf{M}_{n, m}$ and the projection $E_{i}: \mathbf{M}_{n, m} \rightarrow \mathbb{F}^{n}$ which are defined by $E^{j}(x)=x e^{t}$ and $E_{i}(X)=X e_{i}$, respectively. Put $T_{i}^{j}=E_{i} T E^{j}$ for every $i, j(1 \leq i, j \leq m)$. If $X=\left[x_{1}|\ldots| x_{m}\right] \in \mathbf{M}_{n, m}$, where x_{i} is the $i^{\text {th }}$ column of X, then

$$
T(X)=T\left(\left[x_{1}|\ldots| x_{m}\right]\right)=\left[\sum_{j=1}^{m} T_{1}^{j}\left(x_{j}\right)|\ldots| \sum_{j=1}^{m} T_{m}^{j}\left(x_{j}\right)\right] .
$$

Moreover, if T preserves lgw-majorization, then for every $i, j(1 \leq i, j \leq m) T_{i}^{j}$ preserves lgw-majorization too.

Now, we state the main theorem of this section.
Theorem 2.2. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear operator. Then T strongly preserves lgwmajorization if and only if $T(X)=A X B$ for every $X \in \mathbf{M}_{n, m}$, where $A \in \mathbf{G R}_{n}$ and $B \in \boldsymbol{M}_{m}$ are invertible .

Proof. If $m=1$, the result is proved by Theorem 2.1. So we may suppose that $m \geq 2$. As the sufficiency of the condition is easy to see, only we prove the necessity of the condition. Suppose that T strongly preserves lgw-majorization. Since T_{i}^{j} preserves lgw-majorization for every $i, j(1 \leq i, j \leq m)$, then, by Theorem 2.1 , there exist $\alpha_{i}^{j} \in \mathbb{F}$ and $A_{i}^{j} \in \mathbf{M}_{n}$ such that $T_{i}^{j}(x)=\alpha_{i}^{j} A_{i}^{j} x$, where either $A_{i}^{j} \in \mathbf{G R}_{n}$ is invertible or $\operatorname{ker}\left(A_{i}^{j}\right)=\operatorname{span}\{e\}$ and $e \notin \operatorname{Im}\left(A_{i}^{j}\right)$. Then

$$
\begin{equation*}
T(X)=\left[\sum_{j=1}^{m} \alpha_{i}^{j} A_{i}^{j} x_{j}|\ldots| \sum_{j=1}^{m} \alpha_{m}^{j} A_{m}^{j} x_{j}\right] \tag{2.3}
\end{equation*}
$$

Now, we consider three steps for the proof.
Step 1. In this step, we will show that if there exist p and $q(1 \leq p, q \leq m)$ such that $\alpha_{p}^{q} \neq 0$ and $A_{p}^{q} \in \mathbf{G R}_{n}$ is invertible, then for every $j(1 \leq j \leq m), A_{p}^{j}=A_{p}^{q}$.

If $\alpha_{p}^{j}=0$, without loss of generality, we can choose $A_{p}^{j}=A_{p}^{q}$. Suppose that $\alpha_{p}^{j} \neq 0$. For every $x, y \in \mathbb{F}^{n}$, put $X=x e_{q}^{t}+y e_{j}^{t}$. Then $T(X) \succ_{\operatorname{lgw}} T(R X)$ for all $R \in \mathbf{G R}_{n}$, and hence by (2.3)

$$
\begin{aligned}
& \alpha_{p}^{q} A_{p}^{q} x+\alpha_{p}^{j} A_{p}^{j} y \succ_{\lg w} \alpha_{p}^{q} A_{p}^{q} R x+\alpha_{p}^{j} A_{p}^{j} R y, \forall x, y \in \mathbb{F}^{n}, \forall R \in \mathbf{G R}_{n} \\
& \Rightarrow x+\left(A_{p}^{q}\right)^{-1} A_{p}^{j}\left(\frac{\alpha_{p}^{j}}{\alpha_{p}^{q}} y\right) \succ_{l g w} R x+\left(A_{p}^{q}\right)^{-1} A_{p}^{j} R\left(\frac{\alpha_{p}^{j}}{\alpha_{p}^{q}} y\right), \forall x, y \in \mathbb{F}^{n}, \forall R \in \mathbf{G R}_{n} \\
& \Rightarrow x+\left(A_{p}^{q}\right)^{-1} A_{p}^{j} y \succ_{l g w} R x+\left(A_{p}^{q}\right)^{-1} A_{p}^{j} R y, \forall x, y \in \mathbb{F}^{n}, \forall R \in \mathbf{G R}_{n} .
\end{aligned}
$$

So by Lemma 2.5, A_{p}^{j} is invertible, and hence, by Lemma 2.4, $A_{p}^{j}=A_{p}^{q}$. Set $A_{p}=A_{p}^{q}$. Then

$$
T(X)=\left[\sum_{j=1}^{m} \alpha_{1}^{j} A_{1}^{j} x_{j}|\ldots| A_{p} \sum_{j=1}^{m} \alpha_{p}^{j} x_{j}|\ldots| \sum_{j=1}^{m} \alpha_{m}^{j} A_{m}^{j} x_{j}\right]
$$

Step 2. In this step we will show that for every i and $j(1 \leq i, j \leq m), A_{i}^{j} \in \mathbf{G R}_{n}$ is invertible if $\alpha_{i}^{j} \neq 0$. Assume if possible there exist r and $s(1 \leq r, s \leq m)$ such that $\operatorname{ker}\left(A_{r}^{s}\right)=\operatorname{span}\{e\}$ and $\alpha_{r}^{s} \neq 0$. Without loss of generality, we can assume that $r=m$. Then by step 1, for every $j(1 \leq j \leq m)$ we obtain $\operatorname{ker}\left(A_{m}^{j}\right)=\operatorname{span}\{e\}$. Now, we construct a nonzero $n \times m$ matrix U such that $T(U)=0$. Consider the vectors

$$
b_{1}=\left(\begin{array}{c}
\alpha_{1}^{1} \\
\vdots \\
\alpha_{m-1}^{1}
\end{array}\right), \ldots, b_{m}=\left(\begin{array}{c}
\alpha_{1}^{m} \\
\vdots \\
\alpha_{m-1}^{m}
\end{array}\right) \in \mathbb{F}^{m-1}
$$

It is clear that $\left\{b_{1}, \ldots, b_{m}\right\}$ is a linearly dependent set in \mathbb{F}^{m-1}. So there exist (not all zero) $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{F}$ such that

$$
\sum_{j=1}^{m} \lambda_{j} \alpha_{i}^{j}=0, \forall i \in\{1, \ldots, m-1\}
$$

Now, define $U:=\left[\lambda_{1} e|\ldots| \lambda_{m} e\right] \in \mathbf{M}_{n, m}$. It is clear that, $U \neq 0$ and

$$
T(U)=\left[\sum_{j=1}^{m} \lambda_{j} \alpha_{1}^{j} A_{1}^{j} e|\ldots| \sum_{j=1}^{m} \lambda_{j} \alpha_{m}^{j} A_{m}^{j} e\right]
$$

We will show that $T(U)=0$. Since $\operatorname{ker}\left(A_{m}^{j}\right)=\operatorname{span}\{e\}$, it is clear that $\sum_{j=1}^{m} \lambda_{j} \alpha_{m}^{j} A_{m}^{j} e=0$ and hence the last column of $T(U)$ is zero. Now, for every $k(1 \leq k \leq m-1)$, we consider the $k^{\text {th }}$ column of $T(U)$.

Case 1. Let $\alpha_{k}^{l} \neq 0$ and $A_{k}^{l} \in \mathbf{G R}_{n}$ be invertible for some $l(1 \leq l \leq m)$. Then, by step 1

$$
\sum_{j=1}^{m} \lambda_{j} \alpha_{k}^{j} A_{k}^{j} e=A_{k}^{l}\left(\sum_{j=1}^{m} \lambda_{j} \alpha_{k}^{j}\right) e=0
$$

So the $k^{\text {th }}$ column of $T(U)$ is 0 .
Case 2. Suppose that $\alpha_{k}^{j} A_{k}^{j}$ is non invertible for every $j(1 \leq j \leq m)$. Then span $\{e\} \subseteq$ $\operatorname{ker}\left(\alpha_{k}^{j} A_{k}^{j}\right)$, by Theorem 2.1. So $\sum_{j=1}^{m} \lambda_{j} \alpha_{k}^{j} A_{k}^{j} e=0$, and hence the $k^{t h}$ column of $T(U)$ is 0 . Therefore $T(U)=0$. But by Lemma 2.1, we know that T is invertible and hence a contradiction is obtained. So for every i and $j(1 \leq i, j \leq m), A_{i}^{j} \in \mathbf{G} \mathbf{R}_{n}$ is invertible if $\alpha_{i}^{j} \neq 0$. Then, by step 1, there exist invertible matrices $A_{i} \in \mathbf{G R}_{n}(1 \leq i \leq m)$ such that $T(X)=T\left[x_{1}|\ldots| x_{m}\right]=\left[A_{1} X a_{1}|\ldots| A_{m} X a_{m}\right]$, where $a_{i}=\left(\alpha_{i}^{1}, \ldots, \alpha_{i}^{m}\right)^{t}$ for every i $(1 \leq i \leq m)$.

Step 3. In this step, we will show that $A_{i}=A_{1}$ for every $i(1 \leq i \leq m)$. First, we show that $\operatorname{rank}\left[a_{1}|\ldots| a_{m}\right] \geq 2$. Assume, if possible, $\left\{a_{1}, \ldots, a_{m}\right\} \subseteq \operatorname{span}\{a\}$ for some $a \in \mathbb{F}^{m}$. Since $m \geq 2$, then we may choose a nonzero vector $b \in(\operatorname{span}\{a\})^{\perp}$. Define $X_{0}:=e_{1} b^{t} \in \mathbf{M}_{n, m}$. It is clear that $X_{0} \neq 0$ and $T\left(X_{0}\right)=0$, which is a contradiction and hence $\operatorname{rank}\left[a_{1}|\ldots| a_{m}\right] \geq 2$. Without loss of generality, we can assume that $\left\{a_{1}, a_{2}\right\}$ is a linearly independent set. Let $X \in \mathbf{M}_{n, m}$ and $R \in \mathbf{G R}_{n}$ be arbitrary. Then

$$
\begin{align*}
X \succ_{l g w} R X & \Rightarrow T(X) \succ_{l g w} T(R X) \\
& \Rightarrow\left[A_{1} X a_{1}|\ldots| A_{m} X a_{m}\right] \succ_{l g w}\left[A_{1} R X a_{1}|\ldots| A_{m} R X a_{m}\right] \\
& \Rightarrow A_{1} X a_{1}+A_{2} X a_{2} \succ_{l g w} A_{1} R X a_{1}+A_{2} R X a_{2} \\
& \Rightarrow X a_{1}+\left(A_{1}^{-1} A_{2}\right) X a_{2} \succ_{l g w} R X a_{1}+\left(A_{1}^{-1} A_{2}\right) R X a_{2} . \tag{2.4}
\end{align*}
$$

Since $\left\{a_{1}, a_{2}\right\}$ is linearly independent, for every $x, y \in \mathbb{F}^{n}$, there exists $B_{x, y} \in \mathbf{M}_{n, m}$ such that $B_{x, y} a_{1}=x$ and $B_{x, y} a_{2}=y$. Putting $X=B_{x, y}$ in (2.4), we see that

$$
\begin{gathered}
B_{x, y} a_{1}+\left(A_{1}^{-1} A_{2}\right) B_{x, y} a_{2} \succ_{l g w} R B_{x, y} a_{2}+\left(A_{1}^{-1} A_{2}\right) R B_{x, y} a_{2} \Rightarrow \\
x+\left(A_{1}^{-1} A_{2}\right) y \succ_{l g w} R x+\left(A_{1}^{-1} A_{2}\right) R y, \forall R \in \mathbf{G R}_{n} .
\end{gathered}
$$

Then, by Lemma 2.4, $A_{1}^{-1} A_{2}=I$, and hence $A_{2}=A_{1}$. Since T is invertible, it is easy to see that $a_{i} \neq 0$ for every $i(3 \leq i \leq m)$. Consequently $\left\{a_{1}, a_{i}\right\}$ or $\left\{a_{2}, a_{i}\right\}$ is a linearly independent set. By a similar argument as in the above, we conclude that $A_{i}=A_{1}$ or $A_{i}=A_{2}$. Let $A=A_{1}$. It follows that $A_{i}=A$ for every $i(1 \leq i \leq m)$. Therefore,

$$
T(X)=\left[A X a_{1}|\ldots| A X a_{m}\right]=A X B,
$$

where $B=\left[a_{1}|\ldots| a_{m}\right]$ is an invertible matrix in \mathbf{M}_{m}.
The following statements show that every strong linear preserver of left weak matrix majorization is a strong linear preserver of lgw-majorization but the converse is false.

Lemma 2.6. For every g-row stochastic matrix $R \in \mathbf{G R}_{n}$, there exist row stochastic matrices $R_{1}, \ldots, R_{4} \in \boldsymbol{M}_{n}(\mathbb{R})$ and scalars $r_{1}, \ldots, r_{4} \in \mathbb{C}$ such that $\sum_{i=1}^{4} r_{i}=1$ and $R=\sum_{i=1}^{4} r_{i} R_{i}$.
Proof. Let $R=A+i B$, where A and B are real $n \times n$ matrices. Since we know that $R e=e$, we obtain that $A e=e$ and $B e=0$. Assume that $A=\left[a_{i, j}\right]$ and $B=\left[b_{i, j}\right]$. Put $\alpha=\max \left\{0,-a_{i, j}\right.$: $1 \leq i, j \leq n\}$ and $\beta=\max \left\{-b_{i, j}: 1 \leq i, j \leq n\right\}$. Define $R_{1}:=(1 /(1+n \alpha))(A+\alpha \mathbf{J})$ and $R_{2}=R_{3}:=(1 / n) \mathbf{J}$. Also, $R_{4}:=(1 /(n \beta))(B+\beta \mathbf{J})$ if $\beta \neq 0$, and $R_{4}:=(1 / n) \mathbf{J}$ if $\beta=0$. It is clear that R_{1}, \ldots, R_{4} are row stochastic matrices and

$$
R=A+i B=(1+n \alpha) R_{1}+(-n \alpha) R_{2}+(i n \beta) R_{3}+(-i n \beta) R_{4} .
$$

Proposition 2.1. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear operator that strongly preserves left weak matrix majorization. Then T strongly preserves lgw-majorization.

Proof. Let $A \succ_{l g_{w}} B$. Then there exists a g-row stochastic matrix R such that $B=R A$. For the g-row stochastic matrix R, there exist scalars r_{1}, \ldots, r_{4} and row stochastic matrices R_{1}, \ldots, R_{4} such that $\sum_{i=1}^{4} r_{i}=1$ and $R=\sum_{i=1}^{4} r_{i} R_{i}$ by Lemma 2.6. For every $i(1 \leq i \leq 4)$, $A \succ_{l w} R_{i} A$ and hence $T(A) \succ_{l w} T\left(R_{i} A\right)$. Then there exist row stochastic matrices $S_{i}(1 \leq$ $i \leq 4)$, such that $T\left(R_{i} A\right)=S_{i} T(A)$. Put $S=\sum_{i=1}^{4} r_{i} S_{i}$. It is clear that S is a g-row stochastic matrix and $T(B)=S T(A)$. Therefore, $T(A) \succ_{l g w} T(B)$. On the other hand, replacing T by T^{-1}, in a similar fashion we conclude that $A \succ_{\operatorname{lgw}} B$ whenever $T(A) \succ_{l g w} T(B)$. Then T strongly preserves lgw-majorization.

Example 2.1. Let the linear operator $T: \mathbf{M}_{2} \rightarrow \mathbf{M}_{2}$ be such that $T(X)=A X$ for every $X \in \mathbf{M}_{2}$, where

$$
A=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)
$$

It is clear that T strongly preserves lgw-majorization by Theorem 2.2 . But T does not preserve left weak matrix majorization because

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \succ_{l w}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \text { and } T\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \nsucc_{l w} T\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Now, we state the following corollary which characterizes all linear operators that strongly preserve left weak matrix majorization on \mathbf{M}_{n}.

Remark 2.4. Let A be an invertible row stochastic matrix. If A^{-1} is row stochastic matrix, then A is a permutation.

Corollary 2.2. [10, Theorem 5.2] A linear operator $T: \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}$ strongly preserves left weak matrix majorization $\succ_{l w}$ if and only if $T(X)=P X L$, where P is permutation and $L \in \boldsymbol{M}_{n}$ is invertible.

Proof. Suppose that T strongly preserves left weak matrix majorization. Then T strongly preserves lgw-majorization by Proposition 2.1. Therefore in view of Theorem 2.2, there exist invertible matrices $A \in \mathbf{G R}_{n}$ and $B \in \mathbf{M}_{n}$ such that $T(X)=A X B$ for all $X \in \mathbf{M}_{n}$. For every row stochastic matrix R, it is clear that $I \succ_{l w} R$. So $T(I) \succ_{l w} T(R)$ for every row stochastic matrix R. Consequently $A I B \succ_{l w} A R B$, and hence $A R A^{-1}$ is a row stochastic matrix for every row stochastic matrix R. It is easy to show that A^{-1} is a row stochastic matrix. Similarly, A is a row stochastic matrix too, and hence A is a permutation matrix.

3. Rank-1-preserver and lgw-majorization

In this section, we are using the structure of rank-1-preservers on $\mathbf{M}_{n, m}$ to study the strong linear preservers of lgw-majorization. This comment has been suggested by one of the anonymous referees. We recall that a rank-k-preserver is a linear operator T on $\mathbf{M}_{n, m}$ such that $\operatorname{rank}(T(A))=k$ whenever $\operatorname{rank}(A)=k$. The following notations are fixed through this section.

For every $A \in \mathbf{M}_{n, m}$, the notation $\mathscr{R}(A)$ is denoted for the set of all rows of A. The symbol \mathbb{F}_{m} is used for the set of all $1 \times m$ row vectors with entries in \mathbb{F}. Let $E \subseteq \mathbb{F}_{m}$, the cardinal
number of E is denoted by $|E|$ and the g-convex hull of E is the following set:

$$
\operatorname{g}-\operatorname{conv}(E)=\left\{\sum_{i=1}^{n} r_{i} x_{i}: r_{i} \in \mathbb{F}, x_{i} \in E, n \in \mathbb{N}, \sum_{i=1}^{n} r_{i}=1\right\} .
$$

Let $A, B \in \mathbf{M}_{n, m}$. One can easily show that $A \succ_{l g w} B$ if and only if $\mathscr{R}(B) \subset \mathrm{g}-\operatorname{conv}(\mathscr{R}(A))$.
Proposition 3.1. For every $A \in \mathbf{M}_{n, m}$, the following assertions are true.
(i) $\left\{B \in \mathbf{M}_{n, m}: A \succ_{l g w} B\right\}=\{A\}$ if and only if $|\mathscr{R}(A)|=1$.
(ii) $\left\{B \in \mathbf{M}_{n, m}: A \succ_{l g w} B\right\}$ is a subspace of $\mathbf{M}_{n, m}$ with dimension n if and only if $\operatorname{rank}(A)=1$ and $|\mathscr{R}(A)|>1$.
Proof. It is easy to show that (i) holds, so just we prove (ii). Assume that $\operatorname{rank}(A)=1$ and $|\mathscr{R}(A)|>1$, then there exist a nonzero $x \in \mathbb{F}_{m}$ and scalars $r_{1}, \ldots, r_{n} \in \mathbb{F}$ (not all equal) such that $A=\left(r_{1} x, \ldots, r_{n} x\right)^{t}$ Then $\mathscr{R}(A)=\left\{r_{1} x, \ldots, r_{n} x\right\}$ and there exist $r_{i}, r_{j} \in\left\{r_{1}, \ldots, r_{n}\right\}$ such that $r_{i} \neq r_{j}$. Since $r_{i} \neq r_{j}$, we have $\mathrm{g}-\operatorname{conv}\left(\left\{r_{i} x, r_{j} x\right\}\right)=\{\alpha x: \alpha \in \mathbb{F}\}$. Therefore

$$
\begin{aligned}
\left\{B \in \mathbf{M}_{n, m}: A \succ_{l g w} B\right\} & =\left\{B \in \mathbf{M}_{n, m}: \mathscr{R}(B) \subset \mathrm{g}-\operatorname{conv}(\mathscr{R}(A))\right\} \\
& =\left\{B \in \mathbf{M}_{n, m}: \mathscr{R}(B) \subset\{\alpha x: \alpha \in \mathbb{F}\}\right\} \\
& =\operatorname{span}\left\{\left(\begin{array}{c}
x \\
0 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
x
\end{array}\right)\right\},
\end{aligned}
$$

which is a subspace of $\mathbf{M}_{n, m}$ with dimension n. Conversely, if $\operatorname{rank}(A)>1$, then there exist $x, y \in \mathbb{F}_{m}$ such that $\{x, y\} \subset \mathscr{R}(A)$ and $\{x, y\}$ is a linearly independent set. If $W=\{B \in$ $\left.\mathbf{M}_{n, m}: A \succ_{\lg w} B\right\}$ is a subspace of $\mathbf{M}_{n, m}$, then it is clear that $0 \in \mathrm{~g}-\operatorname{conv}\{\mathscr{R}(A)\}$ and hence

$$
\left\{\left(\begin{array}{c}
x \\
0 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
x
\end{array}\right),\left(\begin{array}{c}
y \\
0 \\
\vdots \\
0
\end{array}\right)\right\}
$$

is a linearly independent set in W. Thus $\operatorname{dim} W \geq n+1$.
Proposition 3.2. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear operator. If T strongly preserves $\succ_{l g w}$, then T is a rank-1-preserver.
Proof. Assume that $A \in \mathbf{M}_{n, m}$ and $\operatorname{rank}(A)=1$. Now, we consider two cases for the proof.
Case 1. Suppose that $|\mathscr{R}(A)|=1$. Then by part (i) of Proposition 3.1, $\left\{B \in \mathbf{M}_{n, m}: A \succ_{\lg w}\right.$ $B\}=\{A\}$. Since T is invertible, we have $T(A) \neq 0$ and hence $\operatorname{rank}(T(A)) \geq 1$. Assume if possible $\operatorname{rank}(T(A))>1$. By part (i) of Proposition 3.1 and invertibility of T, there exists $B \in \mathbf{M}_{n, m}$ such that $T(A) \succ_{l g w} T(B)$ and $T(B) \neq T(A)$. Since T strongly preserves $\succ_{l g w}$, we have $A \succ_{l g w} B$. By hypothesis of this case $A=B$ which is a contradiction. Then $\operatorname{rank}(T(A))=1$.

Case 2. Suppose that $|\mathscr{R}(A)|>1$. Then by part (ii) of Proposition 3.1, $W=\left\{B \in \mathbf{M}_{n, m}\right.$: $\left.A \succ_{l g W} B\right\}$ is a subspace of $\mathbf{M}_{n, m}$ with dimension n. So $T(W)=\left\{T(B): A \succ_{\operatorname{lgW}} B\right\}=$
$\left\{T(B): T(A) \succ_{l g w} T(B)\right\}$ is a subspace of $\mathbf{M}_{n, m}$ with dimension n. Therefore by part (ii) of Proposition 3.1, $\operatorname{rank}(T(A))=1$ and $|\mathscr{R}(T(A))|>1$.

The following theorem characterizes all rank- k-preservers on $\mathbf{M}_{n, m}(\mathbb{C})$.
Theorem 3.1. [6, Theorem 3] If T is a rank-k-preserver on $\mathbf{M}_{n, m}:=\mathbf{M}_{n, m}(\mathbb{C})$, then there exist invertible matrices $U \in \mathbf{M}_{n}$ and $V \in \mathbf{M}_{m}$ such that either

$$
T(X)=U X V, \forall X \in \mathbf{M}_{n, m}
$$

or

$$
m=n \text { and } T(X)=U X^{t} V, \forall X \in \mathbf{M}_{n, m},
$$

where A^{t} denotes the transpose of A.
Lemma 3.1. [5, Lemma 2.4] Let A and B be two invertible matrices. Then the linear operator $T: \boldsymbol{M}_{n} \rightarrow \boldsymbol{M}_{n}$ defined by $T(X)=A X^{t} B$ for all $X \in \boldsymbol{M}_{n}$, is not a strong linear preserver of $\succ_{l g w}$.

Now, we are ready to give another proof of Theorem 2.2, in the case $\mathbb{F}=\mathbb{C}$ by using the structure of rank-1-preservers.
Theorem 3.2. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear operator. Then T strongly preserves $\succ_{l g w}$ if and only if there exist invertible matrices $A \in \mathbf{G R}_{n}$ and $B \in \mathbf{M}_{m}$ such that $T(X)=A X B$ for all $X \in \mathbf{M}_{n, m}$.
Proof. Assume that T strongly preserves $\succ_{l g w}$. By Proposition 3.2, Theorem 3.1 and Lemma 3.1, there exist invertible matrices $U \in \mathbf{M}_{n}$ and $V \in \mathbf{M}_{m}$ such that $T(X)=U X V$ for all $X \in \mathbf{M}_{n, m}$. Since U is invertible, so there exists a unique $x_{0} \in \mathbb{C}^{n}$ such that $U x_{0}=e$. Put $X=\left[x_{0} \mid 0\right] \in \mathbf{M}_{n, m}$. It is clear that $X \succ_{l g w} R X$ for every $R \in \mathbf{G R}_{n}$. Then $T(X) \succ_{\operatorname{lgw}} T(R X)$ and hence $U\left[x_{0} \mid 0\right] V \succ_{\lg w} U R\left[x_{0} \mid 0\right] V$ for every $R \in \mathbf{G R}_{n}$. It follows that $e=U x_{0} \succ_{l g w} U R x_{0}$ for every $R \in \mathbf{G R}_{n}$. Then $U R x_{0}=e$ and hence $R x_{0}=x_{0}$ for all $R \in \mathbf{G R}_{n}$. Therefore $x_{0}=\lambda e$ for some $\lambda \in \mathbb{C}$. Put $A=\lambda U$ and $B=(1 / \lambda) V$. It is clear that $A \in \mathbf{G R}_{n}$ and $T(X)=A X B$ for all $X \in \mathbf{M}_{n, m}$.
Acknowledgement. The authors are very grateful to the anonymous referees for their constructive comments (in suggesting a shorter proof for Lemma 2.6 and giving useful suggestion for the proof of Theorem 3.2).

References

[1] A. Armandnejad, Right GW-majorization on $\mathbf{M}_{n, m}$, Bull. Iranian Math. Soc. 35 (2009), no. 2, 69-76.
[2] A. Armandnejad and H. R. Afshin, Linear functions preserving multivariate and directional majorization, Iran. J. Math. Sci. Inform. 5 (2010), no. 1, 1-5.
[3] A. Armandnejad and H. Heydari, Linear functions preserving gd-majorization from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$, Bull. Iranian Math. Soc. 37 (2011), no. 1, 215-224.
[4] A. Armandnejad and A. Salemi, The structure of linear preservers of gs-majorization, Bull. Iranian Math. Soc. 32 (2006), no. 2, 31-42.
[5] A. Armandnejad and A. Salemi, Strong linear preservers of GW-majorization on M_{n}, J. Dyn. Syst. Geom. Theor. 5 (2007), no. 2, 165-168.
[6] L. B. Beasley, Linear operators on matrices: the invariance of rank-k matrices, Linear Algebra Appl. 107 (1988), 161-167.
[7] L. B. Beasley, S.-G. Lee and Y.-H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra Appl. 367 (2003), 341-346.
[8] H. Chiang and C.-K. Li, Generalized doubly stochastic matrices and linear preservers, Linear Multilinear Algebra 53 (2005), no. 1, 1-11.
[9] G. Dahl, Matrix majorization, Linear Algebra Appl. 288 (1999), no. 1-3, 53-73.
[10] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra 15 (2006), 260-268 (electronic).
[11] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix majorization on \mathbb{R}^{p}, Electron. J. Linear Algebra 18 (2009), 88-97.
[12] F. D. Martínez Pería, P. G. Massey and L. E. Silvestre, Weak matrix majorization, Linear Algebra Appl. 403 (2005), 343-368.

[^0]: Communicated by Lee See Keong.
 Received: December 27, 2008; Revised: May 15, 2010.

