Meromorphic Function Sharing Two Sets with its Difference Operator

BaoQin Chen and ZongXuan Chen
School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China
chenbaoqin_chbq@126.com, chzx@vip.sina.com

Abstract

We investigate the relationship between a meromorphic function $f(z)$ and its difference operator when they share two sets, and give some interesting results.

2010 Mathematics Subject Classification: Primary 30D35; Secondary 39B32
Keywords and phrases: Uniqueness theory, difference operator, shared sets.

1. Introduction and main results

Throughout this paper, a meromorphic function always means meromorphic in the whole complex plane. We assume that the reader is familiar with the basic notations of the Nevanlinna theory of meromorphic functions such as $T(r, f), m(r, f), N(r, f)$ and $\bar{N}(r, f)$ for a meromorphic function $f(z)$ (see, e.g., $[5,10,15]$). In particular, for $a \in \mathbb{C} \cup\{\infty\}:=\hat{\mathbb{C}}$, we denote $N_{2}(r, 1 /(f-a))$ the counting function of zeros of $f-a$ such that simple zeros are counted once and multiple zeros twice. The notation $S(r, f)$ is defined to be any quantity satisfying $S(r, f)=o(T(r, f))$, as $r \rightarrow \infty$ outside of a possible exceptional set of finite logarithmic measure. Then a meromorphic function $a(z)$ is called to be a small function of $f(z)$ provided that $T(r, a)=S(r, f)$. Let $S(f)$ be the set of all small functions of $f(z)$. Let f and g be two meromorphic functions and $a \in \widehat{\mathbb{C}}$. We say that f and g share a CM, resp. IM, if $f-a$ and $g-a$ share the same zeros counting multiplicities, resp. ignoring multiplicities.

We also need the following definitions in this paper.
Definition 1.1. [7] Let k be a nonnegative integer or infinity. For $a \in \widehat{\mathbb{C}}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$.

Remark 1.1. From Definition 1.1, we can see that each element in $E_{1}(a ; f)$ is counted exactly once in $N_{2}(r, 1 /(f-a))$.
Definition 1.2. [7] Let k be a nonnegative integer or infinity. If for $a \in \widehat{\mathbb{C}}, E_{k}(a ; f)=$ $E_{k}(a ; g)$, we say that f, g share the value a with weight k.

[^0]From these two definitions, one can find that if f, g share the value a with weight k, then f, g share the value a with weight p for all integer $p, 0 \leq p<k$. We also note that f, g share a value $a \mathrm{CM}$ or IM if and only if f, g share the value a with weight ∞ or 0 respectively.

Definition 1.3. [7] For $S \subset \hat{\mathbb{C}}$, we define $E_{f}(S, k)$ as $E_{f}(S, k)=\bigcup_{a \in S} E_{k}(a ; f)$, where k is a nonnegative integer or infinity.

In this paper, we assume that $S_{1}=\left\{1, \omega, \ldots, \omega^{n-1}\right\}$ and $S_{2}=\{\infty\}$, where $\omega^{n}=1$ and n is a positive integer. The investigation on the uniqueness of meromorphic functions sharing sets is an important subfield of the uniqueness theory. Yi [16], Li and Yang [13], Yi and Yang [18] had proved several results on the uniqueness problems of two meromorphic functions when they share two sets around 1995. Then in 2006, Lahiri and Banerjee [8] considered these problems with the idea of weighted sharing of sets. One can refer to $[1,3,8,9,12-14$, $16,18]$ for these results which are related to this paper.

In what follows, c always means a non-zero constant. For a meromorphic function $f(z)$, we denote its shift and difference operator by $f(z+c)$ and $\Delta_{c} f:=f(z+c)-f(z)$, respectively. Recently, numbers of papers (including $[2,4,6,11,19]$) have focused on value distribution in difference analogues of meromorphic functions. Many papers (including [6, 19]) mainly deal with some uniqueness questions for a meromorphic function that shares values or common sets with its shift or its difference operator. We recall the following two results proved by Zhang [19], in which the relation between $f(z)$ and its shift $f(z+c)$ when they share two sets, is discussed.

Theorem 1.1. [19] Let $c \in \mathbb{C}$. Suppose that $f(z)$ is a nonconstant meromorphic function of finite order such that $E_{f(z)}\left(S_{j}, \infty\right)=E_{f(z+c)}\left(S_{j}, \infty\right)(j=1,2)$. If $n \geq 4$, then $f(z) \equiv t f(z+c)$, where $t^{n}=1$.

Theorem 1.2. [19] Let $m \geq 2, n \geq 2 m+4$ with n and $n-m$ having no common factors. Let a and b be two non-zero constants such that the equation $\omega^{n}+a \omega^{n-m}+b=0$ has no multiple roots. Let $S=\left\{\omega \mid \omega^{n}+a \omega^{n-m}+b=0\right\}$. Suppose that $f(z)$ is a nonconstant meromorphic function of finite order. Then $E_{f(z)}(S, \infty)=E_{f(z+c)}(S, \infty)$ and $E_{f(z)}(\{\infty\}, \infty)=$ $E_{f(z+c)}(\{\infty\}, \infty)$ imply $f(z) \equiv f(z+c)$.

An interesting question is what can be said if we replace $f(z+c)$ with $\Delta_{c} f$. Regarding this question, we prove the following results.

Theorem 1.3. Suppose that $f(z)$ is a nonconstant meromorphic function of finite order such that $E_{f(z)}\left(S_{1}, 2\right)=E_{\Delta_{c} f}\left(S_{1}, 2\right)$ and $E_{f(z)}\left(S_{2}, \infty\right)=E_{\Delta_{c} f}\left(S_{2}, \infty\right)$. If $n \geq 7$, then $\Delta_{c} f \equiv t f(z)$, where $t^{n}=1$ and $t \neq-1$.

The following corollary follows directly from Theorem 1.3 and it can be seen as a counterpart result to Theorem 1.1.

Corollary 1.1. Suppose that $f(z)$ is a nonconstant meromorphic function of finite order such that $E_{f(z)}\left(S_{1}, \infty\right)=E_{\Delta_{c} f}\left(S_{1}, \infty\right)$ and $E_{f(z)}\left(S_{2}, \infty\right)=E_{\Delta_{c} f}\left(S_{2}, \infty\right)$. If $n \geq 7$, then $\Delta_{c} f \equiv t f(z)$, where $t^{n}=1$ and $t \neq-1$.

Using a similar method as in the proof of Theorem 1.3, we get the following corollary.
Corollary 1.2. Under the assumptions of Corollary 1.1, if $f(z)$ is a nonconstant entire function of finite order and $n \geq 5$, then the conclusion of Corollary 1.1 still holds.

Now another interesting question is whether the conditions for the shared sets S_{1} or S_{2} in Theorem 1.3 can be replaced by other conditions or not. Considering this question, we prove the following results.

Theorem 1.4. Suppose that $f(z)$ is a nonconstant meromorphic function of finite order satisfying $E_{f(z)}\left(S_{1}, 0\right)=E_{\Delta_{c} f}\left(S_{1}, 0\right)$ and $E_{f(z)}\left(S_{2}, \infty\right)=E_{\Delta_{c} f}\left(S_{2}, \infty\right)$. If there exists a constant $\alpha(0<\alpha \leq 2)$ such that

$$
\begin{equation*}
\bar{N}(r, f(z))+\bar{N}\left(r, \frac{1}{f(z)}\right)<\alpha T(r, f(z)) \tag{1.1}
\end{equation*}
$$

and if $n \geq 15 \alpha / 2+4$, then $\Delta_{c} f \equiv t f(z)$, where $t^{n}=1$ and $t \neq-1$.
Theorem 1.5. Suppose that $f(z)$ is a nonconstant meromorphic function of finite order satisfying $E_{f(z)}\left(S_{1}, 2\right)=E_{\Delta_{c} f}\left(S_{1}, 2\right)$ and $E_{f(z)}\left(S_{2}, 0\right)=E_{\Delta_{c} f}\left(S_{2}, 0\right)$. If

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup \frac{N\left(r, \frac{1}{f(z)}\right)}{T(r, f(z))}<1 \tag{1.2}
\end{equation*}
$$

and if $n \geq 7$, then $\Delta_{c} f \equiv t f(z)$, where $t^{n}=1$ and $t \neq-1$.
The following Theorem 1.6 is to reduce the lower bound of n in Theorem 1.3. Its proof is similar to the proof of Theorem 1.3 and hence omitted.

Theorem 1.6. Suppose that $f(z)$ is a nonconstant meromorphic function of finite order satisfying $E_{f(z)}\left(S_{1}, 2\right)=E_{\Delta_{c} f}\left(S_{1}, 2\right)$ and $E_{f(z)}\left(S_{2}, \infty\right)=E_{\Delta_{c} f}\left(S_{2}, \infty\right)$. If

$$
\bar{N}(r, f(z))+\bar{N}\left(r, \frac{1}{f(z)}\right)=S(r, f)
$$

and if $n \geq 3$, then $\Delta_{c} f \equiv t f(z)$, where $t^{n}=1$ and $t \neq-1$.
Now we get the following theorem corresponding to Theorem 1.2.
Theorem 1.7. Let $m \geq 2, n \geq 2 m+4$ with n and $n-m$ having no common factors. Let a and b be two non-zero constants such that the equation $\omega^{n}+a \omega^{n-m}+b=0$ has no multiple roots. Let $S=\left\{\omega \mid \omega^{n}+a \omega^{n-m}+b=0\right\}$. Suppose that $f(z)$ is a nonconstant meromorphic function of finite order satisfying $E_{f(z)}(S, \infty)=E_{\Delta_{c} f}(S, \infty)$ and $E_{f(z)}(\{\infty\}, \infty)=$ $E_{\Delta_{c} f}(\{\infty\}, \infty)$. If

$$
\begin{equation*}
N\left(r, \frac{1}{\Delta_{c} f}\right)=T(r, f(z))+S(r, f) \tag{1.3}
\end{equation*}
$$

then $\Delta_{c} f \equiv f(z)$.
Example. Let $f(z)=e^{z}, n \geq 3$ be a given integer and c be a constant satisfying $e^{c}=$ $1+e^{2 \pi i / n}$. Then we see that $\Delta_{c} f(z)=e^{2 \pi i / n} f(z)$ and hence

$$
\Pi_{k=0}^{n-1}\left(\Delta_{c} f(z)-e^{\frac{2 k \pi i}{n}}\right)=\Pi_{k=0}^{n-1}\left(f(z)-e^{\frac{2 k \pi i}{n}}\right) .
$$

This infers that $E_{f(z)}\left(S_{1}, \infty\right)=E_{\Delta_{c} f}\left(S_{1}, \infty\right)$ and $E_{f(z)}\left(S_{2}, \infty\right)=E_{\Delta_{c} f}\left(S_{2}, \infty\right)$. This example satisfies Theorems 1.3-1.6.

But we still wonder whether the lower bound of n in our results is sharp or not.

2. Proof of Theorem $\mathbf{1 . 3}$

We recall the following result which takes a key role when concerning questions about a meromorphic function $f(z)$ and its difference operator $\Delta_{c} f$.
Lemma 2.1. [4] Let $c \in \mathbb{C}, n \in \mathbb{N}$, and let $f(z)$ be a meromorphic function of finite order. Then for any small periodic function $a(z) \in S(f)$ with period c,

$$
m\left(r, \frac{\Delta_{c}^{n} f}{f(z)-a(z)}\right)=S(r, f)
$$

where the exceptional set associated with $S(r, f)$ is of at most finite logarithmic measure.
The proof of Theorem 1.3 is based on a result in [1], which can be read as follows:
Lemma 2.2. [1] Let F and G be two nonconstant meromorphic functions defined in \mathbb{C}. If $E_{2}(1 ; F)=E_{2}(1 ; G)$ and $E_{k}(\infty ; F)=E_{k}(\infty ; G)$, where $0 \leq k \leq \infty$, then one of the following cases occurs:
(i) $T(r, F)+T(r, G) \leq 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+\bar{N}(r, G)\right.$

$$
\left.+\bar{N}_{*}(r, \infty ; F, G)\right\}+S(r, F)+S(r, G) ;
$$

(ii) $F \equiv G$;
(iii) $F G \equiv 1$,
where $\bar{N}_{*}(r, \infty ; F, G)$ denotes the reduced counting function of those poles of F whose multiplicities differ from the multiplicities of the corresponding poles of G.

Proof of Theorem 1.3. Denote $F=\left(\Delta_{c} f\right)^{n}$ and $G=f(z)^{n}$. By the condition that $E_{f(z)}\left(S_{1}, 2\right)$ $=E_{\Delta_{c} f}\left(S_{1}, 2\right)$, we see that F and G share 1 with weight 2 , that is, $E_{2}(1 ; F)=E_{2}(1 ; G)$. Since $f(z)$ and $\Delta_{c} f$ share $\infty \mathrm{CM}$, we have $N\left(r, \Delta_{c} f\right)=N(r, f(z))$ and also $\bar{N}\left(r, \Delta_{c} f\right)=\bar{N}(r, f(z))$. Moreover, we deduce that F and G share ∞ with weight k, for any $0 \leq k \leq \infty$, and

$$
\begin{equation*}
\bar{N}_{*}(r, \infty ; F, G)=0 \tag{2.1}
\end{equation*}
$$

Furthermore, we note that

$$
\begin{align*}
& N_{2}\left(r, \frac{1}{F}\right)=2 \bar{N}\left(r, \frac{1}{\Delta_{c} f}\right), \bar{N}(r, F)=\bar{N}\left(r, \Delta_{c} f\right) \\
& N_{2}\left(r, \frac{1}{G}\right)=2 \bar{N}\left(r, \frac{1}{f(z)}\right), \bar{N}(r, G)=\bar{N}(r, f(z)) \tag{2.2}
\end{align*}
$$

Combining with (2.1) and (2.2) gives

$$
\begin{align*}
& N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+\bar{N}(r, G)+\bar{N}_{*}(r, \infty ; F, G) \\
= & 2 \bar{N}\left(r, \frac{1}{\Delta_{c} f}\right)+2 \bar{N}\left(r, \frac{1}{f(z)}\right)+\bar{N}\left(r, \Delta_{c} f\right)+\bar{N}(r, f(z)) \tag{2.3}\\
\leq & 2 T\left(r, \frac{1}{\Delta_{c} f}\right)+2 T\left(r, \frac{1}{f(z)}\right)+T\left(r, \Delta_{c} f\right)+T(r, f(z))+S\left(r, \Delta_{c} f\right)+S(r, f) \\
\leq & 3\left\{T\left(r, \Delta_{c} f\right)+T(r, f(z))\right\}+S\left(r, \Delta_{c} f\right)+S(r, f) .
\end{align*}
$$

On the other hand, we have

$$
\begin{equation*}
T(r, F)+T(r, G)=n\left\{T\left(r, \Delta_{c} f\right)+T(r, f(z))\right\} \tag{2.4}
\end{equation*}
$$

Suppose that the Case (i) in Lemma 2.2 holds. Then by (2.3) and (2.4), we deduce that

$$
(n-6)\left\{T\left(r, \Delta_{c} f\right)+T(r, f(z))\right\} \leq S\left(r, \Delta_{c} f\right)+S(r, f)
$$

which is a contradiction with $n \geq 7$. Hence by Lemma 2.2, we have $F \equiv G$ or $F G \equiv 1$.
If $F \equiv G$, that is, $\left(\Delta_{c} f\right)^{n}=f(\bar{z})^{n}$. Then there exists a constant $t \in \mathbb{C}$ such that $\Delta_{c} f \equiv t f(z)$, where $t^{n}=1$. As $f(z)$ is a nonconstant meromorphic function, $t \neq-1$.

If $F G \equiv 1$, that is

$$
\begin{equation*}
\left(\Delta_{c} f\right)^{n} \equiv \frac{1}{f(z)^{n}} \tag{2.5}
\end{equation*}
$$

Since $f(z)$ and $\Delta_{c} f$ share $\infty \mathrm{CM}$, we see that

$$
\begin{equation*}
N\left(r, \frac{\Delta_{c} f}{f(z)}\right) \leq N\left(r, \frac{1}{f(z)}\right) \leq T(r, f(z))+S(r, f) \tag{2.6}
\end{equation*}
$$

From (2.5), (2.6) and Lemma 2.1, we obtain that

$$
\begin{aligned}
2 n T(r, f(z)) & =T\left(r, \frac{1}{f(z)^{2 n}}\right)+O(1)=T\left(r, \frac{1}{f(z)^{n}} \cdot\left(\Delta_{c} f\right)^{n}\right)+O(1) \\
& =n m\left(r, \frac{\Delta_{c} f}{f(z)}\right)+n N\left(r, \frac{\Delta_{c} f}{f(z)}\right)+O(1) \leq n T(r, f(z))+S(r, f)
\end{aligned}
$$

Thus, $T(r, f(z))=S(r, f)$, which is impossible. Theorem 1.3 is thus proved.

3. Proof of Theorem 1.4

Lemma 3.1. [17] Let $f(z)$ and $g(z)$ be two meromorphic functions. If $f(z)$ and $g(z)$ share 1 IM, and if

$$
\lim _{r \rightarrow \infty} \sup \frac{N^{*}(r, f)+N^{*}(r, g)+N^{*}\left(r, \frac{1}{f}\right)+N^{*}\left(r, \frac{1}{g}\right)}{T(r, f)+T(r, g)}<1
$$

where $N^{*}(r, f)=2 N_{2}(r, f)+3 \bar{N}(r, f)$, then $f \equiv g$ or $f g \equiv 1$.
Proof of Theorem 1.4. By the condition of Theorem 1.4, we still have $N\left(r, \Delta_{c} f\right)=N(r, f(z))$ and also $\bar{N}\left(r, \Delta_{c} f\right)=\bar{N}(r, f(z))$. Then by Lemma 2.1, we have

$$
\begin{align*}
T\left(r, \Delta_{c} f\right) & =m\left(r, \Delta_{c} f\right)+N\left(r, \Delta_{c} f\right) \\
& \leq m\left(r, \frac{\Delta_{c} f}{f(z)}\right)+m(r, f(z))+N(r, f(z)) \leq T(r, f(z))+S(r, f) . \tag{3.1}
\end{align*}
$$

It is immediate to see that $S\left(r, \Delta_{c} f\right)=o(T(r, f(z)))$.
Denote $F=\left(\Delta_{c} f\right)^{n}$ and $G=f(z)^{n}$. Since $E_{f(z)}\left(S_{1}, 0\right)=E_{\Delta_{c} f}\left(S_{1}, 0\right)$, it follows that F and G share 1 IM . Applying the second main theorem and by (1.1), we have

$$
\begin{align*}
n T(r, f(z)) & =T(r, G) \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)+S(r, G) \\
& \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F-1}\right)+S(r, G) \tag{3.2}\\
& \leq \bar{N}(r, f(z))+\bar{N}\left(r, \frac{1}{f(z)}\right)+T\left(r, \frac{1}{F-1}\right)+S(r, f) \\
& <\alpha T(r, f(z))+n T\left(r, \Delta_{c} f\right)+S(r, f) .
\end{align*}
$$

It follows from (3.2) that

$$
\begin{equation*}
T(r, f(z))<\frac{n}{n-\alpha} T\left(r, \Delta_{c} f\right)+S(r, f) \tag{3.3}
\end{equation*}
$$

Then from (3.3) and the condition $n \geq 15 \alpha / 2+4$, we deduce that

$$
\begin{align*}
T(r, F)+T(r, G) & =n\left\{T\left(r, \Delta_{c} f\right)+T(r, f(z))\right\}>n\left(1+\frac{n-\alpha}{n}\right) T(r, f(z))+S(r, f) \tag{3.4}\\
& =(2 n-\alpha) T(r, f(z))+S(r, f) \geq(14 \alpha+8) T(r, f(z))+S(r, f)
\end{align*}
$$

On the other hand, we note that

$$
\begin{align*}
& N^{*}(r, G)=2 N_{2}(r, G)+3 \bar{N}(r, G) \leq 7 \bar{N}(r, f(z)), \\
& N^{*}\left(r, \frac{1}{G}\right)=2 N_{2}\left(r, \frac{1}{G}\right)+3 \bar{N}\left(r, \frac{1}{G}\right) \leq 7 \bar{N}\left(r, \frac{1}{f(z)}\right) . \tag{3.5}
\end{align*}
$$

Then by (1.1) and (3.5), we get

$$
\begin{equation*}
N^{*}(r, G)+N^{*}\left(r, \frac{1}{G}\right) \leq 7\left\{\bar{N}(r, f(z))+\bar{N}\left(r, \frac{1}{f(z)}\right)\right\}<7 \alpha T(r, f(z)) \tag{3.6}
\end{equation*}
$$

Since $f(z)$ and $\Delta_{c} f$ share $\infty \mathrm{CM}$, and by (1.1), we have

$$
N^{*}(r, F) \leq 7 \bar{N}\left(r, \Delta_{c} f\right)=7 \bar{N}(r, f(z))<7 \alpha T(r, f(z))
$$

Similarly as to (3.6), we get

$$
\begin{align*}
N^{*}(r, F)+ & N^{*}\left(r, \frac{1}{F}\right) \leq 7\left\{\bar{N}\left(r, \Delta_{c} f\right)+\bar{N}\left(r, \frac{1}{\Delta_{c} f}\right)\right\} \tag{3.7}\\
& <7\left\{\alpha T(r, f(z))+T\left(r, \Delta_{c} f\right)\right\}+S\left(r, \Delta_{c} f\right) \leq 7(\alpha+1) T(r, f(z))+S(r, f)
\end{align*}
$$

Combining with (3.6) and (3.7), yields

$$
\begin{equation*}
N^{*}(r, F)+N^{*}(r, G)+N^{*}\left(r, \frac{1}{F}\right)+N^{*}\left(r, \frac{1}{G}\right)<(14 \alpha+7) T(r, f(z))+S(r, f) \tag{3.8}
\end{equation*}
$$

So by (3.4) and (3.8), we see that

$$
\lim _{r \rightarrow \infty} \sup \frac{N^{*}(r, F)+N^{*}(r, G)+N^{*}\left(r, \frac{1}{F}\right)+N^{*}\left(r, \frac{1}{G}\right)}{T(r, F)+T(r, G)} \leq \frac{14 \alpha+7}{14 \alpha+8}<1
$$

Therefore, by Lemma 3.1, $F \equiv G$ or $F G \equiv 1$.
Then using the same method as in the proof of Theorem 1.3 to discuss the two cases, we can also get the conclusion of Theorem 1.4.

4. Proof of Theorem 1.5

Lemma 4.1. [2] Let $f(z)$ be a meromorphic function of finite order ρ and c be a non-zero complex constant. Then, for each $\varepsilon>0$, we have

$$
T(r, f(z+c))=T(r, f(z))+O\left(r^{\rho-1+\varepsilon}\right)+O(\log r)
$$

Proof of Theorem 1.5. By (1.2), for any $\varepsilon>0$ is small and $R>0$ is large, we get that

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f(z)}\right) \leq N\left(r, \frac{1}{f(z)}\right) \leq(1-\varepsilon) T(r, f(z)), \quad r \geq R \tag{4.1}
\end{equation*}
$$

Denote $F=\left(\Delta_{c} f\right)^{n}$ and $G=f(z)^{n}$. Then (2.4) still holds. By the condition that $E_{f(z)}\left(S_{1}, 2\right)=$ $E_{\Delta_{c} f}\left(S_{1}, 2\right)$, we also have $E_{2}(1 ; F)=E_{2}(1 ; G)$. Since $f(z)$ and $\Delta_{c} f$ share ∞ IM, we have $\bar{N}\left(r, \Delta_{c} f\right)=\bar{N}(r, f(z))$. Moreover, we deduce that $E_{n-1}(\infty ; F)=E_{n-1}(\infty ; G)$, and

$$
\begin{align*}
& \bar{N}_{*}(r, \infty ; F, G)=\bar{N}_{*}(r, \infty ; G, F) \leq \min \left\{\bar{N}(r, f(z)), \bar{N}\left(r, \Delta_{c} f\right)\right\} \\
& \leq \frac{1}{2}\left\{\bar{N}(r, f(z))+\bar{N}\left(r, \Delta_{c} f\right)\right\} \leq \frac{1}{2}\left\{T(r, f(z))+T\left(r, \Delta_{c} f\right)\right\}+S(r, f)+S\left(r, \Delta_{c} f\right) . \tag{4.2}
\end{align*}
$$

Obviously, by Lemma 4.1, we see that

$$
T\left(r, \Delta_{c} f\right) \leq T(r, f(z+c))+T(r, f(z))+O(1) \leq 2 T(r, f(z))+S(r, f)
$$

which implies that $S\left(r, \Delta_{c} f\right)=o(T(r, f(z)))$. Then by (4.1) and (4.2), we deduce that

$$
\begin{aligned}
& N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+\bar{N}(r, G)+\bar{N}_{*}(r, \infty ; F, G) \\
= & 2 \bar{N}\left(r, \frac{1}{\Delta_{c} f}\right)+2 \bar{N}\left(r, \frac{1}{f(z)}\right)+\bar{N}\left(r, \Delta_{c} f\right)+\bar{N}(r, f(z)) \\
& +\frac{1}{2}\left\{T(r, f(z))+T\left(r, \Delta_{c} f\right)\right\}+S(r, f)+S\left(r, \Delta_{c} f\right) \\
\leq & 2 T\left(r, \frac{1}{\Delta_{c} f}\right)+2 \bar{N}\left(r, \frac{1}{f(z)}\right)+\frac{3}{2}\left\{T(r, f(z))+T\left(r, \Delta_{c} f\right)\right\}+S(r, f) \\
\leq & \frac{7}{2} T\left(r, \Delta_{c} f\right)+\frac{3}{2} T(r, f(z))+2(1-\varepsilon) T(r, f(z))+S(r, f) \\
= & \frac{7}{2}\left\{T\left(r, \Delta_{c} f\right)+T(r, f(z))\right\}-2 \varepsilon T(r, f(z))+S(r, f), \quad r \geq R .
\end{aligned}
$$

Now suppose that the case (i) in Lemma 2.2 holds. Hence, from (2.4) and (4.3), we have

$$
(n-7)\left\{T\left(r, \Delta_{c} f\right)+T(r, f(z))\right\}+4 \varepsilon T(r, f(z)) \leq S(r, f),
$$

which contradicts with $n \geq 7$ and $\varepsilon>0$. Therefore, by Lemma 2.2, we have $F \equiv G$ or $F G \equiv 1$.

If $F \equiv G$, then our conclusion holds.
If $F G \equiv 1$, that is $\left(\Delta_{c} f\right)^{n} \equiv 1 /\left(f(z)^{n}\right)$, which implies $T\left(r, \Delta_{c} f\right)=T(r, f(z))+O(1)$. Then by the above formula and (1.2), we see that

$$
\begin{align*}
N\left(r, \frac{\Delta_{c} f}{f(z)}\right) & \leq N\left(r, \frac{1}{f(z)}\right)+N\left(r, \Delta_{c} f\right) \\
& \leq(1-\varepsilon) T(r, f(z))+T\left(r, \Delta_{c} f\right)+S(r, f)+S\left(r, \Delta_{c} f\right) \tag{4.4}\\
& \leq(2-\varepsilon) T(r, f(z))+S(r, f), \quad r \geq R .
\end{align*}
$$

From (4.4) and Lemma 2.1, we obtain that

$$
\begin{aligned}
2 n T(r, f(z)) & =T\left(r, \frac{1}{f(z)^{2 n}}\right)+O(1)=T\left(r, \frac{1}{f(z)^{n}} \cdot\left(\Delta_{c} f\right)^{n}\right)+O(1) \\
& =n m\left(r, \frac{\Delta_{c} f}{f(z)}\right)+n N\left(r, \frac{\Delta_{c} f}{f(z)}\right)+O(1) \leq(2 n-\varepsilon n) T(r, f(z))+S(r, f) .
\end{aligned}
$$

which is impossible for $\varepsilon>0$. Thus, Theorem 1.5 is proved.

5. Proof of Theorem $\mathbf{1 . 7}$

The following lemma is a difference analogue of the second main theorem of Nevanlinna theory, which is given by Halburd and Korhonen in [4].

Lemma 5.1. [4] Let $c \in \mathbb{C}$, and let $f(z)$ be a meromorphic function of finite order such that $\Delta_{c} f \not \equiv 0$. Let $q \geq 2$, and let $a_{1}(z), \ldots, a_{q}(z)$ be distinct meromorphic periodic functions with period c such that $a_{k} \in S(f)$ for all $k=1, \ldots, q$. Then

$$
\begin{equation*}
m(r, f)+\sum_{k=1}^{q} m\left(r, \frac{1}{f-a_{k}}\right) \leq 2 T(r, f)-N_{p a i r}(r, f)+S(r, f) \text {, } \tag{5.1}
\end{equation*}
$$

where

$$
N_{p a i r}(r, f):=2 N(r, f)-N\left(r, \Delta_{c} f\right)+N\left(r, \frac{1}{\Delta_{c} f}\right)
$$

and the exceptional set associated with $S(r, f)$ is of at most finite logarithmic measure.
Proof of Theorem 1.7. It is evident that $\Delta_{c} f \not \equiv 0$. By the condition of Theorem 1.7, we still have $N\left(r, \Delta_{c} f\right)=N(r, f(z))$ and (3.1). Since $E_{f(z)}(S, \infty)=E_{\Delta_{c} f}(S, \infty)$, where $S=\left\{\omega \mid \omega^{n}+\right.$ $\left.a \omega^{n-m}+b=0\right\}$ and the equation $\omega^{n}+a \omega^{n-m}+b=0$ has no multiple roots, we see that $\left(\Delta_{c} f\right)^{n}+a\left(\Delta_{c} f\right)^{n-m}+b$ and $f(z)^{n}+a f(z)^{n-m}+b$ share 0 CM. Thus, from $E_{f(z)}(\{\infty\}, \infty)=$ $E_{\Delta_{c} f}(\{\infty\}, \infty)$, we have

$$
\begin{equation*}
\frac{\left(\Delta_{c} f\right)^{n}+a\left(\Delta_{c} f\right)^{n-m}+b}{f(z)^{n}+a f(z)^{n-m}+b}=e^{p(z)} \tag{5.2}
\end{equation*}
$$

where $p(z)$ is a polynomial.
Now suppose that $e^{p(z)} \equiv 1$. Then $\left(\Delta_{c} f\right)^{n}+a\left(\Delta_{c} f\right)^{n-m} \equiv f(z)^{n}+a f(z)^{n-m}$. By denoting $h(z)=\left(\Delta_{c} f\right) /(f(z))$, we get

$$
\begin{equation*}
f(z)^{m}\left(h(z)^{n}-1\right)=-a\left(h(z)^{n-m}-1\right) . \tag{5.3}
\end{equation*}
$$

If $h(z)$ is not a constant, we rewrite (5.3) as

$$
\begin{align*}
& f(z)^{m}(h(z)-1)(h(z)-\mu) \cdots\left(h(z)-\mu^{n-1}\right) \\
& =-a(h(z)-1)(h(z)-v) \cdots\left(h(z)-v^{n-m-1}\right), \tag{5.4}
\end{align*}
$$

where $\mu=\cos (2 \pi / n)+i \sin (2 \pi / n)$ and $v=\cos (2 \pi /(n-m))+i \sin (2 \pi /(n-m))$.
Since n and $n-m$ have no common factors, $\mu, \ldots, \mu^{n-1}, v, \ldots, v^{n-m-1}$ are different. Suppose z_{0} is a μ^{j}-point of $h(z)$ of multiplicity $s_{j}>0$, where $1 \leq j \leq n-1$. Then we note that $-a\left(h\left(z_{0}\right)-1\right)\left(h\left(z_{0}\right)-v\right) \cdots\left(h\left(z_{0}\right)-v^{n-m-1}\right)$ is a constant. By (5.4), we know that z_{0} is a pole of $f(z)^{m}$. Obviously, $s_{j} \geq m$.

It follows that, for $1 \leq j \leq n-1$,

$$
\begin{equation*}
m \bar{N}\left(r, \frac{1}{h(z)-\mu^{j}}\right) \leq N\left(r, \frac{1}{h(z)-\mu^{j}}\right) \leq T(r, h(z))+S(r, h) . \tag{5.5}
\end{equation*}
$$

Then by (5.5), we have
$2 \geq \sum_{j=1}^{n-1} \Theta\left(\mu^{j}, h(z)\right)=\sum_{j=1}^{n-1}\left(1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}}{} \frac{\left(r, \frac{1}{h(z)-\mu^{j}}\right)}{T(r, h(z))}\right) \geq \sum_{j=1}^{n-1}\left(1-\frac{1}{m}\right)=(n-1)\left(1-\frac{1}{m}\right)$,
which is impossible with $m \geq 2$ and $n \geq 2 m+4$. Therefore, $h(z)$ is a constant. Since $f(z)$ is a nonconstant meromorphic function, we deduce from (5.3) that $h(z) \equiv 1$. Hence $\Delta_{c} f \equiv f(z)$.

Suppose that $e^{p(z)} \not \equiv 1$. Noting that $S=\left\{\omega \mid \omega^{n}+a \omega^{n-m}+b=0\right\}$ and the equation $\omega^{n}+a \omega^{n-m}+b=0$ has no multiple roots, we assume that $\omega_{1}, \ldots, \omega_{n}$ are all different roots of the equation $\omega^{n}+a \omega^{n-m}+b=0$. From (5.2) and Lemma 2.1, we get

$$
\begin{align*}
T\left(r, e^{p(z)}\right) & =m\left(r, e^{p(z)}\right)=m\left(r, \frac{\left(\Delta_{c} f\right)^{n}+a\left(\Delta_{c} f\right)^{n-m}+b}{f(z)^{n}+a f(z)^{n-m}+b}\right) \\
& =m\left(r, \frac{\left(\Delta_{c} f-\omega_{1}\right) \cdots\left(\Delta_{c} f-\omega_{n}\right)}{\left(f(z)-\omega_{1}\right) \cdots\left(f(z)-\omega_{n}\right)}\right) \\
& \leq \sum_{i=1}^{n} m\left(r, \frac{\Delta_{c} f}{f(z)-\omega_{i}}\right)+\sum_{i=1}^{n} m\left(r, \frac{1}{f(z)-\omega_{i}}\right)+O(1) \tag{5.7}\\
& =\sum_{i=1}^{n} m\left(r, \frac{1}{f(z)-\omega_{i}}\right)+S(r, f) .
\end{align*}
$$

It follows from Lemma 5.1 that

$$
\begin{align*}
\sum_{i=1}^{n} m\left(r, \frac{1}{f(z)-\omega_{i}}\right) \leq & 2 T(r, f(z))-m(r, f(z))-2 N(r, f(z))+N\left(r, \Delta_{c} f\right) \tag{5.8}\\
& -N\left(r, \frac{1}{\Delta_{c} f}\right)+S(r, f)=T(r, f(z))-N\left(r, \frac{1}{\Delta_{c} f}\right)+S(r, f) .
\end{align*}
$$

Combining (1.3), (5.7) and (5.8) gives

$$
\begin{equation*}
T\left(r, e^{p(z)}\right) \leq T(r, f(z))-N\left(r, \frac{1}{\Delta_{c} f}\right)+S(r, f)=S(r, f) \tag{5.9}
\end{equation*}
$$

Rewriting (5.2), we get

$$
\begin{equation*}
\left(\Delta_{c} f\right)^{n-m}\left[\left(\Delta_{c} f\right)^{m}+a\right]=\left[f(z)^{n}+a f(z)^{n-m}+b-b e^{-p(z)}\right] e^{p(z)} . \tag{5.10}
\end{equation*}
$$

Set $g(z)=f(z)^{n}+a f(z)^{n-m}$. By the standard Valiron-Mohon'ko theorem (see [10]) and $m>0$, we have

$$
\begin{equation*}
T(r, g(z))=n T(r, f(z))+S(r, f) \tag{5.11}
\end{equation*}
$$

Obviously, $S(r, g)=S(r, f)$.
Applying the second main theorem for three small target functions, by (3.1) and (5.10), we get

$$
\begin{align*}
T(r, g(z)) \leq & \bar{N}(r, g(z))+\bar{N}\left(r, \frac{1}{g(z)}\right)+\bar{N}\left(r, \frac{1}{g(z)+b-b e^{-p(z)}}\right)+S(r, g) \\
\leq & \bar{N}(r, f(z))+\bar{N}\left(r, \frac{1}{f(z)^{n-m}\left[f(z)^{m}+a\right]}\right)+\bar{N}\left(r, \frac{1}{\left(\Delta_{c} f\right)^{n-m}}\right) \tag{5.12}\\
& +\bar{N}\left(r, \frac{1}{\left(\Delta_{c} f\right)^{m}+a}\right)+S(r, f) \\
\leq & \bar{N}(r, f(z))+\bar{N}\left(r, \frac{1}{f(z)}\right)+\bar{N}\left(r, \frac{1}{f(z)^{m}+a}\right)+\bar{N}\left(r, \frac{1}{\Delta_{c} f}\right)
\end{align*}
$$

$$
\begin{aligned}
& \quad+T\left(r, \frac{1}{\left(\Delta_{c} f\right)^{m}+a}\right)+S(r, f) \\
& \leq \\
& \quad T(r, f(z))+T\left(r, \frac{1}{f(z)}\right)+T\left(r, \frac{1}{f(z)^{m}+a}\right)+T\left(r, \frac{1}{\Delta_{c} f}\right) \\
& \quad+m T\left(r, \Delta_{c} f\right)+S(r, f) \\
& \leq \\
& \leq(m+2) T(r, f(z))+(m+1) T\left(r, \Delta_{c} f\right)+S(r, f) \\
& \leq \\
& \quad(2 m+3) T(r, f(z))+S(r, f)
\end{aligned}
$$

By (5.11) and (5.12), we get

$$
(n-2 m-3) T(r, f(z)) \leq S(r, f),
$$

which contradicts with $n \geq 2 m+4$. This completes our proof of Theorem 1.7.

Acknowledgement. This work was supported by the National Natural Science Foundation of China (No: 11171119). The authors would like to thank the referees for their valuable suggestions which have greatly improved this paper.

References

[1] A. Banerjee, Meromorphic functions sharing two sets, Czechoslovak Math. J. 57(132) (2007), no. 4, 11991214.
[2] Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129.
[3] J. Dou, X.-G. Qi and L.-Z. Yang, Entire functions that share fixed-points, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 2, 355-367.
[4] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
[5] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
[6] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363.
[7] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193-206.
[8] I. Lahiri and A. Banerjee, Weighted sharing of two sets, Kyungpook Math. J. 46 (2006), no. 1, 79-87.
[9] I. Lahiri and P. Sahoo, Uniqueness of meromorphic functions sharing three weighted values, Bull. Malays. Math. Sci. Soc. (2) 31 (2008), no. 1, 67-75.
[10] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, 15, de Gruyter, Berlin, 1993.
[11] I. Laine and C.-C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 556-566.
[12] X.-M. Li and H.-X. Yi, On uniqueness theorems of meromorphic functions concerning weighted sharing of three values, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 1-16.
[13] P. Li and C.-C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J. 18 (1995), no. 3, 437-450.
[14] J. Xia and Y. Xu, Normality criterion concerning sharing functions II, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 479-486.
[15] C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557, Kluwer Acad. Publ., Dordrecht, 2003.
[16] H.-X. Yi, Unicity theorems for entire functions, Kodai Math. J. 17 (1994), no. 1, 133-141.
[17] H.-X. Yi, Meromorphic functions that share one or two values. II, Kodai Math. J. 22 (1999), no. 2, 264-272.
[18] H.-X. Yi and L.-Z. Yang, Meromorphic functions that share two sets, Kodai Math. J. 20 (1997), no. 2, 127134.
[19] J. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367 (2010), no. 2, 401-408.

[^0]: Communicated by V. Ravichandran.
 Received: July 9, 2011; Revised: October 7, 2011.

