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1. Introduction and main results

Throughout this paper, a meromorphic function always means meromorphic in the whole
complex plane. We assume that the reader is familiar with the basic notations of the Nevan-
linna theory of meromorphic functions such as T'(r, f), m(r, f), N(r,f) and N(r, f) for a
meromorphic function f(z) (see, e.g., [5,10, 15]). In particular, for a € CU {eo} := C, we
denote N (r,1/(f —a)) the counting function of zeros of f — a such that simple zeros are
counted once and multiple zeros twice. The notation S(r, f) is defined to be any quantity
satisfying S(r, f) = o(T (r,f)), as r — oo outside of a possible exceptional set of finite loga-
rithmic measure. Then a meromorphic function a(z) is called to be a small function of f(z)
provided that T'(r,a) = S(r, f). Let S(f) be the set of all small functions of f(z). Let f and
g be two meromorphic functions and a € C. We say that f and g share a CM, resp. IM, if
f —a and g — a share the same zeros counting multiplicities, resp. ignoring multiplicities.
We also need the following definitions in this paper.

Definition 1.1. [7] Let k be a nonnegative integer or infinity. For a € C we denote by
Ei(a; f) the set of all a-points of f, where an a-point of multiplicity m is counted m times if
m < kand k+1 times if m > k.

Remark 1.1. From Definition 1.1, we can see that each element in E;(a; f) is counted
exactly once in N (r, 1/(f —a)).

Definition 1.2. [7] Let k be a nonnegative integer or infinity. If for a € C, Ev(a;f) =
Ei(a;g), we say that f, g share the value a with weight k.
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From these two definitions, one can find that if f, g share the value a with weight k, then
f, g share the value a with weight p for all integer p, 0 < p < k. We also note that f, g share
a value a CM or IM if and only if f, g share the value a with weight oo or 0 respectively.

Definition 1.3. [7] For S C C, we define E¢(S,k) as E¢(S,k) = Uqes Ex(a; f), where k is a
nonnegative integer or infinity.

In this paper, we assume that S} = {1,®,...,@""'} and S, = {e0}, where @" = 1 and n
is a positive integer. The investigation on the uniqueness of meromorphic functions sharing
sets is an important subfield of the uniqueness theory. Yi[16], Li and Yang [13], Yi and Yang
[18] had proved several results on the uniqueness problems of two meromorphic functions
when they share two sets around 1995. Then in 2006, Lahiri and Banerjee [8] considered
these problems with the idea of weighted sharing of sets. One can refer to [1,3,8,9, 12-14,
16, 18] for these results which are related to this paper.

In what follows, ¢ always means a non-zero constant. For a meromorphic function f(z),
we denote its shift and difference operator by f(z+c¢) and A.f := f(z+c¢) — f(z), respec-
tively. Recently, numbers of papers (including [2,4,6, 11, 19]) have focused on value distri-
bution in difference analogues of meromorphic functions. Many papers (including [6, 19])
mainly deal with some uniqueness questions for a meromorphic function that shares values
or common sets with its shift or its difference operator. We recall the following two results
proved by Zhang [19], in which the relation between f(z) and its shift f(z+ ¢) when they
share two sets, is discussed.

Theorem 1.1. [19] Let ¢ € C. Suppose that f(z) is a nonconstant meromorphic function of
finite order such that Ef(;)(Sj,00) = Ef(.+¢)(Sj,%) (j = 1,2). If n > 4, then f(z) =tf(z+c¢),
where t" = 1.

Theorem 1.2. [19] Let m > 2, n > 2m+ 4 with n and n — m having no common factors.
Let a and b be two non-zero constants such that the equation ®" +a®"™"™ +b = 0 has
no multiple roots. Let S = {@|0" +a@" ™ + b = 0}. Suppose that f(z) is a nonconstant
meromorphic function of finite order. Then E(;y(S,0) = E(.1¢)(S,0) and E y(;) ({0}, 0) =
Efeyey({oo},00) imply £(2) = f(z+0).

An interesting question is what can be said if we replace f(z+ c) with A.f. Regarding
this question, we prove the following results.

Theorem 1.3. Suppose that f(z) is a nonconstant meromorphic function of finite order such
that Ef(z) (S],Z) = EACf(Sl,Z) and Ef(z) (SQ,OO) = EAFf(SLOO). Ifn > 17, then Acf = lf(Z),
wheret" =1 andt # —1.

The following corollary follows directly from Theorem 1.3 and it can be seen as a coun-
terpart result to Theorem 1.1.

Corollary 1.1. Suppose that f(z) is a nonconstant meromorphic function of finite order such
that Ef(z) (S1,00) = EACf(Sl,OO) and Ef(z) (S2,00) = Ea.r (S2,00). If n =77, then A.f =1t f(2),
wheret" =1 andt # —1.

Using a similar method as in the proof of Theorem 1.3, we get the following corollary.

Corollary 1.2. Under the assumptions of Corollary 1.1, if f(z) is a nonconstant entire
function of finite order and n > 5, then the conclusion of Corollary 1.1 still holds.
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Now another interesting question is whether the conditions for the shared sets S; or >
in Theorem 1.3 can be replaced by other conditions or not. Considering this question, we
prove the following results.

Theorem 1.4. Suppose that f(z) is a nonconstant meromorphic function of finite order sat-
isfying E(;)(51,0) = Ep,f(S1,0) and Ey(;)(S2,) = Ep,r(S2,0). If there exists a constant
o (0 < a < 2) such that

(L N f(2)+N <r, f(‘z)) <al (. f(2),

and ifn > 150/2 44, then A.f =tf(z), wheret" =1 and t # —1.

Theorem 1.5. Suppose that f(z) is a nonconstant meromorphic function of finite order
satisfying Ef(z) (51,2) = EA(,f(Sl,z) and Ef@ (SZ,O) = EA(,f(Sz,O). If

N(n7i9)

(12) }LI}IC}QSUPW < 1,

and ifn >, then A.f =1 f(z), where t" =1 and t # —1.

The following Theorem 1.6 is to reduce the lower bound of 7 in Theorem 1.3. Its proof
is similar to the proof of Theorem 1.3 and hence omitted.

Theorem 1.6. Suppose that f(z) is a nonconstant meromorphic function of finite order
satisfying Ef(z) (51,2) = EACf(SlaZ) and Ef(z) (52,00) = EACf(SQ,OO). If
_ — 1
WS @)+F (1571 ) =5(1)
f2)
and ifn >3, then A.f =1t f(z), where t" =1 and t # —1.
Now we get the following theorem corresponding to Theorem 1.2.

Theorem 1.7. Let m > 2, n > 2m+ 4 with n and n — m having no common factors. Let
a and b be two non-zero constants such that the equation @" +a®" " + b = 0 has no
multiple roots. Let S = {®|@0" +a@" " +b = 0}. Suppose that f(z) is a nonconstant mero-
morphic function of finite order satisfying Ey(,)(S,%0) = Epf(S,%0) and E(;)({oo}, ) =
EAcf({oo}7oo) I.f

(13) N < Alf) T f() 4+ S ).
then A.f = f(2).

Example. Let f(z) = ¢% n > 3 be a given integer and ¢ be a constant satisfying e¢ =
14 ¢*™/"_ Then we see that A.f(z) = ¢2™/" f(z) and hence

M (Acf (@) — ™) =T (£l2) - ™).

This infers that Ef(;)(S1,%0) = Ea,f(S1,%0) and Ef(;)(S2,0) = Ea,f(S2,0). This example
satisfies Theorems 1.3-1.6.

But we still wonder whether the lower bound of # in our results is sharp or not.
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2. Proof of Theorem 1.3

We recall the following result which takes a key role when concerning questions about a
meromorphic function f(z) and its difference operator A, f.

Lemma 2.1. [4] Let c € C, n € N, and let f(z) be a meromorphic function of finite order.
Then for any small periodic function a(z) € S(f) with period c,

m(r, f(sza(z)) = 5(1),

where the exceptional set associated with S(r, f) is of at most finite logarithmic measure.
The proof of Theorem 1.3 is based on a result in [1], which can be read as follows:

Lemma 2.2. [1] Let F and G be two nonconstant meromorphic functions defined in C. If
E>(1;F) = E2(1;G) and Ep(eo; F) = Ep(e0; G), where 0 < k < oo, then one of the following
cases occurs:
() T(nF)+T(rG) <2{N2 (r,#) + N2 (r. &) + N(r.F) + N(r,G)
+N.(r,00:F,G)} +S(r,F) + 8(r,G);

(i) F=G;

(iii) FG=1,
where N, (r,0;F,G) denotes the reduced counting function of those poles of F whose mul-
tiplicities differ from the multiplicities of the corresponding poles of G.
Proof of Theorem 1.3. Denote F = (A.f)" and G = f(z)". By the condition that E s, (S1,2)
= Ea,f(S1,2), we see that F and G share 1 with weight 2, that is, E>(1;F) = E2(1;G). Since
f(z) and A.f share e CM, we have N(r,A.f) = N(r,f(z)) and also N(r,A.f) = N(r, f(2)).
Moreover, we deduce that ' and G share o with weight &, for any 0 < k < oo, and
2.1 N.(r,;F,G) = 0.

Furthermore, we note that

1 _ 1 — —
N2 (raF> :2 <r’Acf> ) N(er) :N(raACf)y

w () =2 (r 5 ) W06 =N 12,
Combining with (2.1) and (2.2) gives

2.2)

1 1 _ _ _
N, (r,F> + Ny (r,G> +N(r,F)+N(r,G) 4+ N.(r,o0; F,G)

Y (r, A1f> LN (r, f(lz)> N AS) + N ()

<or ( Alf) or ( f(lz)) T (1A + T (5 £(2)) + SR AS) + (1. )
SH{T(RAS) +T(r f(2))} +S(nAf) +S(r, f).

On the other hand, we have

24 T(rnF)+T(r,G) =n{T(rAcf)+T(r,f(2))}.

(2.3)
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Suppose that the Case (i) in Lemma 2.2 holds. Then by (2.3) and (2.4), we deduce that
(n—6){T(rAcf) +T(r.f(2))} < S(rAS)+S(r f),

which is a contradiction with n > 7. Hence by Lemma 2.2, we have F = Gor FG = 1.
If F = G, thatis, (A.f)" = f(z)". Then there exists a constantz € C such that A, f =7 f(z),
where 1" = 1. As f(z) is a nonconstant meromorphic function, # # —1.
If FG=1, thatis

a1
(2.5) (Acf)" = 7@
Since f(z) and A.f share o CM, we see that
Acf 1
(2.6) N(r,f(z)) SN(r,f(Z)) <T(rf()+Srf).

From (2.5), (2.6) and Lemma 2.1, we obtain that

2T (r,f(z) =T (r, f(zl)z) +0(1)=T (r, ﬁ : (AJ)”) +0(1)

—nm( fg£)+ N( fE;;)+0(1)<nT(nf(Z))+S(nf)-

Thus, T (r, f(z)) = S(r, f), which is impossible. Theorem 1.3 is thus proved. 1

3. Proof of Theorem 1.4

Lemma 3.1. [17] Let f(z) and g(z) be two meromorphic functions. If f(z) and g(z) share
1 IM, and if

N DN+ (n )+ (D)
S )+ T(r8)
where N*(r, f) = 2Na(r, f) + 3N(r, f), then f =g or fg = 1.

Proof of Theorem 1.4. By the condition of Theorem 1.4, we still have N(r,A.f) = N(r, f(z))
and also N(r,A.f) = N(r, f(z)). Then by Lemma 2.1, we have

T(r,Acf) = m(r,Acf) +N(r,Acf)
3.1) “m ( fcf ) +m(r, f£(2))+N(nf(2)) < T(rf(2)) +S(r.f).

<1,

(2)
It is immediate to see that S(r,A.f) = o(T (1, f(2)))-
Denote F' = (A.f)" and G = f(z)". Since Ef.)(S1,0) = Ea.s(S1,0), it follows that F
and G share 1 IM. Applying the second main theorem and by (1.1), we have

nT (1, f(2)) = T(.G) < N(r,G) + N <r, é) N <r, G1_1> +5(16)

(3.2) NG +N < ) (

<N(r, f(2)) (f(l>+ < >—|—S(rf)
<afl(r,f(z))+nT(r,Acf)+S(

>+er)
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It follows from (3.2) that
(33) T(rf(2) < ——T(rAf)+S(r.f).
Then from (3.3) and the condition n > 150/2 + 4, we deduce that
T(nF)+T(rG)=n{T(rAcf)+T(r,f(z))}>n(1+ 7) (rf(2)) +S(r. f)
=@2n—a)T(r,f(z))+S(rf) > (1406+8) (rf(2))+S(r,f).

On the other hand, we note that
N*(r,G) = 2N,(r,G) +3N(r,G) < TN(r, f(2)

(3.5) (1 /1
() () ) ()
Then by (1.1) and (3.5), we get
(3.6) N*(r,G) +N* ( é) < 7{ ( )} <70T(r, f(z)).
Since f(z) and A, f share .o CM, and by (1.1), we have

N*(r,F) <TN(rAcf) =TN(r, f(z)) <7aT (1, f(2)).

34

Q\~

Similarly as to (3.6), we get

37 N*(r,F)+N ( F) <7{ (rAcf)+N< n f)}
<7{aT(r,f(2)) + T(rAf)} +S(nAS) < T(a+ DT (1, £(2)) +S(r, f).
Combining with (3.6) and (3.7), yields

1 1
(3.8) N*(n,F)+N*(r,G)+N* (r’F> +N* (r, G) < (M4a+T7T(r,f(2))+S(rf).
So by (3.4) and (3.8), we see that
limsupN (nF)+N*(rn,G)+N* (r,3) +N* (r,&) - l4o+7 _
r—oeo T(n,F)+T(r,G) 14a+8

Therefore, by Lemma 3.1, F=Gor FG = 1.
Then using the same method as in the proof of Theorem 1.3 to discuss the two cases, we
can also get the conclusion of Theorem 1.4. 1

4. Proof of Theorem 1.5

Lemma 4.1. [2] Let f(z) be a meromorphic function of finite order p and ¢ be a non-zero
complex constant. Then, for each € > 0, we have

T(r, f(z+c)) =T (r,f(2) + O(rP~'*) + O(logr).
Proof of Theorem 1.5. By (1.2), for any € > 0 is small and R > 0 is large, we get that

4.1) N(r,f(lz)) SN(r,ﬂlZ)> <(1-&T(rf(z)), r=R.
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Denote F = (A.f)" and G = f(z)". Then (2.4) still holds. By the condition that Ef(,)(S1,2) =
Ea.f(S1,2), we also have E»(1;F) = E»(1;G). Since f(z) and A.f share e IM, we have
N(r,A.f) = N(r, f(z)). Moreover, we deduce that E,,_ (0, F) = E,_1(0;G), and

N (r,0,F,G) = N.(r,%0;G,F) < mln{N(r f(2),N(r,Acf)}
(4.2) 1 —
< LN FO) N AL < ST S Q)+ TR A} S0 f) + Sr ).
Obviously, by Lemma 4.1, we see that
T(rAcf) <T(rf(z+¢))+T(rf(2)+0() <2T(r, f(2)) +S(r.f),
which implies that S(r,A.f) = o(T (r, f(z))). Then by (4.1) and (4.2), we deduce that

Ny (r, ;) +N> (r, é) +N(r,F)+N(r,G) + N.(r,;F,G)
2N( N f) +2N( f(lz)) N AS)+ N F(2)

AT F @) T(8ef)} S0 ) +S(r Acf)

4.3)
<2r ( cf> +2N( f(lz)> + %{T(r,f(z))—|—T(r,Acf)}—|—S(r,f)
Z T(Acf) 4 3T £(2) +2(1— )T (£ () + (1. /)
= LT A) + T (5 F(2))} ~ 26T (5 £(2) + (5.1, rR

Now suppose that the case (i) in Lemma 2.2 holds. Hence, from (2.4) and (4.3), we have
(n=THT (nASf) +T(r,f(2))} +4€T (1. f(2)) < S(r.f),

which contradicts with n > 7 and € > 0. Therefore, by Lemma 2.2, we have F = G or
FG=1.

If F = G, then our conclusion holds.

If FG =1, that is (A.f)" = 1/(f(z)"), which implies T (r,A.f) = T(r,f(2)) + O(1).
Then by the above formula and (1.2), we see that

Af 1
N <r7f(z)) §N(r,f<z)> +N(rAcf)
(1=&)T(r, f(2)) + T (rnAf) +S(r f) +S(rAcf)

2—-e)T(rf(2)+5(r.f), r>R.
From (4.4) and Lemma 2.1, we obtain that

T (rf() =T (r 12> o) =T (r L (Acf)”> +o(1)

4.4) <
<

" f(2) "f()n
=nm|r Acf nN (. Acf n—enT(r .
= (5 5 ) e (1 55 ) (1) < (20— en T 1) 45011

which is impossible for € > 0. Thus, Theorem 1.5 is proved. 1
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5. Proof of Theorem 1.7

The following lemma is a difference analogue of the second main theorem of Nevanlinna
theory, which is given by Halburd and Korhonen in [4].

Lemma 5.1. [4] Let ¢ € C, and let f(z) be a meromorphic function of finite order such that
Acf #0. Let g > 2, and let ay(z), . . .,a4(2) be distinct meromorphic periodic functions with
period ¢ such that a; € S(f) forallk=1,...,q. Then

(5.1) m(rf)+ Y m (nl) <OT(1 1)~ Npair 1. f) + (7, £,
k=1 f_

a
where
Ny (1) 1= 2N ) = NEAD) N (5 )
C

and the exceptional set associated with S(r, f) is of at most finite logarithmic measure.
Proof of Theorem 1.7. 1t is evident that A, f Z 0. By the condition of Theorem 1.7, we still
have N(r,A.f) = N(r, f(z)) and (3.1). Since E(;)(S,0) = Ep,f(S,0), where § = {0|0" +
a®"™ ™+ b =0} and the equation ®" + a®" ™ + b = 0 has no multiple roots, we see that
(Acf)"+a(Acf)"™+band f(2)" +af(z)"~" +b share 0 CM. Thus, from E(;)({oo},0) =
Ep, ({0}, 0), we have
(ACf)n + a(ACf)nim +b _ 0@

f@"+af@)—m+b ’

(5.2)

where p(z) is a polynomial.

Now suppose that e?@) = 1. Then (A.f)" +a(A.f)" "™ = f(z)" +af(z)* ™. By denoting
h(z) = (Acf)/(f(2)), we get
(5.3) f@™h(z)"—1)=—a(h(z)" ™ —1).

If h(z) is not a constant, we rewrite (5.3) as
f@)"(h(z) = 1) (h(z) = ) -+ (h(z) — ")
= —a(h(z) = 1)(h(z) = v) - (h(z) V""" 1),
where L = cos(2x/n) +isin(2rw/n) and v = cos(2n/(n—m)) +isin(2xw/(n —m)).

Since n and n — m have no common factors, f,...,u" 1, v,...,v*""1 are different.
Suppose z is a u/—point of /(z) of multiplicity s >0, where 1 < j <n— 1. Then we note
that —a(h(z9) — 1)(h(z0) — V) - -~ (h(zo) — v""™"!) is a constant. By (5.4), we know that zo
is a pole of f(z)™. Obviously, s; > m.

It follows that, for 1 < j <n—1,

54

— 1 1
(5.5) mN (hh(@—ﬂj) <N (r’h(z)—,ul> <T(rh(z))+S(rh).
Then by (5.5), we have
(5.6)

Lo £ (B i) £ -2) e (2)

Jj=
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which is impossible with m > 2 and n > 2m+-4. Therefore, h(z) is a constant. Since f(z) is a
nonconstant meromorphic function, we deduce from (5.3) that 4(z) = 1. Hence A.f = f(z).

Suppose that e”(? # 1. Noting that § = {®|®" + a@" ™ +b = 0} and the equation
0" +aw"™ 4+ b = 0 has no multiple roots, we assume that wy, ..., ®, are all different roots
of the equation ®" +aw" "™ 4+ b = 0. From (5.2) and Lemma 2.1, we get

rePDY = m(r e = m r(ACf)"+a(AL.f)”_m+b
T =) = (v )
:m<r (Acf_wl)"'(Acf_wn)>
(f@) = o) (f(z) — @)

(7)) o0

(5.7

INA
™=
=

Il
-

Il
™=

i=1

It follows from Lemma 5.1 that
(5.8)

u 1
Yo (n g ) < 2T =m0 = 2N )+ N(A)

: )+s(r,f).

N (g7 ) #5600 =Trs@) N (kg

Combining (1.3), (5.7) and (5.8) gives

(5.9) T(r’ep(z)) <T(r,f(z))—N (}’, ! ) +S(r,f)=S(r,f).

Acf
Rewriting (5.2), we get
(5.10) Acf)" ™ [(Acf)" +a] = [f()" +af (&)™ +b—be PP

Set g(z) = f(2)" +af(z)" ™. By the standard Valiron-Mohon’ko theorem (see [10]) and
m > 0, we have

(5.11) T(r,8(z)) =nT(r,f(2)) +S(r. f)-

Obviously, S(r,g) = S(r, f).
Applying the second main theorem for three small target functions, by (3.1) and (5.10),
we get

T(8(0) <SNO8(0) + (75 ) +3 (no  5(0)

<N(r.f(z)) +N (V= flznm [}(Z)m +d] ) N (r’ (Acfl)"’")

(5.12)
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+T (r, @Acf)lm—ka) +S8(r,f)

1 1 1
<A+ (i3 )+ (gmra )+ T (7 ag)
+mT (r,Acf) +S(r, f)
<(m+2)T(r,f(2)) + (m+ DT (rAf) +S(r, f)
<@m+3)T(r, f(2)) +S(r, f).
By (5.11) and (5.12), we get
(n—2m—-3)T(r,f(2)) <S(r,f),

which contradicts with n > 2m + 4. This completes our proof of Theorem 1.7. |
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