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1. Introduction and main results

Throughout this paper, a meromorphic function always means meromorphic in the whole
complex plane. We assume that the reader is familiar with the basic notations of the Nevan-
linna theory of meromorphic functions such as T (r, f ), m(r, f ), N(r, f ) and N(r, f ) for a
meromorphic function f (z) (see, e.g., [5, 10, 15]). In particular, for a ∈ C∪{∞} := Ĉ, we
denote N2 (r,1/( f −a)) the counting function of zeros of f − a such that simple zeros are
counted once and multiple zeros twice. The notation S(r, f ) is defined to be any quantity
satisfying S(r, f ) = o(T (r, f )), as r→ ∞ outside of a possible exceptional set of finite loga-
rithmic measure. Then a meromorphic function a(z) is called to be a small function of f (z)
provided that T (r,a) = S(r, f ). Let S( f ) be the set of all small functions of f (z). Let f and
g be two meromorphic functions and a ∈ Ĉ. We say that f and g share a CM, resp. IM, if
f −a and g−a share the same zeros counting multiplicities, resp. ignoring multiplicities.

We also need the following definitions in this paper.

Definition 1.1. [7] Let k be a nonnegative integer or infinity. For a ∈ Ĉ we denote by
Ek(a; f ) the set of all a-points of f , where an a-point of multiplicity m is counted m times if
m≤ k and k +1 times if m > k.

Remark 1.1. From Definition 1.1, we can see that each element in E1(a; f ) is counted
exactly once in N2 (r,1/( f −a)).

Definition 1.2. [7] Let k be a nonnegative integer or infinity. If for a ∈ Ĉ, Ek(a; f ) =
Ek(a;g), we say that f , g share the value a with weight k.
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From these two definitions, one can find that if f , g share the value a with weight k, then
f , g share the value a with weight p for all integer p, 0≤ p < k. We also note that f , g share
a value a CM or IM if and only if f , g share the value a with weight ∞ or 0 respectively.

Definition 1.3. [7] For S ⊂ Ĉ, we define E f (S,k) as E f (S,k) =
⋃

a∈S Ek(a; f ), where k is a
nonnegative integer or infinity.

In this paper, we assume that S1 = {1,ω, . . . ,ωn−1} and S2 = {∞}, where ωn = 1 and n
is a positive integer. The investigation on the uniqueness of meromorphic functions sharing
sets is an important subfield of the uniqueness theory. Yi [16], Li and Yang [13], Yi and Yang
[18] had proved several results on the uniqueness problems of two meromorphic functions
when they share two sets around 1995. Then in 2006, Lahiri and Banerjee [8] considered
these problems with the idea of weighted sharing of sets. One can refer to [1, 3, 8, 9, 12–14,
16, 18] for these results which are related to this paper.

In what follows, c always means a non-zero constant. For a meromorphic function f (z),
we denote its shift and difference operator by f (z + c) and ∆c f := f (z + c)− f (z), respec-
tively. Recently, numbers of papers (including [2,4,6,11,19]) have focused on value distri-
bution in difference analogues of meromorphic functions. Many papers (including [6, 19])
mainly deal with some uniqueness questions for a meromorphic function that shares values
or common sets with its shift or its difference operator. We recall the following two results
proved by Zhang [19], in which the relation between f (z) and its shift f (z + c) when they
share two sets, is discussed.

Theorem 1.1. [19] Let c ∈ C. Suppose that f (z) is a nonconstant meromorphic function of
finite order such that E f (z)(S j,∞) = E f (z+c)(S j,∞) ( j = 1,2). If n≥ 4, then f (z)≡ t f (z+c),
where tn = 1.

Theorem 1.2. [19] Let m ≥ 2, n ≥ 2m + 4 with n and n−m having no common factors.
Let a and b be two non-zero constants such that the equation ωn + aωn−m + b = 0 has
no multiple roots. Let S = {ω|ωn + aωn−m + b = 0}. Suppose that f (z) is a nonconstant
meromorphic function of finite order. Then E f (z)(S,∞) = E f (z+c)(S,∞) and E f (z)({∞},∞) =
E f (z+c)({∞},∞) imply f (z)≡ f (z+ c).

An interesting question is what can be said if we replace f (z + c) with ∆c f . Regarding
this question, we prove the following results.

Theorem 1.3. Suppose that f (z) is a nonconstant meromorphic function of finite order such
that E f (z)(S1,2) = E∆c f (S1,2) and E f (z)(S2,∞) = E∆c f (S2,∞). If n ≥ 7, then ∆c f ≡ t f (z),
where tn = 1 and t 6=−1.

The following corollary follows directly from Theorem 1.3 and it can be seen as a coun-
terpart result to Theorem 1.1.

Corollary 1.1. Suppose that f (z) is a nonconstant meromorphic function of finite order such
that E f (z)(S1,∞) = E∆c f (S1,∞) and E f (z)(S2,∞) = E∆c f (S2,∞). If n≥ 7, then ∆c f ≡ t f (z),
where tn = 1 and t 6=−1.

Using a similar method as in the proof of Theorem 1.3, we get the following corollary.

Corollary 1.2. Under the assumptions of Corollary 1.1, if f (z) is a nonconstant entire
function of finite order and n≥ 5, then the conclusion of Corollary 1.1 still holds.
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Now another interesting question is whether the conditions for the shared sets S1 or S2
in Theorem 1.3 can be replaced by other conditions or not. Considering this question, we
prove the following results.

Theorem 1.4. Suppose that f (z) is a nonconstant meromorphic function of finite order sat-
isfying E f (z)(S1,0) = E∆c f (S1,0) and E f (z)(S2,∞) = E∆c f (S2,∞). If there exists a constant
α (0 < α ≤ 2) such that

N(r, f (z))+N
(

r,
1

f (z)

)
< αT (r, f (z)),(1.1)

and if n≥ 15α/2+4, then ∆c f ≡ t f (z), where tn = 1 and t 6=−1.

Theorem 1.5. Suppose that f (z) is a nonconstant meromorphic function of finite order
satisfying E f (z)(S1,2) = E∆c f (S1,2) and E f (z)(S2,0) = E∆c f (S2,0). If

lim
r→∞

sup
N
(

r, 1
f (z)

)
T (r, f (z))

< 1,(1.2)

and if n≥ 7, then ∆c f ≡ t f (z), where tn = 1 and t 6=−1.

The following Theorem 1.6 is to reduce the lower bound of n in Theorem 1.3. Its proof
is similar to the proof of Theorem 1.3 and hence omitted.

Theorem 1.6. Suppose that f (z) is a nonconstant meromorphic function of finite order
satisfying E f (z)(S1,2) = E∆c f (S1,2) and E f (z)(S2,∞) = E∆c f (S2,∞). If

N(r, f (z))+N
(

r,
1

f (z)

)
= S(r, f ),

and if n≥ 3, then ∆c f ≡ t f (z), where tn = 1 and t 6=−1.

Now we get the following theorem corresponding to Theorem 1.2.

Theorem 1.7. Let m ≥ 2, n ≥ 2m + 4 with n and n−m having no common factors. Let
a and b be two non-zero constants such that the equation ωn + aωn−m + b = 0 has no
multiple roots. Let S = {ω|ωn +aωn−m +b = 0}. Suppose that f (z) is a nonconstant mero-
morphic function of finite order satisfying E f (z)(S,∞) = E∆c f (S,∞) and E f (z)({∞},∞) =
E∆c f ({∞},∞). If

N
(

r,
1

∆c f

)
= T (r, f (z))+S(r, f ),(1.3)

then ∆c f ≡ f (z).

Example. Let f (z) = ez, n ≥ 3 be a given integer and c be a constant satisfying ec =
1+ e2πi/n. Then we see that ∆c f (z) = e2πi/n f (z) and hence

Π
n−1
k=0(∆c f (z)− e

2kπi
n ) = Π

n−1
k=0

(
f (z)− e

2kπi
n

)
.

This infers that E f (z)(S1,∞) = E∆c f (S1,∞) and E f (z)(S2,∞) = E∆c f (S2,∞). This example
satisfies Theorems 1.3–1.6.

But we still wonder whether the lower bound of n in our results is sharp or not.
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2. Proof of Theorem 1.3

We recall the following result which takes a key role when concerning questions about a
meromorphic function f (z) and its difference operator ∆c f .

Lemma 2.1. [4] Let c ∈ C, n ∈ N, and let f (z) be a meromorphic function of finite order.
Then for any small periodic function a(z) ∈ S( f ) with period c,

m
(

r,
∆n

c f
f (z)−a(z)

)
= S(r, f ),

where the exceptional set associated with S(r, f ) is of at most finite logarithmic measure.

The proof of Theorem 1.3 is based on a result in [1], which can be read as follows:

Lemma 2.2. [1] Let F and G be two nonconstant meromorphic functions defined in C. If
E2(1;F) = E2(1;G) and Ek(∞;F) = Ek(∞;G), where 0≤ k ≤ ∞, then one of the following
cases occurs:

(i) T (r,F)+T (r,G)≤ 2{N2
(
r, 1

F

)
+N2

(
r, 1

G

)
+N(r,F)+N(r,G)

+N∗(r,∞;F,G)}+S(r,F)+S(r,G);
(ii) F ≡ G;

(iii) FG≡ 1,
where N∗(r,∞;F,G) denotes the reduced counting function of those poles of F whose mul-
tiplicities differ from the multiplicities of the corresponding poles of G.

Proof of Theorem 1.3. Denote F = (∆c f )n and G = f (z)n. By the condition that E f (z)(S1,2)
= E∆c f (S1,2), we see that F and G share 1 with weight 2, that is, E2(1;F) = E2(1;G). Since
f (z) and ∆c f share ∞ CM, we have N(r,∆c f ) = N(r, f (z)) and also N(r,∆c f ) = N(r, f (z)).
Moreover, we deduce that F and G share ∞ with weight k, for any 0≤ k ≤ ∞, and

N∗(r,∞;F,G) = 0.(2.1)

Furthermore, we note that

(2.2)
N2

(
r,

1
F

)
= 2N

(
r,

1
∆c f

)
, N(r,F) = N(r,∆c f ),

N2

(
r,

1
G

)
= 2N

(
r,

1
f (z)

)
, N(r,G) = N(r, f (z)).

Combining with (2.1) and (2.2) gives

N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)+N∗(r,∞;F,G)

=2N
(

r,
1

∆c f

)
+2N

(
r,

1
f (z)

)
+N(r,∆c f )+N(r, f (z))

≤2T
(

r,
1

∆c f

)
+2T

(
r,

1
f (z)

)
+T (r,∆c f )+T (r, f (z))+S(r,∆c f )+S(r, f )

≤3{T (r,∆c f )+T (r, f (z))}+S(r,∆c f )+S(r, f ).

(2.3)

On the other hand, we have

T (r,F)+T (r,G) = n{T (r,∆c f )+T (r, f (z))}.(2.4)
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Suppose that the Case (i) in Lemma 2.2 holds. Then by (2.3) and (2.4), we deduce that

(n−6){T (r,∆c f )+T (r, f (z))} ≤ S(r,∆c f )+S(r, f ),

which is a contradiction with n≥ 7. Hence by Lemma 2.2, we have F ≡ G or FG≡ 1.
If F ≡G, that is, (∆c f )n = f (z)n. Then there exists a constant t ∈C such that ∆c f ≡ t f (z),

where tn = 1. As f (z) is a nonconstant meromorphic function, t 6=−1.
If FG≡ 1, that is

(∆c f )n ≡ 1
f (z)n .(2.5)

Since f (z) and ∆c f share ∞ CM, we see that

N
(

r,
∆c f
f (z)

)
≤ N

(
r,

1
f (z)

)
≤ T (r, f (z))+S(r, f ).(2.6)

From (2.5), (2.6) and Lemma 2.1, we obtain that

2nT (r, f (z)) = T
(

r,
1

f (z)2n

)
+O(1) = T

(
r,

1
f (z)n · (∆c f )n

)
+O(1)

= nm
(

r,
∆c f
f (z)

)
+nN

(
r,

∆c f
f (z)

)
+O(1)≤ nT (r, f (z))+S(r, f ).

Thus, T (r, f (z)) = S(r, f ), which is impossible. Theorem 1.3 is thus proved.

3. Proof of Theorem 1.4

Lemma 3.1. [17] Let f (z) and g(z) be two meromorphic functions. If f (z) and g(z) share
1 IM, and if

lim
r→∞

sup
N∗(r, f )+N∗(r,g)+N∗

(
r, 1

f

)
+N∗

(
r, 1

g

)
T (r, f )+T (r,g)

< 1,

where N∗(r, f ) = 2N2(r, f )+3N(r, f ), then f ≡ g or f g≡ 1.

Proof of Theorem 1.4. By the condition of Theorem 1.4, we still have N(r,∆c f ) = N(r, f (z))
and also N(r,∆c f ) = N(r, f (z)). Then by Lemma 2.1, we have

(3.1)
T (r,∆c f ) = m(r,∆c f )+N(r,∆c f )

≤ m
(

r,
∆c f
f (z)

)
+m(r, f (z))+N(r, f (z))≤ T (r, f (z))+S(r, f ).

It is immediate to see that S(r,∆c f ) = o(T (r, f (z))).
Denote F = (∆c f )n and G = f (z)n. Since E f (z)(S1,0) = E∆c f (S1,0), it follows that F

and G share 1 IM. Applying the second main theorem and by (1.1), we have

(3.2)

nT (r, f (z)) = T (r,G)≤ N(r,G)+N
(

r,
1
G

)
+N

(
r,

1
G−1

)
+S(r,G)

≤ N(r,G)+N
(

r,
1
G

)
+N

(
r,

1
F−1

)
+S(r,G)

≤ N(r, f (z))+N
(

r,
1

f (z)

)
+T

(
r,

1
F−1

)
+S(r, f )

< αT (r, f (z))+nT (r,∆c f )+S(r, f ).
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It follows from (3.2) that

T (r, f (z)) <
n

n−α
T (r,∆c f )+S(r, f ).(3.3)

Then from (3.3) and the condition n≥ 15α/2+4, we deduce that

(3.4)
T (r,F)+T (r,G) = n{T (r,∆c f )+T (r, f (z))}> n(1+

n−α

n
)T (r, f (z))+S(r, f )

= (2n−α)T (r, f (z))+S(r, f )≥ (14α +8)T (r, f (z))+S(r, f ).

On the other hand, we note that

(3.5)
N∗(r,G) = 2N2(r,G)+3N(r,G)≤ 7N(r, f (z)),

N∗
(

r,
1
G

)
= 2N2

(
r,

1
G

)
+3N

(
r,

1
G

)
≤ 7N

(
r,

1
f (z)

)
.

Then by (1.1) and (3.5), we get

(3.6) N∗(r,G)+N∗
(

r,
1
G

)
≤ 7

{
N(r, f (z))+N

(
r,

1
f (z)

)}
< 7αT (r, f (z)).

Since f (z) and ∆c f share ∞ CM, and by (1.1), we have

N∗(r,F)≤ 7N(r,∆c f ) = 7N(r, f (z)) < 7αT (r, f (z)).

Similarly as to (3.6), we get

(3.7)
N∗(r,F)+N∗

(
r,

1
F

)
≤ 7

{
N(r,∆c f )+N

(
r,

1
∆c f

)}
< 7{αT (r, f (z))+T (r,∆c f )}+S(r,∆c f )≤ 7(α +1)T (r, f (z))+S(r, f ).

Combining with (3.6) and (3.7), yields

(3.8) N∗(r,F)+N∗(r,G)+N∗
(

r,
1
F

)
+N∗

(
r,

1
G

)
< (14α +7)T (r, f (z))+S(r, f ).

So by (3.4) and (3.8), we see that

lim
r→∞

sup
N∗(r,F)+N∗(r,G)+N∗

(
r, 1

F

)
+N∗

(
r, 1

G

)
T (r,F)+T (r,G)

≤ 14α +7
14α +8

< 1.

Therefore, by Lemma 3.1, F ≡ G or FG≡ 1.
Then using the same method as in the proof of Theorem 1.3 to discuss the two cases, we

can also get the conclusion of Theorem 1.4.

4. Proof of Theorem 1.5

Lemma 4.1. [2] Let f (z) be a meromorphic function of finite order ρ and c be a non-zero
complex constant. Then, for each ε > 0, we have

T (r, f (z+ c)) = T (r, f (z))+O(rρ−1+ε)+O(logr).

Proof of Theorem 1.5. By (1.2), for any ε > 0 is small and R > 0 is large, we get that

N
(

r,
1

f (z)

)
≤ N

(
r,

1
f (z)

)
≤ (1− ε)T (r, f (z)), r ≥ R.(4.1)
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Denote F =(∆c f )n and G = f (z)n. Then (2.4) still holds. By the condition that E f (z)(S1,2)=
E∆c f (S1,2), we also have E2(1;F) = E2(1;G). Since f (z) and ∆c f share ∞ IM, we have
N(r,∆c f ) = N(r, f (z)). Moreover, we deduce that En−1(∞;F) = En−1(∞;G), and

(4.2)
N∗(r,∞;F,G) = N∗(r,∞;G,F)≤min{N(r, f (z)),N(r,∆c f )}

≤ 1
2
{N(r, f (z))+N(r,∆c f )} ≤ 1

2
{T (r, f (z))+T (r,∆c f )}+S(r, f )+S(r,∆c f ).

Obviously, by Lemma 4.1, we see that

T (r,∆c f )≤ T (r, f (z+ c))+T (r, f (z))+O(1)≤ 2T (r, f (z))+S(r, f ),

which implies that S(r,∆c f ) = o(T (r, f (z))). Then by (4.1) and (4.2), we deduce that

(4.3)

N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)+N∗(r,∞;F,G)

=2N
(

r,
1

∆c f

)
+2N

(
r,

1
f (z)

)
+N(r,∆c f )+N(r, f (z))

+
1
2
{T (r, f (z))+T (r,∆c f )}+S(r, f )+S(r,∆c f )

≤2T
(

r,
1

∆c f

)
+2N

(
r,

1
f (z)

)
+

3
2
{T (r, f (z))+T (r,∆c f )}+S(r, f )

≤7
2

T (r,∆c f )+
3
2

T (r, f (z))+2(1− ε)T (r, f (z))+S(r, f )

=
7
2
{T (r,∆c f )+T (r, f (z))}−2εT (r, f (z))+S(r, f ), r ≥ R.

Now suppose that the case (i) in Lemma 2.2 holds. Hence, from (2.4) and (4.3), we have

(n−7){T (r,∆c f )+T (r, f (z))}+4εT (r, f (z))≤ S(r, f ),

which contradicts with n ≥ 7 and ε > 0. Therefore, by Lemma 2.2, we have F ≡ G or
FG≡ 1.

If F ≡ G, then our conclusion holds.
If FG ≡ 1, that is (∆c f )n ≡ 1/( f (z)n), which implies T (r,∆c f ) = T (r, f (z)) + O(1).

Then by the above formula and (1.2), we see that

(4.4)

N
(

r,
∆c f
f (z)

)
≤ N

(
r,

1
f (z)

)
+N(r,∆c f )

≤ (1− ε)T (r, f (z))+T (r,∆c f )+S(r, f )+S(r,∆c f )

≤ (2− ε)T (r, f (z))+S(r, f ), r ≥ R.

From (4.4) and Lemma 2.1, we obtain that

2nT (r, f (z)) = T
(

r,
1

f (z)2n

)
+O(1) = T

(
r,

1
f (z)n · (∆c f )n

)
+O(1)

= nm
(

r,
∆c f
f (z)

)
+nN

(
r,

∆c f
f (z)

)
+O(1)≤ (2n− εn)T (r, f (z))+S(r, f ).

which is impossible for ε > 0. Thus, Theorem 1.5 is proved.
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5. Proof of Theorem 1.7

The following lemma is a difference analogue of the second main theorem of Nevanlinna
theory, which is given by Halburd and Korhonen in [4].

Lemma 5.1. [4] Let c ∈C, and let f (z) be a meromorphic function of finite order such that
∆c f 6≡ 0. Let q≥ 2, and let a1(z), . . . ,aq(z) be distinct meromorphic periodic functions with
period c such that ak ∈ S( f ) for all k = 1, . . . ,q. Then

m(r, f )+
q

∑
k=1

m
(

r,
1

f −ak

)
≤ 2T (r, f )−Npair(r, f )+S(r, f ),(5.1)

where

Npair(r, f ) := 2N(r, f )−N(r,∆c f )+N
(

r,
1

∆c f

)
,

and the exceptional set associated with S(r, f ) is of at most finite logarithmic measure.

Proof of Theorem 1.7. It is evident that ∆c f 6≡ 0. By the condition of Theorem 1.7, we still
have N(r,∆c f ) = N(r, f (z)) and (3.1). Since E f (z)(S,∞) = E∆c f (S,∞), where S = {ω|ωn +
aωn−m + b = 0} and the equation ωn + aωn−m + b = 0 has no multiple roots, we see that
(∆c f )n +a(∆c f )n−m +b and f (z)n +a f (z)n−m +b share 0 CM. Thus, from E f (z)({∞},∞) =
E∆c f ({∞},∞), we have

(∆c f )n +a(∆c f )n−m +b
f (z)n +a f (z)n−m +b

= ep(z),(5.2)

where p(z) is a polynomial.
Now suppose that ep(z) ≡ 1. Then (∆c f )n +a(∆c f )n−m ≡ f (z)n +a f (z)n−m. By denoting

h(z) = (∆c f )/( f (z)), we get

f (z)m(h(z)n−1) =−a(h(z)n−m−1).(5.3)

If h(z) is not a constant, we rewrite (5.3) as

(5.4)
f (z)m(h(z)−1)(h(z)−µ) · · ·(h(z)−µ

n−1)

=−a(h(z)−1)(h(z)−ν) · · ·(h(z)−ν
n−m−1),

where µ = cos(2π/n)+ isin(2π/n) and ν = cos(2π/(n−m))+ isin(2π/(n−m)).
Since n and n−m have no common factors, µ, . . . ,µn−1,ν , . . . ,νn−m−1 are different.

Suppose z0 is a µ j–point of h(z) of multiplicity s j > 0, where 1≤ j ≤ n−1. Then we note
that −a(h(z0)−1)(h(z0)−ν) · · ·(h(z0)−νn−m−1) is a constant. By (5.4), we know that z0
is a pole of f (z)m. Obviously, s j ≥ m.

It follows that, for 1≤ j ≤ n−1,

mN
(

r,
1

h(z)−µ j

)
≤ N

(
r,

1
h(z)−µ j

)
≤ T (r,h(z))+S(r,h).(5.5)

Then by (5.5), we have

2≥
n−1

∑
j=1

Θ(µ
j,h(z)) =

n−1

∑
j=1

(
1− lim

r→∞

N
(

r, 1
h(z)−µ j

)
T (r,h(z))

)
≥

n−1

∑
j=1

(
1− 1

m

)
= (n−1)

(
1− 1

m

)
,

(5.6)
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which is impossible with m≥ 2 and n≥ 2m+4. Therefore, h(z) is a constant. Since f (z) is a
nonconstant meromorphic function, we deduce from (5.3) that h(z)≡ 1. Hence ∆c f ≡ f (z).

Suppose that ep(z) 6≡ 1. Noting that S = {ω|ωn + aωn−m + b = 0} and the equation
ωn +aωn−m +b = 0 has no multiple roots, we assume that ω1, . . . ,ωn are all different roots
of the equation ωn +aωn−m +b = 0. From (5.2) and Lemma 2.1, we get

T (r,ep(z)) = m(r,ep(z)) = m
(

r,
(∆c f )n +a(∆c f )n−m +b

f (z)n +a f (z)n−m +b

)
= m

(
r,

(∆c f −ω1) · · ·(∆c f −ωn)
( f (z)−ω1) · · ·( f (z)−ωn)

)
≤

n

∑
i=1

m
(

r,
∆c f

f (z)−ωi

)
+

n

∑
i=1

m
(

r,
1

f (z)−ωi

)
+O(1)

=
n

∑
i=1

m
(

r,
1

f (z)−ωi

)
+S(r, f ).

(5.7)

It follows from Lemma 5.1 that
(5.8)

n

∑
i=1

m
(

r,
1

f (z)−ωi

)
≤ 2T (r, f (z))−m(r, f (z))−2N(r, f (z))+N(r,∆c f )

−N
(

r,
1

∆c f

)
+S(r, f ) = T (r, f (z))−N

(
r,

1
∆c f

)
+S(r, f ).

Combining (1.3), (5.7) and (5.8) gives

T (r,ep(z))≤ T (r, f (z))−N
(

r,
1

∆c f

)
+S(r, f ) = S(r, f ).(5.9)

Rewriting (5.2), we get

(∆c f )n−m[(∆c f )m +a] = [ f (z)n +a f (z)n−m +b−be−p(z)]ep(z).(5.10)

Set g(z) = f (z)n + a f (z)n−m. By the standard Valiron-Mohon’ko theorem (see [10]) and
m > 0, we have

T (r,g(z)) = nT (r, f (z))+S(r, f ).(5.11)

Obviously, S(r,g) = S(r, f ).
Applying the second main theorem for three small target functions, by (3.1) and (5.10),

we get

(5.12)

T (r,g(z))≤N(r,g(z))+N
(

r,
1

g(z)

)
+N

(
r,

1
g(z)+b−be−p(z)

)
+S(r,g)

≤N(r, f (z))+N
(

r,
1

f (z)n−m[ f (z)m +a]

)
+N

(
r,

1
(∆c f )n−m

)
+N

(
r,

1
(∆c f )m +a

)
+S(r, f )

≤N(r, f (z))+N
(

r,
1

f (z)

)
+N

(
r,

1
f (z)m +a

)
+N

(
r,

1
∆c f

)
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+T
(

r,
1

(∆c f )m +a

)
+S(r, f )

≤T (r, f (z))+T
(

r,
1

f (z)

)
+T

(
r,

1
f (z)m +a

)
+T

(
r,

1
∆c f

)
+mT (r,∆c f )+S(r, f )

≤(m+2)T (r, f (z))+(m+1)T (r,∆c f )+S(r, f )

≤(2m+3)T (r, f (z))+S(r, f ).

By (5.11) and (5.12), we get

(n−2m−3)T (r, f (z))≤ S(r, f ),

which contradicts with n≥ 2m+4. This completes our proof of Theorem 1.7.
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