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Abstract. In this paper we use shear construction to generate certain subclasses of har-
monic univalent mappings with directional convexity because it allows us to study such
functions by examining their related conformal univalent mappings. In this setting we find
growth, distortion, and coefficient bounds for harmonic univalent mappings that are convex
in both the directions of real axis and imaginary axis.
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1. Introduction and preliminaries

Let ∆ := {z ∈ C : |z|< 1} be the unit disk where C denotes complex plane. A twice contin-
uously differentiable complex-valued function f defined on ∆ is said to be harmonic in ∆ if
f satisfies the partial differential equation

∆ f = 4 fzz̄ =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 = 0,

where we use the common notations for its partial derivatives given by

fz =
1
2

(
∂ f
∂x
− i

∂ f
∂y

)
, fz̄ =

1
2

(
∂ f
∂x

+ i
∂ f
∂y

)
.

Since ∆ is simply connected, a harmonic function f has the canonical representation given
by f = h + ḡ, where h and g are members of the linear space A (∆)of all analytic functions
in ∆, and where h and g can be written as a power series representation

(1.1) h(z) = z+
∞

∑
n=2

anzn, g(z) =
∞

∑
n=1

bnzn,

respectively. We call h the analytic part and g the co-analytic part of f . A necessary and
sufficient condition for a harmonic function f of the form f = h+ ḡ to be locally univalent
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and sense-preserving in ∆ is that |g′(z)| < |h′(z)| for all z in ∆. The analytic dilatation of
a harmonic mapping f = h + ḡ is defined by ω(z) = (g′(z)/h′(z)). Thus if f is locally
univalent and sense-preserving, then |ω(z)|< 1.

The class of all sense-preserving harmonic univalent mappings f of the form f = h+ ḡ,
where h and g given by (1.1) is denoted by SH . An important subclass of SH is S 0

H which
consists of all functions f = h + ḡ in SH with h and g given by (1.1), where b1 = 0. The
standard references for the families SH and S 0

H are [3], [4], and [5] and a survey article [1].
The class SHcontains the standard family S of all analytic normalized univalent functions
in ∆. Note that if the co-analytic part, g, is zero, then the function f = h+ ḡ in SH is also in
S . Also, note that a function ϕ in S is known as a conformal univalent mapping in ∆. For
standard references for class S and its subclasses, one may refer to [2], [6], and [7].

Recall that a domain D⊂Cis said to be convex in one direction of the line z = teiθ , t ∈R
for a given constant z0 ∈C and given θ ∈ [0,π)if D∩

{
z0 + teiθ : t ∈ R

}
is either connected

or empty. Note that two lines z = teiθ and z = tei(θ+π/2), t ∈ R are orthogonal directions
for given constant θ . For a given constant θ , define two subclasses of sense-preserving
harmonic univalent functions as follows:

CODH(θ) := { f ∈SH : f (∆) is convex in z = teiθ and z = tei(θ+π/2), t ∈ R },

COD0
Hθ) := { f ∈S 0

H : f (∆) is convex in z = teiθ and z = tei(θ+π/2), t ∈ R }.
Here it suffices to take θ ∈ [0,π/2) because θ ∈ [π/2,π) produces the same results as
θ ∈ [0,π/2). In particular, we define the classes CODH and COD0

H as follows:

CODH := { f ∈SH : f (∆) is convex in the directions of real axis and the imaginary axis } ,
COD0

H :=
{

f ∈S 0
H : f (∆) is convex in the directions of real axis and the imaginary axis

}
.

Note that CODH ≡ CODH(0) and COD0
H ≡ COD0

H(0). Also, note that for every func-
tion F ∈

⋃
{CODH(θ) : θ ∈ [0,π/2)}, there exists a function f ∈CODH such that F(z) =

eiθ f
(
e−iθ z

)
for some θ ∈ [0,π/2). The classes CODH (θ), COD0

H(θ), CODH , and COD0
H

were introduced in [8]. Finally, we observe that if f ∈ SH and f (∆) is convex, then
f ∈CODH (θ) for every θ . This class is justified because the function L = h+ ḡ, where

h(z) =
z∫

0

(
1−ζ 3

)−2/3

(1+ ς3)
dς , g(z) =

z∫
0

ς3
(
1− ς3

)−2/3

(1+ ς3)
dς ,

is univalent and convex in the direction of both real axis and imaginary axis and so L belongs
to the family CODH ; see [8]. Note that the function L is neither convex nor even starlike.

Clunie and Sheil-Small in 1984 [3] discovered a general method, known as ‘shear con-
struction’ for constructing harmonic univalent mappings with specified properties. This
method essentially produces a harmonic univalent mapping onto a convex domain in one
direction by “shearing” (or stretching, or translating) a given conformal univalent mapping
along parallel lines. The basic shear construction theorem is as follows.

Theorem 1.1. [3] A harmonic and locally univalent function f = h+ ḡ is univalent mapping
of ∆ onto a domain convex in the direction of real axis if and only if h− g is a conformal
univalent mapping of ∆ onto a domain convex in the direction of real axis.

Theorem 1.1 has a natural generalization when f is convex in the direction of the line
teiθ , t ∈ R. Thus e−iθ f and e−iθ h− eiθ g are convex in the direction of real axis. It, there-
fore, follows that the function h− ei2θ g is convex in the direction of the line teiθ , t ∈ R. In
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view of these observations; Theorem A immediately gives the following generalized version
of shear construction theorem.

Theorem 1.2. A harmonic and locally univalent function f = h + ḡ is univalent mapping
of ∆ onto a domain convex in the direction of the line z = teiθ , 0 6 θ < π, t ∈ R, if and
only if h− ei2θ g is a conformal univalent mapping of ∆ onto a domain convex in the same
direction.

Note that we can use Theorem 1.2 to construct harmonic mappings that are convex in the
direction of imaginary axis. Moreover, for f = h+ ḡ ∈CODH(θ), where h and g are given
by (1.1), Theorem 1.2 has led us to construct the function Tθ : A (∆)→A (∆), with suitable
normalization, given by

(1.2) Tθ (z) :=
h(z)− ei2θ g(z)

1− ei2θ b1
, 0 6 θ < π.

Since f ∈SH is sense-preserving, it follows that |b1| < 1. Thus, in view of Theorem 1.2,
it follows that Tθ ∈S . For every θ=0 and θ=π/2, the function Tθ reduces to two special
functions

(1.3) η(z) :=
h(z)−g(z)

1−b1
, ψ(z) :=

h(z)+g(z)
1+b1

in the family S .
We define the following subclasses of the class CODH(θ)generated by Tθ :

S ∗
αCODH(θ) := { f ∈CODH(θ) : Tθ ∈S ∗(α)} ,

KαCODH(θ) := { f ∈CODH(θ) : Tθ ∈K (α)} ,

S ∗
αĈH :=

⋃
θ∈[0,π/2)

S ∗
αCODH(θ),

KαĈH :=
⋃

θ∈[0,π/2)

KαCODH(θ).

where 0 6 θ < π/2 and 0 6 α 6 1. In particular, we define

S ∗
αCODH := S ∗

αCODH(0), KαCODH := KαCODH(0).

We next recall the following two well-known subclasses of S :

S ∗(α) :=
{

ϕ ∈ S : Re
zϕ ′(z)
ϕ(z)

> α, z ∈ ∆, 0 6 α 6 1
}

,

K (α) :=
{

ϕ ∈ S : Re(1+
zϕ ′′(z)
ϕ ′(z)

) > α, z ∈ ∆, 0 6 α 6 1
}

.

A function f in S ∗(α) or K (α) is called starlike of order α or convex of order α , respec-
tively. Note that S ∗ ≡S ∗(0) and K ≡K (0).

In the present paper, we apply some classical results of the growth, distortion, and coeffi-
cient estimates of the families S ∗(α) and K (α) to the classes S ∗

αĈH , KαĈH , S ∗
αCODH(θ),

and KαCODH(θ). In particular, we also address the case when b1 = 0 for the corresponding
subclasses S ∗

αĈ0
H , S ∗

αCOD0
H(θ), KαĈ0

H , and KαCOD0
H(θ).
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2. Lemmas

The following observation offers a simple relationship between the classes S ∗
αĈH andS ∗

αCODH .

Lemma 2.1. For every function F in S ∗
αĈH , there exits a function f in S ∗

αCODH such
that F(z) = eiθ f (e−iθ z) for any constant θ ∈ [0,π/2).

A similar observation for the relationship between the classes KαĈH and KαCODH is
stated in the following.

Lemma 2.2. For every function F in KαĈH , there exists a function f in KαCODH such
that F(z) = eiθ f (e−iθ z) for any constant θ ∈ [0,π/2).

In next six lemmas, we recall some well-known results of the classical theory of confor-
mal mappings.

Lemma 2.3. [7, 9]. Let z ∈ ∆, |z|= r and suppose ϕ ∈K (α). If 0 6 α 6 1, then

1
(1+ r)2(1−α) 6 |ϕ ′(z)|6 1

(1− r)2(1−α) .

If α 6= 1/2, then
(1+ r)2α−1−1

2α−1 6 |ϕ(z)|6 1− (1− r)2α−1

2α−1 .

If α = 1/2, then
ln(1+ r) 6 |ϕ(z)|6− ln(1− r).

All these inequalities are sharp for

(2.1) ϕ(z) =

{
1−(1−z)2α−1

2α−1 if α 6= 1
2

− ln(1− z) if α = 1
2 .

Lemma 2.4. [7, 9]. Let z ∈ ∆ and |z|= r. If ϕ ∈S ∗(α)with 0 6 α 6 1, then
r

(1+ r)2(1−α) 6 |ϕ(z)|6 r
(1− r)2(1−α) .

These bounds are sharp for

(2.2) k0(z) =
z

(1− z)2(1−α) .

Lemma 2.5. [7, 9]. If ϕ(z) = z+
∞

∑
n=2

Anzn ∈S ∗(α), 0 6 α 6 1, then

|An|6
1

(n−1)!

n

∏
k=2

(k−2α)

for n = 2,3, . . . . These bounds are sharp for the function (2.2).

Lemma 2.6. [7, 9]. If ϕ(z) = z+
∞

∑
n=2

Anzn ∈K (α), 0 6 α 6 1, then

|An|6
1
n!

n

∏
k=2

(k−2α)

for n = 2,3, . . . . These bounds are sharp for the function (2.1).
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3. Distortion and growth theorems

Theorem 3.1. Let z ∈ ∆, |z| = r and suppose a function f = h + ḡ with h and g given by
(1.1) is in KαĈH . If 0 6 α 6 1, then

(3.1)
1+ |b1|2

(1+ r)4(1−α) 6 |h′(z)|2 + |g′(z)|2 6
1+ |b1|2

(1− r)4(1−α) .

If α 6= 1/2, then

(3.2)
((1 + r)2α−1 − 1)2(1 + |b1|2)

(2α − 1)2 6 |h(z)|2 + |g(z)|2 6
(1− (1− r)2α−1)2(1 + |b1|2)

(2α − 1)2 .

If α = 1/2, then

(3.3) (ln(1+ r))2(1+ |b1|2) 6 |h(z)|2 + |g(z)|2 6 (ln(1− r))2(1+ |b1|2).
All of these inequalities are sharp.

Proof. We first assume that f ∈KαCODH(θ) and therefore f ∈CODH(θ) and Tθ given by
(1.2) is in K (α) for each θ(0 6 θ < π/2). Using Lemma 2.3, we obtain

1
(1+ r)2(1−α) 6

∣∣∣∣h′(z)− ei2θ g′(z)
1−b1ei2θ

∣∣∣∣6 1
(1− r)2(1−α) .

Choosing θ = 0 and θ → (π/2)−, we have f ∈KαCODH and

|1−b1|2

(1+ r)4(1−α) 6 |h′(z)−g′(z)|2 6
|1−b1|2

(1− r)4(1−α) ,

and
|1+b1|2

(1+ r)4(1−α) 6 |h′(z)+g′(z)|2 6
|1+b1|2

(1− r)4(1−α) .

Adding corresponding parts of the last two inequalities, we obtain (3.1) provided that f ∈
KαCODH . Because of Lemma 2.2, it follows that (3.1) also holds for any f in KαĈH .
Using Lemma 2.3 and Lemma 2.2 and following the proof of (3.1), it is routine to prove
the inequalities (3.2) and (3.3). In view of (1.2) and (2.1), it is a routine to verify that the
inequalities (3.1) to (3.3) are sharp for the functions f = h+ ḡ in KαĈH , where

(3.4) h(z) =

{
1−(1−z)2α−1

2α−1 if α 6= 1
2 ,

− ln(1− z) if α = 1
2 ,

(3.5) g(z) =

{
b1(1−(1−z)2α−1)

2α−1 , if α 6= 1
2 ,

−b1 ln(1− z) if α = 1
2 .

Corollary 3.1. Let z ∈ ∆, |z| = r. If a function f = h + ḡ with h and g given by (1.1) is in
KαĈH , then

(3.6)

√
2

2(1+ r)2(1−α) < |h′(z)|<
√

2
(1− r)2(1−α) ,

(3.7) 0 6 |g′(z)|< 1
(1− r)2(1−α) .
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Proof. From compound inequality (3.1) and using 0 6 |b1|< 1, we have

(3.8)
1

(1+ r)4(1−α) 6 |h′(z)|2 + |g′(z)|2 <
2

(1− r)4(1−α) .

Since f is sense-preserving, we have 0 6 |g′(z)|< |h′(z)| for all z in ∆. Therefore,

0 6 2|g′(z)|2 < |h′(z)|2 + |g′(z)|2 <
2

(1− r)4(1−α) .

This proves (3.7). In order to prove (3.6), we note that

|h′(z)|2 6 |h′(z)|2 + |g′(z)|2 <
2

(1− r)4(1−α)

and
2|h′(z)|2 > |h′(z)|2 + |g′(z)|2 >

1
(1+ r)4(1−α)

by (3.8). The desired compound inequality (3.6) immediately follows.

Corollary 3.2. Let z ∈ ∆, |z| = r. If a function f = h + ḡ with h and g given by (1.1) is in
KαĈ0

H , then

(3.9)
1√

1+ r2(1+ r)2(1−α)
6 |h′(z)|6 1

(1− r)2(1−α) ,

(3.10) 0 6 |g′(z)|< r
(1− r)2(1−α) .

Proof. Since b1 = 0, it follows from (3.1) that

(3.11)
1

(1+ r)4(1−α) 6 |h′(z)|2 + |g′(z)|2 6
1

(1− r)4(1−α) .

Again, since the analytic dilatation ω = g′/h′ of the function f = h + ḡ in S 0
H satisfies the

condition |ω|< 1, therefore, Schwartz lemma yields

(3.12) |g′(z)|6 |z||h′(z)|, z ∈ ∆.

In view of the inequalities (3.11) and (3.12), we obtain

(1+ r2)|h′(z)|2 > |h′(z)|2 + |g′(z)|2 >
1

(1+ r)4(1−α) ,

and
|h′(z)|2 6 |h′(z)|2 + |g′(z)|2 6

1
(1− r)4(1−α) .

These two inequalities together prove (3.9). On the other hand, (3.10) follows from (3.12)
and the right side inequality of (3.9).

Theorem 3.2. Let z ∈ ∆, |z| = r and suppose a function f = h + ḡ with h and g given by
(1.1) is in S ∗

αĈH . Then

(3.13)
r2(1+ |b1|2)
(1+ r)4(1−α) 6 |h(z)|2 + |g(z)|2 6

r2(1+ |b1|2)
(1− r)4(1−α) ,

(3.14) 0 6 |h(z)|<
√

2r
(1− r)2(1−α) ,
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(3.15) 0 6 |g(z)|<
√

2r
(1− r)2(1−α) ,

(3.16) 0 6 | f (z)|< 2r
(1− r)2(1−α) .

The bounds in (3.13) are sharp for the functions f = h + ḡ in S ∗
αĈH , where h and g are

given by

(3.17) h(z) =
z

(1− z)2(1−α) ,

(3.18) g(z) =
b1z

(1− z)2(1−α) .

Proof. Let f ∈S ∗
αCODH(θ) so that f ∈CODH(θ) and Tθ ∈S ∗(α)for each θ ∈ [0,π/2).

Applying Lemma 2.4 we obtain

(3.19)
r

(1+ r)2(1−α) 6

∣∣∣∣h(z)− ei2θ g(z)
1−b1ei2θ

∣∣∣∣6 r
(1− r)2(1−α) .

Letting θ = 0 and θ → (π/2)−, squaring and adding respective sides of the inequalities so
obtained, we find that (3.13) holds for f ∈S ∗

αCODH . In view of Lemma 2.1, it follows that
(3.13) also holds true for f ∈S ∗

αĈH . For proving (3.14), first note that (3.13) yields

r2

(1+ r)4(1−α) 6 |h(z)|2 + |g(z)|2 <
2r2

(1− r)4(1−α) ,

because 0 6 |b1|< 1. Since |g(z)|> 0, the above inequality gives

(3.20) |h(z)|2 6 |h(z)|2 + |g(z)|2 <
2r2

(1− r)4(1−α)

and therefore (3.14) follows. The proof of (3.15) is similar. Also, (3.16) is proven from

| f (z)|6
√

2(|h(z)|2 + |g(z)|2) <
2r

(1− r)2(1−α) ,

by using (3.20). Finally, (3.17 and (3.8) follow by using (1.2) in (2.2).

4. Coefficient bounds

Theorem 4.1. If a function

(4.1) f (z) = z+
∞

∑
n=2

anzn +
∞

∑
n=1

bnzn

is in KαĈH , then

(4.2) |an|2 + |bn|2 6
1+ |b1|2

(n!)2

n

∏
k=2

(k−2α)2

for n = 2,3, . . . . The bounds in (3.13) are sharp for the functions f = h+ ḡ in KαĈH , where
h and g are given by (3.4) and (3.5).
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Proof. Suppose f ∈KαCODH(θ) so that f ∈CODH(θ) and the function

(4.3) Tθ (z) =
h(z)− ei2θ g(z)

1− ei2θ b1
= z+

∞

∑
n=2

an− ei2θ bn

1− ei2θ b1
zn

is in K (α) for each θ ∈ [0,π/2). Applying Lemma 2.6, we obtain∣∣∣∣an− ei2θ bn

1− ei2θ b1

∣∣∣∣6 1
n!

n

∏
k=2

(k−2α)

for n = 2,3, . . . . Setting θ = 0 and θ → (π/2)−, we have

|an−bn|2 6
|1−b1|2

(n!)2

n

∏
k=2

(k−2α)2,

|an +bn|2 6
|1+b1|2

(n!)2

n

∏
k=2

(k−2α)2.

Adding respective sides in the last two compound inequalities and simplifying, it follows
that (4.1) holds for f ∈KαCODH . In view of Lemma 2.2, (4.2) holds true for f ∈KαĈH .

Corollary 4.1. If a function f given by (4.1) is in KαĈH , then

(4.4) |an|<
√

2
n!

n

∏
k=2

(k−2α),

(4.5) |bn|<
√

2
n!

n

∏
k=2

(k−2α)

for n = 2,3, . . . .

Proof. By Theorem 4.1, we have

|an|6

√
1+ |b1|2

(n!)2

n

∏
k=2

(k−2α)2−|bn|2

6

√
1+ |b1|2

n!

n

∏
k=2

(k−2α) <

√
2

n!

n

∏
k=2

(k−2α).

(4.6)

This proves (4.4). The proof of (4.5) is similar to that of (4.4) because

(4.7) |bn|6

√
1+ |b1|2

(n!)2

n

∏
k=2

(k−2α)2−|an|2 6

√
1+ |b1|2

n!

n

∏
k=2

(k−2α).

Remark 4.1. If a function f given by (4.1) is in K ĈH , then |an| 6
√

2 and |bn| 6
√

2 for
n = 2,3, . . . .

Letting b1 = 0 in (4.6) and (4.7), we obtain

Corollary 4.2. If a function f given by (4.1) is in KαĈ0
H , then

|an|6
1
n!

n

∏
k=2

(k−2α), |bn|6
1
n!

n

∏
k=2

(k−2α)

for n = 2,3, . . . .
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Theorem 4.2. If a function f of the form (4.1) is in S ∗
αĈH , then

(4.8) |an|2 + |bn|2 6
1+ |b1|2

((n−1)!)2

n

∏
k=2

(k−2α)2

for n = 2,3, . . . . This inequality is sharp for the functions f = h+ ḡ in S ∗
αĈH , where h and

g are given by (3.17) and (3.18).

Proof. Suppose f ∈S ∗
αCODH(θ)so that f ∈CODH(θ) and Tθ given by (4.3) is in S ∗(α)

for each θ ∈ [0,π/2). As an application of Lemma 2.5 we obtain∣∣∣∣an− ei2θ bn

1− ei2θ b1

∣∣∣∣6 1
(n−1)!

n

∏
k=2

(k−2α)

for every n = 2,3, ... and for all θ ∈ [0,π/2). Suppose θ = 0 and θ → (π/2)−. Then it
follows that f ∈S ∗

αCODH and

|an−bn|2 6
|1−b1|2

((n−1)!)2

n

∏
k=2

(k−2α)2, |an +bn|2 6
|1+b1|2

((n−1)!)2

n

∏
k=2

(k−2α)2.

Adding respective sides in these two compound inequalities and simplifying, it follows that
(4.8) holds for f ∈S ∗

αCODH. Now Lemma 2.1 concludes the theorem for f ∈S ∗
HĈH .

Corollary 4.3. If a function f given by (4.1) is in S ∗
αĈH , then

|an|<
√

2
(n−1)!

n

∏
k=2

(k−2α), |bn|<
√

2
(n−1)!

n
∏

k=2
(k−2α)

for n = 2,3, . . . .

Proof. Since |b1|< 1, it follows from Theorem 4.2 that

|an|6

√
1+ |b1|2

((n−1)!)2

n

∏
k=2

(k−2α)2−|bn|2 <

√
2

(n−1)!

n

∏
k=2

(k−2α).

The proof of second part is similar.
Setting α = 0 and letting S ∗ĈH := S ∗

0 ĈH , the proof of next corollary follows from
Corollary 4.3.

Corollary 4.4. If a function f given by (4.1) is in K ∗ĈH , then

|an|<
√

2n, |bn|<
√

2n

for n = 2,3, . . . .

Letting b1 = 0 in the proof of Corollary 4.3 we obtain the following result.

Corollary 4.5. If a function f given by (4.1) is in S ∗
αĈ0

H , then

|an|6
1

(n−1)!

n

∏
k=2

(k−2α), |bn|6
1

(n−1)!

n

∏
k=2

(k−2α)

for n = 2,3, . . . .
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