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1. Introduction and main results

In this paper, we consider the following Josephson-type system with unbounded nonlinear-
ities

(1.1)
{

ü(t)+Au(t)−∇F(t,u(t)) = h(t),a.e. t ∈ [0,T ],
u(0)−u(T ) = u̇(0)− u̇(T ) = 0,

where A is a (N×N)−symmetric matrix, h ∈ L1(0,T ;RN), T > 0, and F : [0,T ]×RN →R
satisfies the following assumption:

(A) F(t,x) is measurable in t for every x ∈ RN and continuously differentiable in x for
a.e. t ∈ [0,T ], and there exist a ∈C(R+,R+) and b ∈ L1([0,T ],R+) such that

|F(t,x)| ≤ a(|x|)b(t), |∇F(t,x)| ≤ a(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [0,T ].
Moreover, we assume that

(C1) dim N(A) = m ≥ 1 and A has no eigenvalue of the form k2ω2(k ∈ N/{0}) where
ω = 2π/T ;

(C2) There exist linearly independent vectors α j ∈ RN(1 ≤ j ≤ m) such that N(A) =
span{α1, · · · ,αm}.

When A = 0 and h(t)≡ 0, it has been proved that problem (1.1) has at least one solution
by the least action principle and the minimax methods (see [1, 6–14, 19–21, 26, 27]). Many
solvability conditions are given, such as the coercive condition (see [1]); the periodicity
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condition (see [19]); the convexity condition (see [6]); the subadditive condition (see [11]).
Recently, by using the variational methods, lots of people have also concerned with the
existence of periodic solutions for p-Laplacian systems (see [16,22,24,25]), p(t)-Laplacian
systems (see [18] and [23]), and discrete p-Laplacian systems (see [3] and [5]).

For the case that A 6= 0 and h(t) 6= 0, Mawhin and Willem [7] obtained that system (1.1)
has at least one solution by using the saddle point theorem under the following bounded
condition: there exists g ∈ L1(0,T ;R+) such that

(1.2) |F(t,u)| ≤ g(t), |∇F(t,u)| ≤ g(t),∀ u ∈ RN ,a.e. t ∈ [0,T ].

They obtained the following result:

Theorem 1.1. [7, Theorem 4.9] Suppose that F satisfies (C1), (C2) with
∫ T

0 (h(t),α j)dt
= 0(m≥ 1), (1.2) and

(F1) there exist Tj > 0 such that F(t,u + Tjα j) = F(t,u)(1 ≤ j ≤ m), ∀ u ∈ RN , a.e.
t ∈ [0,T ].

Then system (1.1) has at least one solution.

In 2006, Feng and Han generalized Mawhin and Willem’s result and they obtained the
following results:

Theorem 1.2. [2, Theorem 2.1] Suppose that F satisfies (C1), (C2) with
∫ T

0 (h(t),α j)dt
= 0(m ≥ 1), (F1) and the following conditions: there exist a,b ∈ L1(0,T ;R+),0 ≤ α < 1
such that

(1.3) |∇F(t,u)| ≤ a(t)|u|α +b(t).

Then system (1.1) has at least one solution.

Theorem 1.3. [2, Theorem 2.2] Suppose that F satisfies (C1), (C2) with
∫ T

0 (h(t),α j)dt
= 0(m≥ 1), (1.3) and

‖u‖−2α

∫ T

0
F(t,u)dt→+∞, as ‖u‖→ ∞,u ∈ H0

or

‖u‖−2α

∫ T

0
F(t,u)dt→−∞, as ‖u‖→ ∞,u ∈ H0,

where H0 is defined before (2.2). Then system (1.1) has at least one solution.

Condition (1.3) is usually called sublinear growth condition. Such condition has been
used extensively (see [4, 11–15, 17, 26, 27]). In 2010, Wang and Zhang [17] generalized the
condition (1.3). They assumed that

(f1) There exists constants C0 > 0, K1 > 0, K2 > 0, α ∈ [0,1), a ∈ L1(0,T ;R+) and
b∈ L1(0,T ;R+) and a nonnegative function w∈C([0,+∞), [0,+∞)) with the prop-
erties:

(i) w(s)≤ w(t),∀ s≤ t,s, t ∈ [0,+∞),
(ii) w(s+ t)≤C0(w(s)+w(t)),∀ s, t ∈ [0,+∞),

(iii) 0≤ w(t)≤ K1tα +K2,∀ t ∈ [0,+∞),
(iv) w(t)→+∞,as t→+∞,

such that
|∇F(t,x)| ≤ a(t)w(|x|)+b(t)

for all x ∈ RN and a.e. t ∈ [0,T ].
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If we let w(t) = tα , it is easy to see that (f1) generalizes (1.3). Wang and Zhang con-
sidered the special case A = 0,h(t) ≡ 0 for (1.1). By using the least action principle and
saddle point theorem, they obtained system (1.1) with A = 0 and h(t) ≡ 0 has at least one
solution. In our paper, similarly, we will use the condition (f1) to replace (1.3) and by using
saddle point theorem, we will generalize Theorem 1.3. Our main results are the following
theorems.

Theorem 1.4. Suppose that F satisfies (C1), (C2) and (f1). Assume that one of three fol-
lowing conditions holds:

(i)

limsup
|u|→∞

u∈N(A)

|u|
w2(|u|)

< +∞, lim
|u|→∞,
u∈N(A)

1
w2(|u|)

∫ T

0
F(t,u)dt =−∞,(1.4)

where | · | is the standard norm defined in RN ;
(ii)

limsup
|u|→∞

u∈N(A)

w2(|u|)
|u|

< +∞, lim
|u|→∞,
u∈N(A)

1
|u|

∫ T

0
F(t,u)dt =−∞,(1.5)

or furthermore,

limsup
|u|→∞

u∈N(A)

w2(|u|)
|u|

= 0, lim
|u|→∞

u∈N(A)

1
|u|

∫ T

0
F(t,u)dt <−

∫ T

0
|h(t)|dt;(1.6)

(iii) ∫ T

0
(h(t),α j) = 0,(1≤ j ≤ m), lim

|u|→∞u∈N(A)

1
w2(|u|)

∫ T

0
F(t,u)dt =−∞.(1.7)

Then system (1.1) has at least one solution.

Theorem 1.5. Suppose that F satisfies (C1), (C2) and (f1). Assume that one of three fol-
lowing conditions holds:

(i)

limsup
|u|→∞

u∈N(A)

|u|
w2(|u|)

< +∞, lim
|u|→∞,
u∈N(A)

1
w2(|u|)

∫ T

0
F(t,u)dt = +∞;(1.8)

(ii)

limsup
|u|→∞,
u∈N(A)

w2(|u|)
|u|

< +∞, lim
|u|→∞

u∈N(A)

1
|u|

∫ T

0
F(t,u)dt = +∞,(1.9)

or furthermore,

limsup
|u|→∞

u∈N(A)

w2(|u|)
|u|

= 0, lim
|u|→∞

u∈N(A)

1
|u|

∫ T

0
F(t,u)dt >

∫ T

0
|h(t)|dt.(1.10)

(iii) ∫ T

0
(h(t),α j) = 0,(1≤ j ≤ m), lim

|u|→∞,u∈N(A)

1
w2(|u|)

∫ T

0
F(t,u)dt = +∞.(1.11)
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Then system (1.1) has at least one solution.

Remark 1.1. Theorem 1.1 and Theorem 1.2 generalize Theorem 1.3 from two aspects.
First, obviously, (f1) generalizes (1.3). Second, we consider the case that

∫ T
0 (h(t),α j)dt =

0 (m≥ 1) in (C2) in Theorem 1.3 is deleted.

2. Preliminaries

Let

H1
T = {u : R→ RN |u is absolutely continuous,u(t) = u(t +T ) and u̇ ∈ L2(0,T ;RN)}.

Then H1
T is a Hilbert space with the inner product and the norm defined by

〈u,v〉=
[∫ T

0
(u(t),v(t))dt +

∫ T

0
(u̇(t), v̇(t))dt

]1/2

and

‖u‖=
[∫ T

0
|u(t)|2dt +

∫ T

0
|u̇(t)|2dt

]1/2

for each u,v ∈ H1
T . Let

ū =
1
T

∫ T

0
u(t)dt,and ũ(t) = u(t)− ū.

Then one has

‖ũ‖2
∞ ≤

T
12

∫ T

0
|u̇(t)|2dt, (Sobolev’s inequality)

‖ũ‖2
L2 ≤

T 2

4π2

∫ T

0
|u̇(t)|2dt. (Wirtinger’s inequality)

(see Proposition 1.3 in [3]) which implies that

‖u‖∞ ≤C‖u‖(2.1)

for some C > 0 and all u ∈ H1
T , where ‖u‖∞ = maxt∈[0,T ] |u(t)|. It follows from assumption

(A) that the functional ϕ on H1
T given by

ϕ(u) =
1
2

∫ T

0
|u̇(t)|2dt− 1

2

∫ T

0
(A(t)u(t),u(t))dt +

∫ T

0
F(t,u(t))dt +

∫ T

0
(h(t),u(t))dt

is continuously differentiable. Moreover, one has

〈ϕ ′(u),v〉=
∫ T

0
[(u̇(t), v̇(t))− (A(t)u(t),v(t))+(∇F(t,u(t)),v(t))+(h(t),v(t))]dt

for u,v ∈ H1
T . It is well known that the solutions of system (1.1) correspond to the critical

points of ϕ (see [3]).
Let

q(u) =
1
2

∫ T

0

[
|u̇(t)|2− (A(t)u(t),u(t))

]
dt.

Then it is easy to see that

q(u) =
1
2
‖u‖2− 1

2

∫ T

0
((A(t)+ I)u(t),u(t))dt =

1
2
〈(I−K)u,u)〉
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where K : H1
T →H1

T is the self-adjoint operator defined, using Riesz representation theorem,
by ∫ T

0
((A(t)+ I)u(t),v(t))dt = 〈(Ku,v)〉,∀ u,v ∈ H1

T .

The compact imbedding of H1
T into C(0,T ;RN) implies that K is compact. By classical

spectral theory, we can decompose H1
T into the orthogonal sum of invariant subspaces for

I−K

H1
T = H−⊕H0⊕H+,

where H0 = Ker(I−K) and H− and H+ are such that, for some δ > 0,

q(u)≤−δ

2
‖u‖2if u ∈ H−,(2.2)

q(u)≥ δ

2
‖u‖2if u ∈ H+.(2.3)

Moreover, by (C1), it is known that H0 = Ker(I−K) = N(A) (see [3]).
We will use the following lemma to obtain the critical points of ϕ .

Lemma 2.1. [10, Theorem 4.6] Let X = X1 ⊕ X2, where X is a real Banach space and
X1 6= {0} and is finite dimensional. Suppose I ∈C1(X ,R), satisfies (PS), and

(I1) there is a constant α and a bounded neighborhood D of 0 in X1 such that I|∂D ≤ α

and
(I2) there is a constant β > α such that I|X2 ≥ β .

Then I possesses a critical value c≥ β . Moreover, c can be characterized as

c = inf
h∈Γ

max
u∈D̄

I(h(u)),

where

Γ = {h ∈C(D̄,X)|h = id on ∂D}.

3. Proofs of theorems

For convenience, we will denote various positive constants as Ci, i = 1,2, · · · , or Di, i =
1,2, · · · , or Ei, i = 1,2, · · · , or Gi, i = 1,2, · · · .

Lemma 3.1. Assume that (f1) holds. Then for any (PS) sequence {un} ⊂ H1
T of the func-

tional ϕ, there exists C1 > 0 such that

‖u+
n ‖2 ≤C1w2(|u0

n|)+C1,

‖u−n ‖2 ≤C1w2(|u0
n|)+C1.

Proof. Assume that {un} is a (PS) sequence in H1
T . Then there exists a constant C2 > 0 such

that

|ϕ(un)| ≤C2, |ϕ ′(un)| ≤C2,∀ n ∈ N.
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It follows from (f1), (2.1) and Young’s inequality that∫ T

0
(∇F(t,un(t)),u+

n (t))dt

≤
∫ T

0
|∇F(t,un(t)| |u+

n (t)|dt

≤
∫ T

0
(a(t)w(|un(t)|)+b(t)) |u+

n (t)|dt

=
∫ T

0
(a(t)w(|u+

n (t)+u−n (t)+u0
n|)+b(t)) |u+

n (t)|dt

≤
∫ T

0
a(t)C0(C0 +1)(w(|u+

n (t)|)+w(|u−n (t)|)+w(|u0
n|)) |u+

n (t)|dt +
∫ T

0
b(t)|u+

n (t)|dt

≤ w(‖u+
n ‖∞)‖u+

n ‖∞

∫ T

0
a(t)C0(C0 +1)dt +w(‖u−n ‖∞)‖u+

n ‖∞

∫ T

0
a(t)C0(C0 +1)dt

+w(|u0
n|)‖u+

n ‖∞

∫ T

0
C0(C0 +1)a(t)dt +‖u+

n ‖∞

∫ T

0
b(t)dt

≤ (K1‖u+
n ‖α

∞ +K2)‖u+
n ‖∞

∫ T

0
a(t)C0(C0 +1)dt

+(K1‖u−n ‖α
∞ +K2)‖u+

n ‖∞

∫ T

0
a(t)C0(C0 +1)dt

w(|u0
n|)‖u+

n ‖∞

∫ T

0
C0(C0 +1)a(t)dt +‖u+

n ‖∞

∫ T

0
b(t)dt

≤C3‖u+
n ‖α+1 +C4‖u+

n ‖+C5‖u−n ‖α‖u+
n ‖+w(|u0

n|)‖u+
n ‖CC0(C0 +1)

∫ T

0
a(t)dt

≤ ε‖u+
n ‖2 +C3(ε)+ ε‖u+

n ‖2 +C4(ε)+C5(ε)‖u−n ‖2α + ε‖u+
n ‖2 +C6(ε)w2(|u0

n|)+ ε‖u+
n ‖2

≤ 4ε‖u+
n ‖2 +C5(ε)‖u−n ‖2α +C6(ε)w2(|u0

n|)+C7(ε),

where ε > 0 and Ci(ε) > 0 (i = 1, · · · ,7) are constants dependent on ε. Thus, we have

C2‖u+
n ‖ ≥ 〈(ϕ ′(un),u+

n )〉

= 〈(I−K)un,u+
n 〉+

∫ T

0
(∇F(t,un(t))+w(t),u+

n (t))dt

≥ δ‖u+
n ‖2−4ε‖u+

n ‖2−C5(ε)‖u−n ‖2α −C6(ε)w2(|u0
n|)−C7(ε)−C8‖u+

k ‖

≥ (δ −5ε)‖u+
n ‖2−C5(ε)‖u−n ‖2α −C6(ε)w2(|u0

n|)−C9(ε).

If we fix ε < δ/5, then

‖u+
n ‖2 ≤C10w2(|u0

n|)+C11‖u−n ‖2α +C12.(3.1)

Similarly, we can get

‖u−n ‖2 ≤C13w2(|u0
n|)+C14‖u+

n ‖2α +C15.(3.2)

It follows from (3.1) and (3.2) that

‖u+
n ‖2 ≤C10w2(|u0

n|)+C16w2α(|u0
n|)+C17‖u+

n ‖2α2
+C18.
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Since 2α2 < 2α < 2, by using Young’s inequality again, we have

‖u+
n ‖2 ≤C19w2(|u0

n|)+C20.

Similarly, we can get

‖u−n ‖2 ≤C21w2(|u0
n|)+C22.

Let C1 = max{C19,C20,C21,C22}. Then we complete the proof.

Proof of Theorem 1.1. We will use Lemma 2.1 to prove this Theorem. First, we prove ϕ

satisfies (PS) condition when one of case (i), case (ii) and case (iii) holds, respectively. Let
{un} ∈ H1

T be a (PS) sequence, that is ϕ(un) is bounded and ϕ ′(un)→ 0. Then there exists
E1 > 0 such that

|ϕ(un)| ≤ E1,‖ϕ ′(un)‖ ≤ E1.

By Lemma 3.1, we know that

‖u+
n ‖2 ≤C1w2(|u0

n|)+C1,(3.3)

‖u−n ‖2 ≤C1w2(|u0
n|)+C1.(3.4)

It follows from the above two inequalities and Young’s inequality, we can obtain that

∣∣∣∣∫ T

0
F(t,un(t))dt−

∫ T

0
F(t,u0

n)dt
∣∣∣∣

=
∣∣∣∣∫ T

0

∫ 1

0
(∇F(t,u0

n + s(u+
n (t)+u−n (t))),u+

n (t)+u−n (t))dsdt
∣∣∣∣

≤
∫ T

0

∫ 1

0
|∇F(t,s(u+

n (t)+u−n (t))+u0
n)||u+

n (t)+u−n (t)|dsdt

≤
∫ T

0

∫ 1

0
[a(t)w(|su+

n (t)+ su−n (t)+u0
n|)+b(t)]|u+

n (t)+u−n (t)|dsdt

≤
∫ T

0

∫ 1

0
[a(t)C0(C0 +1)(w(|su+

n (t)|)+w(|su−n (t)|)+w(|u0
n|))] |u+

n (t)+u−n (t)|dsdt∫ T

0
b(t)|u+

n (t)+u−n (t)|dt

≤ w(‖u+
n ‖∞)(‖u+

n ‖∞ +‖u−n ‖∞)
∫ T

0
a(t)C0(C0 +1)dtw(‖u−n ‖∞)(‖u+

n ‖∞ +‖u−n ‖∞)∫ T

0
a(t)C0(C0 +1)dtw(|u0

n|)(‖u+
n ‖∞ +‖u−n ‖∞)

∫ T

0
a(t)C0(C0 +1)dt

+(‖u+
n ‖∞ +‖u−n ‖∞)

∫ T

0
b(t)dt

(3.5)
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≤ (K1‖u+
n ‖α

∞ + K2)‖u+‖∞

∫ T

0
a(t)C0(C0 + 1)dt + (K1‖u+

n ‖α
∞ + K2)‖u−‖∞∫ T

0
a(t)C0(C0 + 1)dt(K1‖u−n ‖α

∞ + K2)‖u+‖∞

∫ T

0
a(t)C0(C0 + 1)dt

+ (K1‖u−n ‖α
∞ + K2)‖u−‖∞

∫ T

0
a(t)C0(C0 + 1)dt(‖u+

n ‖∞ + ‖u−n ‖∞)(∫ T

0
b(t)dt + w(|u0

n|)
∫ T

0
a(t)C0(C0 + 1)dt

)
≤ D1‖u+

n ‖α+1 + D2‖u+
n ‖+ D1‖u−n ‖α+1 + D2‖u−n ‖

+ D1‖u+
n ‖α‖u−n ‖∞ + D1‖u−n ‖α‖u+

n ‖D3(‖u+
n ‖+ ‖u−n ‖)w(|u0

n|)
≤ D4‖u+

n ‖2 + D5‖u−n ‖2 + D6w2(|u0
n|) + D7

≤ E2w2(|u0
n|) + E3.

Since A(t) is continuous in t and T -periodic, it is easy to see that there exists E4 > 0 such
that

1
2
〈(I−K)u+

n ,u+
n 〉= q(u+

n )≤ E4‖u+
n ‖2(3.6)

Hence, by the above inequality, (2.1), (3.3), (3.5), (3.6) and (2.2), we have

−E1 ≤ ϕ(un) =
1
2
〈(I−K)u+

n ,u+
n 〉+

1
2
〈(I−K)u−n ,u−n 〉+

∫ T

0
F(t,un(t))dt−

∫ T

0
F(t,u0

n)dt∫ T

0
F(t,u0

n)dt +
∫ T

0
(h(t),u+

n (t)+u−n (t)+u0
n)dt

≤ E4‖u+
n ‖2 +E2w2(|u0

n|)+E3∫ T

0
F(t,u0

n)dt +C
∫ T

0
|h(t)|dt‖u+‖+C‖u−‖

∫ T

0
|h(t)|dt + |u0

n|
∫ T

0
|h(t)|dt

≤ E5w2(|u0
n|)+

∫ T

0
F(t,u0

n)dt +E6w(|u0
n|)+E7 + |u0

n|
∫ T

0
|h(t)|dt.(3.7)

Case (i): assume that

limsup
|u|→∞

u∈N(A)

|u|
w2(|u|)

< +∞.(3.8)

Note that

E5w2(|u0
n|)+

∫ T

0
F(t,u0

n)dt +E6w(|u0
n|)+E7 + |u0

n|
∫ T

0
|h(t)|dt

= w2(|u0
n|)

(
E5 +

1
w2(|u0

n|)

∫ T

0
F(t,u0

n)dt +
|u0

n|
∫ T

0 |h(t)|dt
w2(|u0

n|)

)
+E6w(|u0

n|)+E7.

It follows from (1.4) and (3.8) that {u0
n} is bounded. By (3.3) and (3.4), we know that

{un} is bounded in H1
T . Similar to the argument to [7, Proposition 4.1], ϕ satisfies the (PS)

condition.
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Case (ii): assume that

limsup
|u|→∞

u∈N(A)

w2(|u|)
|u|

< +∞.(3.9)

Then

limsup
|u|→∞

u∈N(A)

w(|u|)
|u|

= 0.(3.10)

Note that

E5w2(|u0
n|)+

∫ T

0
F(t,u0

n)dt +E6w(|u0
n|)+E7 + |u0

n|
∫ T

0
|h(t)|dt

= |u0
n|
(∫ T

0
|h(t)|dt +

1
|u0

n|

∫ T

0
F(t,u0

n)dt +
w2(|u0

n|)
|u0

n|
+

E6w(|u0
n|)

|u0
n|

)
+E7.

It follows from (1.5) and (3.10) that {u0
n} is bounded. Furthermore, if

limsup
|u|→∞

u∈N(A)

w2(|u|)
|u|

= 0,

by (1.6), we also obtain that {u0
n} is bounded. By (3.3) and (3.4), we know that {un} is

bounded in H1
T . Similar to the argument to [7, Proposition 4.1], ϕ satisfies the (PS) condi-

tion.
Case (iii): if

∫ T
0 (h(t),α j)dt = 0,(1≤ j ≤ m), we have

−E1 ≤ ϕ(un) =
1
2
〈(I−K)u+

n ,u+
n 〉+

1
2
〈(I−K)u−n ,u−n 〉+

∫ T

0
F(t,un(t))dt−

∫ T

0
F(t,u0

n)dt∫ T

0
F(t,u0

n)dt +
∫ T

0
(h(t),u+

n (t)+u−n (t)+u0
n)dt

≤ E4‖u+
n ‖2 +E2w2(|u0

n|)+E3∫ T

0
F(t,u0

n)dt +C
∫ T

0
|h(t)|dt‖u+‖+C‖u−‖

∫ T

0
|h(t)|dt

≤ E5w2(|u0
n|)+

∫ T

0
F(t,u0

n)dt +E6w(|u0
n|)+E7

≤ w2(|u0
n|)
(

E5 +
1

w2(|u0
n|)

∫ T

0
F(t,u0

n)dt
)

+E6w(|u0
n|)+E7

It follows from (1.7) that {u0
n} is bounded. By (3.3) and (3.4), we know that {un} is bounded

in H1
T . Similar to the argument to [7, Proposition 4.1], ϕ satisfies the (PS) condition.

Next, we verify ϕ satisfies (i) in Lemma 2.1. Decompose H1
T = (H−⊕H0)⊕H+. Let

X1 = (H−⊕H0),X2 = H+. We know that dim(H−⊕H0) < +∞. For ∀ u ∈ X1 = H−⊕H0,



794 L. Xiao

u = u0 +u−, it follows from (f1), (2.1) and Young’s inequality that∣∣∣∣∫ T

0
F(t,u(t))dt−

∫ T

0
F(t,u0)dt

∣∣∣∣
=
∣∣∣∣∫ T

0

∫ 1

0
(∇F(t,u0 + su−(t)),u−(t))dsdt

∣∣∣∣
≤
∫ T

0

∫ 1

0
|∇F(t,u0 + su−(t)||u−(t)|dsdt

≤
∫ T

0

∫ 1

0
(a(t)w(|u0 + su−(t)|)+b(t))|u−(t)|dsdt

≤ w(|u0|)‖u−‖∞

∫ T

0
a(t)C0dt

+w(‖u−‖∞)‖u−‖∞

∫ T

0
a(t)C0dt +‖u−‖∞

∫ T

0
b(t)dt

≤ w(|u0|)‖u−‖∞

∫ T

0
a(t)C0dt

+(K1‖u−‖α
∞ +K2)‖u−‖∞

∫ T

0
a(t)C0dt +‖u−‖∞

∫ T

0
b(t)dt

≤ E8w(|u0|)‖u−‖+E9‖u−‖α+1 +E10‖u−‖

≤ E11w2(|u0|)+ ε‖u−‖2 +E9‖u−‖α+1 +E10‖u−‖.(3.11)

Case (i): if limsup|u|→∞,u∈N(A) |u|/(w2(|u|)) < +∞, then

ϕ(u) =
1
2
〈(I−K)u−,u−〉+

∫ T

0
F(t,u(t))dt−

∫ T

0
F(t,u0)dt +

∫ T

0
F(t,u0)dt +

∫ T

0
(h(t),u(t))

≤−δ

2
‖u−‖2 +E11w2(|u0|)+ ε‖u−‖2 +E9‖u−‖α+1 +E10‖u−‖∫ T

0
F(t,u0)dt +C‖u−‖

∫ T

0
|h(t)|dt + |u0|

∫ T

0
|h(t)|dt

≤
(
−δ

2
+ ε

)
‖u−‖2 +E9‖u−‖α+1 +E12‖u−‖

w2(|u0|)

(
E11 +

1
w2(|u0|)

∫ T

0
F(t,u0)dt +

|u0|
∫ T

0 |h(t)|dt
w2(|u0|)

)
Choosing ε < δ/2, by (1.4) and α < 1, we have

ϕ(u)→−∞,as‖u‖→ ∞, u ∈ X1.

Case (ii): if limsup |u|→∞

u∈N(A)
w2(|u|)/(|u|) < +∞, then

ϕ(u)≤−δ

2
‖u−‖2 +E11w2(|u0|)+ ε‖u−‖2 +E9‖u−‖α+1 +E10‖u−‖∫ T

0
F(t,u0)dt +C‖u−‖

∫ T

0
|h(t)|dt + |u0|

∫ T

0
|h(t)|dt

≤
(
−δ

2
+ ε

)
‖u−‖2 +E9‖u−‖α+1 +E12‖u−‖
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|u0|
(∫ T

0
|h(t)|dt +

1
|u0|

∫ T

0
F(t,u0)dt +

E11w2(|u0|)
|u0|

)
Choosing ε < δ/2, by (1.5) and (3.10), we have

ϕ(u)→−∞,as‖u‖→ ∞.

Furthermore, if

limsup
|u|→∞

u∈N(A)

w2(|u|)
|u|

= 0,

then by (1.6), we also obtain that

ϕ(u)→−∞,as‖u‖→ ∞.

Case (iii): if
∫ T

0 (h(t),α j)dt = 0,(1≤ j ≤ m), then

ϕ(u) =
1
2
〈(I−K)u−,u−〉+

∫ T

0
F(t,u(t))dt−

∫ T

0
F(t,u0)dt +

∫ T

0
F(t,u0)dt +

∫ T

0
(h(t),u(t))

≤−δ

2
‖u−‖2 +E11w2(|u0|)+ ε‖u−‖2 +E9‖u−‖α+1 +E10‖u−‖∫ T

0
F(t,u0)dt +C‖u−‖

∫ T

0
|h(t)|dt

≤
(
−δ

2
+ ε

)
‖u−‖2 +E9‖u−‖α+1 +E12‖u−‖

w2(|u0|)
(

E11 +
1

w2(|u0|)

∫ T

0
F(t,u0)dt

)
Choosing ε < δ/2, by (1.7), we have

ϕ(u)→−∞, as‖u‖→ ∞, u ∈ X1.

Finally, we verify that ϕ satisfies (ii) in Lemma 2.1. In fact, for ∀ u ∈ X2 = H+, u = u+, by
(f1) and (2.1), we have∫ T

0
F(t,u(t))−

∫ T

0
F(t,0)dt

=
∫ T

0

∫ 1

0
(∇F(t,su(t)),u(t))dsdt

≤
∫ T

0

∫ 1

0
|∇F(t,su(t)||u(t)|dsdt

≤
∫ T

0
(a(t)w(‖u‖∞)+b(t))|u(t)|dsdt

≤ w(‖u‖∞)‖u‖∞

∫ T

0
a(t)dt +‖u‖∞

∫ T

0
b(t)dt

≤ (K1‖u‖α
∞ +K2)‖u‖∞

∫ T

0
a(t)dt +‖u‖∞

∫ T

0
b(t)dt

≤ E13‖u‖α+1 +E14‖u‖.(3.12)
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Hence, for ∀ u ∈ X2 = H+, we have

ϕ(u) =
1
2
〈(I−K)u,u〉+

∫ T

0
F(t,u(t))dt−

∫ T

0
F(t,0)dt +

∫ T

0
F(t,0)dt +

∫ T

0
(h(t),u(t))dt

≥ δ

2
‖u‖2−E13‖u‖α+1−E14‖u‖−C‖u‖

∫ T

0
|h(t)|dt +

∫ T

0
F(t,0)dt

it is easy to see ϕ is bounded from below in X2. Hence there exists R > 0 and α < β such
that

ϕ(u)≤ α,u ∈ ∂BR∩E1 = ∂D.

Thus by Lemma 2.1, we know that ϕ has at least one critical point. We complete the
proof.
Proof of Theorem 1.2. First, we prove ϕ satisfies (PS) condition when one of case (i), case
(ii) and case (iii) holds, respectively. Let {un} ⊂ H1

T be a (PS) sequence, that is ϕ(un) is
bounded and ϕ ′(un)→ 0. Then there exists G1 > 0 such that

|ϕ(un)| ≤ G1.

Since A(t) is continuous in t and T -periodic, it is easy to see that there exists G2 > 0 such
that

1
2
〈(I−K)u−n ,u−n 〉= q(u−n )≥−G2‖u−n ‖2.(3.13)

Hence, by the above inequality, (2.1), (2.3), (3.4), (3.5), (3.13) and (2.2), we have

−G1 ≥ ϕ(un) =
1
2
〈(I−K)u+

n ,u+
n 〉+

1
2
〈(I−K)u−n ,u−n 〉+

∫ T

0
F(t,un(t))dt−

∫ T

0
F(t,u0

n)dt∫ T

0
F(t,u0

n)dt +
∫ T

0
(h(t),u+

n (t)+u−n (t)+u0
n)dt

≥ δ

2
‖u+

n ‖2−G2‖u−n ‖2−E2w2(|u0
n|)−E3∫ T

0
F(t,u0

n)dt−C
∫ T

0
|h(t)|dt‖u+‖−C‖u−‖

∫ T

0
|h(t)|dt−|u0

n|
∫ T

0
|h(t)|dt

≥−G3w2(|u0
n|)+

∫ T

0
F(t,u0

n)dt−G4w(|u0
n|)−G5−|u0

n|
∫ T

0
|h(t)|dt.(3.14)

Case (i): assume that

limsup
|u|→∞,u∈N(A)

|u|
w2(|u|)

< +∞.(3.15)

Note that

−G3w2(|u0
n|)+

∫ T

0
F(t,u0

n)dt−G4w(|u0
n|)−G5−|u0

n|
∫ T

0
|h(t)|dt

= w2(|u0
n|)

(
−G3 +

1
w2(|u0

n|)

∫ T

0
F(t,u0

n)dt−
|u0

n|
∫ T

0 |h(t)|dt
w2(|u0

n|)

)
−G4w(|u0

n|)−G5

It follows from (1.8) and (3.15) that {u0
n} is bounded. By (3.3) and (3.4), we know that

{un} is bounded in H1
T . Similar to the argument to [7, Proposition 4.1], ϕ satisfies the (PS)

condition. For case (ii) and case (iii), combining case (i) with the argument of Theorem 1.1,
it is easy to see that ϕ also satisfies (PS) condition.
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Next, we verify ϕ satisfies (i) and (ii) in Lemma 2.1. we will let E1 = H−,E2 = H0⊕
H+, which is different from the decomposition of Theorem 1.1. Obviously, dimE1 < +∞.
Similar to (3.12), we can obtain that for u ∈ H−,∫ T

0
F(t,u(t))−

∫ T

0
F(t,0)dt ≤ G6‖u‖α+1 +G7‖u‖.(3.16)

Hence, for ∀ u ∈ H−, we have

ϕ(u) =
1
2
〈(I−K)u,u〉+

∫ T

0
F(t,u(t))dt−

∫ T

0
F(t,0)dt +

∫ T

0
F(t,0)dt +

∫ T

0
(h(t),u(t))dt

≤−δ

2
‖u‖2 +G6‖u‖α+1 +G7‖u‖+C‖u‖

∫ T

0
|h(t)|dt +

∫ T

0
F(t,0)dt

Since α < 1, we have

ϕ(u)→−∞, as‖u‖→ ∞, u ∈ X1.

Similar to (3.11), we can obtain that for u ∈ H0⊕H+,u = u0 +u+,

∣∣∣∣∫ T

0
F(t,u(t))dt−

∫ T

0
F(t,u0)dt

∣∣∣∣≤ G8w2(|u0|)+ ε‖u+‖2 +G9‖u+‖α+1 +G10‖u+‖.

(3.17)

Case (i): if limsup|u|→∞,u∈N(A) |u|/(w2(|u|)) < +∞, then by (2.1), (2.3) and (3.17), for ∀ u∈
H0⊕H+, u = u0 +u+,

ϕ(u) =
1
2
〈(I−K)u+,u+〉+

∫ T

0
F(t,u(t))dt−

∫ T

0
F(t,u0)dt +

∫ T

0
F(t,u0)dt +

∫ T

0
(h(t),u(t))

≥ δ

2
‖u+‖2−G8w2(|u0|)− ε‖u+‖2−G9‖u+‖α+1−G10‖u+‖∫ T

0
F(t,u0)dt−C‖u+‖

∫ T

0
|h(t)|dt−|u0|

∫ T

0
|h(t)|dt

≥
(

δ

2
− ε

)
‖u+‖2−G9‖u+‖α+1 +G11‖u+‖

w2(|u0|)

(
−G8 +

1
w2(|u0|)

∫ T

0
F(t,u0)dt−

|u0|
∫ T

0 |h(t)|dt
w2(|u0|)

)

Choosing ε < δ/2, by (1.8), we have

ϕ(u)→+∞, as‖u‖→ ∞, u ∈ X2.

For case (ii) and case (iii), combining case (i) with the argument of Theorem 1.1, it is easy
to see that

ϕ(u)→+∞, as‖u‖→ ∞, u ∈ X2.

Thus we complete the proof.
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4. Examples

In this section, we give some examples to verify our theorems. At first, let T = 1 and

A =

 1 0 0
0 0 0
0 0 0

 .

Then dim N(A) = 2 and N(A) = span{α1,α2}, where α1 = (0,1,0) and α2 = (0,0,1). So
(C1) and (C2) hold.

Example 4.1. (i) Let

F(t,x) = (0.4T − t) |x|7/4, ∀ x ∈ RN , t ∈ [0,T ].

Then

|∇F(t,x)|= 7
4
|0.4T − t| |x|3/4.

Let w(|x|) = |x|3/4. Then it is clear that (f1) holds. Moreover,

limsup
|u|→∞

u∈N(A)

|u|
w2(|u|)

= limsup
|u|→∞

u∈N(A)

|u|
|u|3/2 = 0 < +∞,

lim
|u|→∞,
u∈N(A)

1
w2(|u|)

∫ T

0
F(t,u)dt = lim

|u|→∞,
u∈N(A)

−0.1T 2|u|7/4

|u|3/2 =−∞.

Hence, (1.4) holds and then by Theorem 1.1, system (1.1) has at least one solution.
(ii) Let

F(t,x) = (0.5T − t) |x|5/4− l(t)|x|5/2

1+ |x|2
, ∀ x ∈ RN , t ∈ [0,T ],

where l ∈C([0,T ];R+) with
∫ T

0 l(t)dt >
∫ T

0 |h(t)|dt. Then there exists C > 0 such that

|∇F(t,x)| ≤ 5
4
|0.5T − t| |x|1/4 +

l(t)( 9
2 |x|

7/2 + 5
2 |x|

3/2)
1+2|x|2 + |x|4

≤ 5
4
|0.5T − t| |x|1/4 +Cl(t)

Let w(|x|) = |x|1/4. Then it is clear that (f1) holds. Moreover,

limsup
|u|→∞

u∈N(A)

w2(|u|)
|u|

= limsup
|u|→∞

u∈N(A)

|u|1/2

|u|
= 0 < +∞,

lim
|u|→∞,
u∈N(A)

1
|u|1/2

∫ T

0
F(t,u)dt = lim

|u|→∞,
u∈N(A)

−|u|5/2 ∫ T
0 l(t)dt

|u|1/2 + |u|5/2 =−
∫ T

0
l(t)dt <−

∫ T

0
|h(t)|dt.

Hence, (1.6) holds and then by Theorem 1.1, system (1.1) has at least one solution.
(iii) Let

(4.1) F(t,x) = (0.4T − t) ln3/2(1+ |x|2)+d(t) ln(1+ |x|2), ∀ x ∈ RN , t ∈ [0,T ],
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and h satisfy
∫ T

0 h(t)dt = 0, where d ∈C([0,T ];R+). Then
∫ T

0 (h(t),α j)dt = 0, j = 1,2 and

|∇F(t,x)| ≤ 3
2
|0.4T − t| ln1/2(1+ |x|2)+d(t).

Let w(|x|) = ln1/2(1 + |x|2). Similar to the argument in [18], we know that (f1) holds.
Moreover,

lim
|u|→∞,
u∈N(A)

1
w2(|u|)

∫ T

0
F(t,u)dt = lim

|u|→∞,
u∈N(A)

−0.1T 2 ln1/2(1+ |u|2)+d(t) =−∞.

Hence, (1.7) holds and then by Theorem 1.1, system (1.1) has at least one solution. More-
over, note that H0 = N(A) (see [3]) and for any α ∈ (0,1),

lim
|u|→∞,

u∈H0

1
|u|2α

∫ T

0
F(t,u)dt = 0.

So (4.1) does not satisfy Theorem 1.3.

Example 4.2. (i) Let

F(t,x) = (0.6T − t) |x|7/4, ∀ x ∈ RN , t ∈ [0,T ].

Then
|∇F(t,x)|= 7

4
|0.6T − t| |x|3/4.

Let w(|x|) = |x|3/4. Then it is clear that (f1) holds. Moreover,

limsup
|u|→∞

u∈N(A)

|u|
w2(|u|)

= limsup
|u|→∞

u∈N(A)

|u|
|u|3/2 = 0 < +∞,

lim
|u|→∞,
u∈N(A)

1
w2(|u|)

∫ T

0
F(t,u)dt = lim

|u|→∞,
u∈N(A)

0.1T 2|u|7/4

|u|3/2 = +∞.

Hence, (1.8) holds and then by Theorem 1.2, system (1.1) has at least one solution.
(ii) Let

F(t,x) = (0.5T − t) |x|5/4 +
l(t)|x|5/2

1+ |x|2
, ∀ x ∈ RN , t ∈ [0,T ],

where l ∈C([0,T ];R+) and
∫ T

0 l(t)dt >
∫ T

0 |h(t)|dt. Then there exists C > 0 such that

|∇F(t,x)| ≤ 5
4
|0.5T − t| |x|1/4 +

l(t)( 9
2 |x|

7/2 + 5
2 |x|

3/2)
1+2|x|2 + |x|4

≤ 5
4
|0.5T − t| |x|1/4 +Cl(t).

Let w(|x|) = |x|1/4. Then it is clear that (f1) holds. Moreover,

limsup
|u|→∞

u∈N(A)

w2(|u|)
|u|

= limsup
|u|→∞

u∈N(A)

|u|1/2

|u|
= 0 < +∞,

lim
|u|→∞,
u∈N(A)

1
|u|1/2

∫ T

0
F(t,u)dt = lim

|u|→∞,
u∈N(A)

|u|5/2 ∫ T
0 l(t)dt

|u|1/2 + |u|5/2 =
∫ T

0
l(t)dt >

∫ T

0
|h(t)|dt.
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Hence, (1.10) holds and then by Theorem 1.2, system (1.1) has at least one solution.
(iii) Let

(4.2) F(t,x) = (0.6T − t) ln3/2(1+ |x|2)+d(t) ln(1+ |x|2), ∀ x ∈ RN , t ∈ [0,T ],

and h satisfy
∫ T

0 h(t)dt = 0, where d ∈C([0,T ];R+). Then
∫ T

0 (h(t),α j)dt = 0, j = 1,2 and

|∇F(t,x)| ≤ 3
2
|0.6T − t| ln1/2(1+ |x|2)+d(t).

Let w(|x|) = ln1/2(1 + |x|2). Similar to the argument in [17], we know that (f1) holds.
Moreover,

lim
|u|→∞,
u∈N(A)

1
w2(|u|)

∫ T

0
F(t,u)dt = lim

|u|→∞,
u∈N(A)

0.1T 2 ln1/2(1+ |u|2)+d(t) = +∞.

Hence, (1.11) holds and then by Theorem 1.2, system (1.1) has at least one solution. More-
over, similar to Example 4.1 (iii), (4.2) does not satisfy Theorem 1.3.
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