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Abstract. Let γ(G) and β (G) denote the domination number and the vertex cover number
of a graph G, respectively. We use Gγ=β for the set of graphs which have equal domination
number and vertex cover number. In this short note, we present a characterization for the
class Gγ=β .
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1. Introduction

In this note, we consider simple finite graphs G = (V,E) only and follow [1] and [5] for
terminology and definitions. For S ⊂ V (G), 〈S〉G denotes the subgraph induced by vertex
set S, and G−S is the subgraph of G obtained by deleting the vertices in S and all the edges
incident with them. A subset S of V (G) is a dominating set if every vertex of G is either in
S or is adjacent to a vertex in S. The minimum cardinality of a dominating set is called the
domination number and denoted by γ(G). A set D ⊆ V (G) is a vertex cover if every edge
of G has at least one end in D. The vertex cover number β (G) is the minimum cardinality
of a vertex cover of G.

The class of graphs with equal domination and vertex cover number is simplify denoted
by Gγ=β . A characterization of the family Gγ=β with minimum degree one was given in [5]
but was incomplete. The graph G shown in Figure 1 has domination number 4 and vertex
cover number 5, respectively. However, the graph G was included in the characterization in
[5]. Independently, Hartnell and Rall [2] also gave a characterization, but their characteri-
zation was involved and complicated. In this note, we give a new clear characterization of
graphs in Gγ=β with minimum degree one.

The minimum degree of G is denoted by δ (G). We denote by I(G) the set of isolated
vertices of G, and by End(G) the set of end-vertices (i.e., vertices of degree one) of G. An
edge incident with an end-vertex is called a pendant edge. A vertex adjacent to an end-
vertex is called a stem, and Stem(G) denotes the set of stems of G.
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Figure 1. γ(G) = 4 and β (G) = 5

A graph with a single vertex is called a trivial graph. The corona H ◦K1 of a graph H
is the graph obtained from H by adding a pendant edge to each vertex of H. A connected
graph G of order at least three is called a generalized corona if V (G) = End(G)∪Stem(G).

For a graph G, the maximum size of a matching is called the matching number of G
and denoted by ν(G). The class of extremal graphs with equal domination and matching
number, for abbreviation, denoted by Gγ=ν .

The following result is well-known.

Theorem 1.1. [3] If G is a graph without isolated vertices, then γ(G)≤ ν(G)≤ β (G).

There is a characterization of the family Gγ=ν in [6]. Unfortunately, their characterization
is incomplete, so it was corrected in [4] as follows.

Theorem 1.2. [4, Kano, Wu and Yu] Let G be a connected graph with δ (G) = 1. Then
G ∈ Gγ=ν if and only if G is K2 or a generalized corona, or every component H of G−
(End(G)∪Stem(G)) is one of the following:

(i) H is a trivial graph;
(ii) H is a connected bipartite graph with bipartition X and Y , where 1≤ |X |< |Y |. Let

U = V (H)∩NG(Stem(G)). Then /0 6= U ⊆ Y and for any two distinct vertices x1,
x2 of X that are adjacent to a common vertex of Y , there exist two distinct vertices
y1 and y2 in Y −U such that NH(yi) = {x1,x2}, for i = 1,2;

(iii) H is isomorphic to one of graphs shown in Figure 2, and γ(H−X) = γ(H) for all
/0 6= X ⊆U ⊂V (H), where U = V (H)∩NG(Stem(G)).
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Figure 2. Graphs in (iii) of Theorem 1.2.

It is clear that Gγ=β is a subclass of Gγ=ν from Theorem 1.1. Next we use Theorem 1.2
to give a complete characterization of graphs G with δ (G) = 1 in the family Gγ=β .

2. Main results

We start with two lemmas, then give a clear characterization of graphs in Gγ=β with mini-
mum degree one.
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Lemma 2.1. [5, Randerath and Volkmann] Let G be a connected graph with δ (G)≥ 2. Then
γ(G) = β (G) if and only if G is a bipartite graph with bipartition X and Y and the following
property is satisfied: for any two distinct vertices x1, x2 of X that are adjacent to a common
vertex of Y , there exist two distinct vertices y1 and y2 in Y such that NG(yi) = {x1,x2} for
i = 1,2. Moreover, γ(G) = β (G) = |X |.
Lemma 2.2. [7, Volkmann] Let G be a connected graph and H be a spanning subgraph of
G without isolated vertices. If γ(G) = β (G), then H ∈ Gγ=β and γ(H) = γ(G) = β (G) =
β (H). In particular, each component of H is in Gγ=β .

Now we give a complete characterization of graphs in Gγ=β with δ (G) = 1.

Theorem 2.1. Let G be a connected graph with δ (G) = 1. Then γ(G) = β (G) if and only
if G is K2 or a generalized corona, or for each component H of G− (End(G)∪Stem(G)), it
satisfies one of the following:

(i) H is a trivial graph;
(ii) H is a connected bipartite graph with bipartition X and Y , where 1≤ |X |< |Y |. Let

UH = V (H)∩NG(Stem(G)). Then /0 6= UH ⊆Y and for any two distinct vertices x1,
x2 of X that are adjacent to a common vertex of Y , there exist two distinct vertices
y1 and y2 in Y −UH such that NH(yi) = {x1,x2}, for i = 1,2.

Proof. If G is K2 or a generalized corona, then γ(G) = β (G) and the theorem holds. So,
in the following, we may assume that G is neither K2 nor a generalized corona, and G has
order at least three. We first show the sufficiency. Without loss of generality, assume there
is a minimum vertex cover set containing all the vertices in Stem(G). So

(2.1) β (G) = |Stem(G)|+∑
H

β (H),

where H runs over all non-trivial components of G− (End(G)∪Stem(G)).
Let G̃ be a graph consisting of all the non-trivial component H of G−(End(G)∪Stem(G))

and the subgraph
〈

End(G) ∪ Stem(G) ∪ I(G−(End(G)∪Stem(G)))
〉

G. Then G̃ is a span-
ning subgraph of G without isolated vertices. So γ(H) = β (H) = |X | by Lemma 2.1 and
Lemma 2.2.

Without loss of generality, for every minimum dominating set L of order γ(G) in G, we
assume Stem(G) ⊆ L. Let H be a non-trivial component of G− (End(G)∪Stem(G)), and
UH denote the set of vertices of H dominated by Stem(G), then all the vertices in H−UH
are dominated by V (H)∩L. By the assumption, H is a bipartite graph with bipartition X
and Y , where 1≤ |X |< |Y |. Since UH ⊆ Y , all the vertices in X of H are of degree at least
two. Let U ′

H ⊆UH and U ′′
H = UH −U ′

H . Suppose Ũ ⊆U ′′
H is the set of vertices of degree one

in graph H−U ′
H and H ′ = 〈V (H)−U ′

H ∪Ũ〉H ,

Claim 1. H ′ is a trivial graph or all the vertices in X of graph H ′ are of degree at least two.

Let x ∈ X be an isolated vertex in graph H ′, then x is either adjacent to at least one vertex
of degree at least two in H or all neighbors of x in H are end-vertices. If it is the former case,
then by assumption (ii), x has at least two neighbors in H−UH , which contradicts to that x is
an isolated vertex. Otherwise, U ′

H ∪Ũ =Y and H is a star K1,n (n≥ 2) since H is connected.
Hence if x ∈ X is an isolated vertex in graph H ′ then H ′ is a trivial graph. Next suppose
x1 ∈ X is a vertex of degree one in graph H ′ and adjacent to a vertex y ∈ Y −U ′

H ∪Ũ in H ′.
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Since all the vertices of Y −U ′
H ∪Ũ in H ′ are of degree two, then y is adjacent to another

vertex x2 in X . By assumption (ii), there exist two distinct vertices y1 and y2 in Y −UH such
that NH(yi) = {x1,x2}, for i = 1,2. A contradiction to dH ′(v) = 1, i.e. dH ′(v)≥ 2.

Claim 2. γ(H−U ′
H) = γ(H), for all U ′

H ⊆UH .

If H ′ is a trivial graph, then H is a star K1,n (n ≥ 2) by the proof of Claim 1. The claim
holds. Otherwise, H ′ is a connected bipartite graph with minimum degree at least two and
satisfies the condition of Lemma 2.1. So γ(H ′) = |X | and X is a minimum dominating set
of graph H ′. Hence adding some pendant edges adjacent to vertices in X will maintain the
domination number, i.e., γ(H−U ′

H) = |X |= γ(H).
Let γH = min{γ(H−U ′

H) |U ′
H ⊆UH}, then γH = γ(H) by Claim 2. Now we can compute

γ(G) as follows:

γ(G) =|L|= |stem(G)|+∑
H

γH = |stem(G)|+∑
H

γ(H)

=|stem(G)|+∑
H

β (H) = β (G). (by (2.1),

where H runs over all non-trivial components of G− (End(G)∪Stem(G)).
Next we first show the necessity. Let D be a minimum vertex cover set of G with

Stem(G)⊆D. Clearly, D is also a minimum dominating set of G. Let G′ = G−E(〈Stem(G)〉G),
where E(〈Stem(G)〉G) denotes the edges in the induced subgraph 〈Stem(G)〉G. Then we
next show that G′ is a bipartite graph with the partite sets D and V (G)−D. Since G′ is
a spanning subgraph of G without isolated vertices, then Lemma 2.2 yields that γ(G′) =
β (G′) = |D|. Clearly, D is also a minimum vertex cover of G′ and set V (G′)−D is an
independent set by the definition of vertex cover. Suppose that there exists an edge uv in
the induced subgraph G′[D]. By the construction of G′, there is at least one of {u,v}, say u,
which is not a stem in G. But now D−{u} is also a dominating set of G′, a contradiction.
Hence, G′ is bipartite with bipartition D and V (G)−D. Consequently, each component H
of G− (End(G)∪Stem(G)) is a trivial graph or a bipartite graph.

Since G ∈ Gγ=β , so G is also a member of Gγ=ν by Theorem 1.1. From Theorem 1.2, we
complete the proof.
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