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Abstract. The present work is concerned with the oscillation and asymptotic properties of
the third-order mixed neutral differential equation(
a(t)(x(t)+ p1(t)x(t− τ1)+ p2(t)x(t + τ2))

′′)′+q1(t)x(t−τ3)+q2(t)x(t +τ4)= 0, t ≥ t0.

We establish two theorems which guarantee that every solution x of the above equation
oscillates or limt→∞ x(t) = 0. These results complement some known results obtained in the
literature. Some examples are considered to illustrate the main results.
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1. Introduction

In recent years, there has been increasing interest in obtaining sufficient conditions for the
oscillation and nonoscillation of solutions of the third-order differential equations, we refer
the reader to the papers [1, 2, 5, 8, 15, 18–20] and [3, 4, 6, 7, 9, 10, 12–14, 16, 17, 21]. To the
best of our knowledge, it seems to have few results for the oscillation of third-order mixed
neutral differential equations, see the articles [7, 9, 10, 21]. We note that neutral differential
equations have various applications in problems dealing with vibrating masses attached to
an elastic bar and in some variational problems. For further applications and questions
concerning the existence and uniqueness of solutions of neutral differential equations, see
Hale [11].
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This paper is concerned with the following third-order mixed neutral functional differ-
ential equation (

a(t)(x(t)+ p1(t)x(t− τ1)+ p2(t)x(t + τ2))
′′)′

+q1(t)x(t− τ3)+q2(t)x(t + τ4) = 0, t ≥ t0.
(1.1)

Throughout this paper, we will assume the following assumptions hold.

(h1) a ∈C1([t0,∞),R), a(t) > 0 for t ≥ t0;
(h2) pi ∈C([t0,∞), [0,ai]), where ai are constants for i = 1, 2, and a1 +a2 < 1;
(h3) q j ∈C([t0,∞),(0,∞)), for j = 1, 2;
(h4) τi ≥ 0 are constants, for i = 1, 2, 3, 4.

Regarding third-order differential equations, Hanan [15] studied the third order linear
differential equation

(1.2) x′′′(t)+ p(t)x(t) = 0, t ≥ t0,

and established some sufficient conditions for oscillation and nonoscillation of equation
(1.2). He showed that if

liminf
t→∞

t3 p(t) >
2

3
√

3
,

then every solution of equation (1.2) is oscillatory. Baculı́ková and Džurina [3] obtained
some sufficient conditions which ensure that all nonoscillatory solutions of[

a(t)
(
[x(t)+ p(t)x(δ (t))]′′

)γ
]′

+q(t)xγ(τ(t)) = 0, t ≥ t0

tend to zero when t → ∞. Han et al. [12] considered the oscillation of nth-order neutral
delay differential equation

(x(t)− p(t)x(τ(t)))′′′+q(t) f (x(δ (t))) = 0, t ≥ t0,

and the authors established some oscillation criteria for the above equation which general-
ized the results given in [15].

For the oscillation of nth-order mixed neutral functional differential equations, Grace [9]
obtained some oscillation theorems for the odd order neutral differential equation

(x(t)+ p1x(t− τ1)+ p2x(t + τ2))
(n) = q1x(t−σ1)+q2x(t +σ2), t ≥ t0,

where n ≥ 1 is odd. Grace [10] and Yan [21] established several sufficient conditions for
the oscillation of higher order neutral functional differential equation of the form

(1.3) (x(t)+ cx(t−h)+Cx(t +H))(n) +qx(t−g)+Qx(t +G) = 0, t ≥ t0,

where q and Q are nonnegative real constants.
The aim of this paper is to examine the oscillatory behavior of equation (1.1). By a

solution of equation (1.1), we mean a function x ∈ C([Tx,∞),R) for some Tx ≥ t0 which
has the properties [x(t) + p1(t)x(t − τ1) + p2(t)x(t + τ2)] ∈ C2([Tx,∞),R) and a(t)[x(t) +
p1(t)x(t−τ1)+ p2(t)x(t +τ2)] ∈C1([Tx,∞),R) and satisfying equation (1.1) on [Tx,∞). As
is customary, a solution of equation (1.1) is called oscillatory if it has arbitrarily large zeros
on [t0,∞), otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all
its solutions oscillate.
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The paper is organized as follows: In Section 2, we give some sufficient conditions which
guarantee that every solution x of equation (1.1) is either oscillatory or limt→∞ x(t) = 0. In
Section 3, two examples are considered to illustrate the main results.

2. Main results

In this section we give some new oscillation criteria for equation (1.1). For the sake of
convenience, when we write a functional inequality without specifying its domain of validity
we assume that it holds for all sufficiently large t. Before stating our main results, we
begin with the following lemmas which are crucial in the proofs of the main results. In the
following, we use the notations

z(t) = x(t)+ p1(t)x(t− τ1)+ p2(t)x(t + τ2), Q(t) = Q1(t)+Q2(t),

Q1(t) = min{q1(t),q1(t− τ1),q1(t + τ2)}, Q2(t) = min{q2(t),q2(t− τ1),q2(t + τ2)},

η(t) =
k(t− τ3)

2
Q(t), for some k ∈ (0,1), and (ρ ′(t))+ = max{0,ρ ′(t)}.

Lemma 2.1. Assume that

(2.1)
∫

∞

t0

1
a(t)

dt = ∞.

Furthermore, assume that x is a positive solution of equation (1.1). Then there are only the
following two cases for t ≥ t1 sufficiently large:

(1) z(t) > 0, z′(t) > 0, z′′(t) > 0, (a(t)z′′(t))′ < 0, or
(2) z(t) > 0, z′(t) < 0, z′′(t) > 0, (a(t)z′′(t))′ < 0.

Proof. Let x be a positive solution of equation (1.1). Then there exists a t1 ≥ t0 such that
x(t) > 0, x(t− τ1) > 0, x(t + τ2) > 0, x(t− τ3) > 0 and x(t + τ4) > 0 for all t ≥ t1. Then
z(t) > 0 for all t ≥ t1. It follows from equation (1.1) that

(2.2) (a(t)z′′(t))′ =−q1(t)x(t− τ3)−q2(t)x(t + τ4) < 0, t ≥ t1.

Hence, a(t)z′′(t) is strictly decreasing on [t1,∞). We claim that z′′(t) > 0 for t ≥ t1. If not,
then there exist t2 ≥ t1 and c1 < 0 such that

a(t)z′′(t)≤ a(t2)z′′(t2)≤ c1, t ≥ t2.

Integrating the above inequality from t2 to t, we have

z′(t)≤ z′(t2)+ c1

∫ t

t2

1
a(s)

ds.

Letting t→ ∞, then z′(t)→−∞. Thus, there exist t3 ≥ t2 and c2 < 0 such that for t ≥ t3,

z′(t)≤ c2.

Integrating the above inequality from t3 to t, we obtain

z(t)− z(t3)≤ c2(t− t3).

Then limt→∞ z(t) =−∞, which is a contradiction. The proof is complete.
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Lemma 2.2. [3, Lemma 4] Let z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) ≤ 0 on (Tl ,∞). Then,
for any k ∈ (0,1), and for some tk, one has

(2.3)
z(t)
z′(t)

≥ t−Tl

2
≥ kt

2
for t ≥ tk ≥ Tl .

Lemma 2.3. Let x be a positive solution of equation (1.1) and the corresponding z satisfy
(2) in Lemma 2.1. If

(2.4)
∫

∞

t0

∫
∞

v

1
a(u)

∫
∞

u
[q1(s)+q2(s)]dsdudv = ∞

holds, then limt→∞ x(t) = 0.

Proof. Note that a1 +a2 < 1. The proof of Lemma 2.3 is similar to that of [3, Lemma 2].
Next, we will give some oscillation results which guarantee that every solution x of

equation (1.1) oscillates or limt→∞ x(t) = 0.

Theorem 2.1. Assume that (2.1) holds. Suppose further that (2.4) holds, a′(t) ≥ 0 and
τ3 ≥ τ1. Assume also that there exists ρ ∈C1([t0,∞),(0,∞)) such that

(2.5) limsup
t→∞

∫ t

t1

[
ρ(s)η(s)− 1+a1 +a2

4
a(s− τ3)((ρ ′(s))+)2

ρ(s)

]
ds = ∞

holds for all sufficiently large t1. Then every solution x of equation (1.1) oscillates or
limt→∞ x(t) = 0.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume
that there exists a t1 ≥ t0 such that x(t) > 0, x(t− τ1) > 0, x(t + τ2) > 0, x(t− τ3) > 0 and
x(t + τ4) > 0 for all t ≥ t1. Then we have z(t) > 0 and (2.2) for t ≥ t1. By applying (1.1),
for all sufficiently large t, we obtain

(a(t)z′′(t))′+q1(t)x(t− τ3)+q2(t)x(t + τ4)

+a1(a(t− τ1)z′′(t− τ1))′+a1q1(t− τ1)x(t− τ1− τ3)+a1q2(t− τ1)x(t + τ4− τ1)

+a2(a(t + τ2)z′′(t + τ2))′+a2q1(t + τ2)x(t + τ2− τ3)+a2q2(t + τ2)x(t + τ2 + τ4) = 0.

Thus
(a(t)z′′(t))′+a1(a(t− τ1)z′′(t− τ1))′+a2(a(t + τ2)z′′(t + τ2))′

+Q1(t)z(t− τ3)+Q2(t)z(t + τ4)≤ 0.
(2.6)

By Lemma 2.1, there are two cases for z.
Assume that case (1) holds for t ≥ t2 ≥ t1. It follows from z′(t) > 0 that z(t + τ4) ≥

z(t− τ3). Thus, by (2.6), we obtain

(2.7) (a(t)z′′(t))′+a1(a(t− τ1)z′′(t− τ1))′+a2(a(t + τ2)z′′(t + τ2))′+Q(t)z(t− τ3)≤ 0.

Using the Riccati transformation

(2.8) ω1(t) = ρ(t)
a(t)z′′(t)
z′(t− τ3)

, t ≥ t2.

Then ω1(t) > 0 for t ≥ t2. Differentiating (2.8), we see that

ω
′
1(t) = ρ

′(t)
a(t)z′′(t)
z′(t− τ3)

+ρ(t)
(a(t)z′′(t))′

z′(t− τ3)
−ρ(t)

a(t)z′′(t)z′′(t− τ3)
(z′(t− τ3))2 .
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By (2.2), we have a(t− τ3)z′′(t− τ3)≥ a(t)z′′(t). Thus, from (2.8), we get

(2.9) ω
′
1(t)≤

(ρ ′(t))+
ρ(t)

ω1(t)+ρ(t)
(a(t)z′′(t))′

z′(t− τ3)
− (ω1(t))2

ρ(t)a(t− τ3)
.

Next, define the function ω2 by

(2.10) ω2(t) = ρ(t)
a(t− τ1)z′′(t− τ1)

z′(t− τ3)
, t ≥ t2.

Then ω2(t) > 0 for t ≥ t2. Differentiating (2.10), we obtain

ω
′
2(t) = ρ

′(t)
a(t− τ1)z′′(t− τ1)

z′(t− τ3)
+ρ(t)

(a(t− τ1)z′′(t− τ1))′

z′(t− τ3)

−ρ(t)
a(t− τ1)z′′(t− τ1)z′′(t− τ3)

(z′(t− τ3))2 .

Note that τ3 ≥ τ1. By (2.2), we find a(t − τ3)z′′(t − τ3) ≥ a(t − τ1)z′′(t − τ1). Hence, by
(2.10), we get

(2.11) ω
′
2(t)≤

(ρ ′(t))+
ρ(t)

ω2(t)+ρ(t)
(a(t− τ1)z′′(t− τ1))′

z′(t− τ3)
− (ω2(t))2

ρ(t)a(t− τ3)
.

In the following, we define another function ω3 by

(2.12) ω3(t) = ρ(t)
a(t + τ2)z′′(t + τ2)

z′(t− τ3)
, t ≥ t2.

Then ω3(t) > 0 for t ≥ t2. Differentiating (2.12), we find

ω
′
3(t) = ρ

′(t)
a(t + τ2)z′′(t + τ2)

z′(t− τ3)
+ρ(t)

(a(t + τ2)z′′(t + τ2))′

z′(t− τ3)

−ρ(t)
a(t + τ2)z′′(t + τ2)z′′(t− τ3)

(z′(t− τ3))2 .

By (2.2), we obtain a(t− τ3)z′′(t− τ3)≥ a(t + τ2)z′′(t + τ2). Then, by (2.12), we get

(2.13) ω
′
3(t)≤

(ρ ′(t))+
ρ(t)

ω3(t)+ρ(t)
(a(t + τ2)z′′(t + τ2))′

z′(t− τ3)
− (ω3(t))2

ρ(t)a(t− τ3)
.

Therefore, by (2.9), (2.11) and (2.13), we obtain

ω
′
1(t)+a1ω

′
2(t)+a2ω

′
3(t)

≤ ρ(t)
[
(a(t)z′′(t))′+a1(a(t− τ1)z′′(t− τ1))′+a2(a(t + τ2)z′′(t + τ2))′

z′(t− τ3)

]
+

(ρ ′(t))+
ρ(t)

ω1(t)−
(ω1(t))2

ρ(t)a(t− τ3)
+a1

(ρ ′(t))+
ρ(t)

ω2(t)−a1
(ω2(t))2

ρ(t)a(t− τ3)

+a2
(ρ ′(t))+

ρ(t)
ω3(t)−a2

(ω3(t))2

ρ(t)a(t− τ3)
.

(2.14)
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Thus, from (2.7) and (2.14), we get

ω
′
1(t)+a1ω

′
2(t)+a2ω

′
3(t)

≤−ρ(t)Q(t)
z(t− τ3)
z′(t− τ3)

+
(ρ ′(t))+

ρ(t)
ω1(t)−

(ω1(t))2

ρ(t)a(t− τ3)
+a1

(ρ ′(t))+
ρ(t)

ω2(t)

−a1
(ω2(t))2

ρ(t)a(t− τ3)
+a2

(ρ ′(t))+
ρ(t)

ω3(t)−a2
(ω3(t))2

ρ(t)a(t− τ3)
.

(2.15)

On the other hand, using a′(t)≥ 0, z′′(t) > 0 for t ≥ t2, and

(a(t)z′′(t))′ = a′(t)z′′(t)+a(t)z′′′(t) < 0,

we have

(2.16) z′′′(t) < 0

for t ≥ t2. Then, by Lemma 2.2, we find, for any k ∈ (0,1), and for t sufficiently large,

z(t− τ3)
z′(t− τ3)

≥ k(t− τ3)
2

due to (2.3). Combining the above inequality with (2.15), we get

ω
′
1(t)+a1ω

′
2(t)+a2ω

′
3(t)

≤−ρ(t)
k(t− τ3)

2
Q(t)+

(ρ ′(t))+
ρ(t)

ω1(t)−
(ω1(t))2

ρ(t)a(t− τ3)
+a1

(ρ ′(t))+
ρ(t)

ω2(t)

−a1
(ω2(t))2

ρ(t)a(t− τ3)
+a2

(ρ ′(t))+
ρ(t)

ω3(t)−a2
(ω3(t))2

ρ(t)a(t− τ3)

(2.17)

for any k ∈ (0,1). Then, by (2.17), we find that

ω
′
1(t)+a1ω

′
2(t)+a2ω

′
3(t)≤−ρ(t)η(t)+

1+a1 +a2

4
a(t− τ3)((ρ ′(t))+)2

ρ(t)
.

Integrating the above inequality from t3 (t3 ≥ t2) to t, we obtain∫ t

t3

[
ρ(s)η(s)− 1+a1 +a2

4
a(s− τ3)((ρ ′(s))+)2

ρ(s)

]
ds≤ ω1(t3)+a1ω2(t3)+a2ω3(t3),

which contradicts (2.5).
Assume that case (2) holds. Then, by Lemma 2.3, we can obtain limt→∞ x(t) = 0. The

proof is complete.

Let ρ(t) = t. Then we can obtain the following corollary by Theorem 2.4.

Corollary 2.1. Assume that (2.1) holds. Suppose further that (2.4) holds, a′(t) ≥ 0 and
τ3 ≥ τ1. If

limsup
t→∞

∫ t

t1

[
sη(s)− 1+a1 +a2

4
a(s− τ3)

s

]
ds = ∞

holds for all sufficiently large t1, then every solution x of equation (1.1) oscillates or limt→∞ x(t)=
0.
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Theorem 2.2. Assume that (2.1) holds. Suppose further that (2.4) holds, a′(t) ≥ 0 and
τ1 ≥ τ3. Assume also that there exists ρ ∈C1([t0,∞),(0,∞)) such that

(2.18) limsup
t→∞

∫ t

t1

[
ρ(s)η(s)− 1+a1 +a2

4
a(s− τ1)((ρ ′(s))+)2

ρ(s)

]
ds = ∞

holds for all sufficiently large t1. Then every solution of equation (1.1) oscillates or limt→∞ x(t)=
0.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume
that there exists a t1 ≥ t0 such that x(t) > 0, x(t− τ1) > 0, x(t + τ2) > 0, x(t− τ3) > 0 and
x(t + τ4) > 0 for all t ≥ t1. Then we have z(t) > 0 and (2.2) for t ≥ t1. Proceeding as in the
proof of Theorem 2.4, we get (2.6).

By Lemma 2.1, there are two cases for z.
Assume that case (1) holds for t ≥ t2 ≥ t1. Then, we obtain (2.7). Using the Riccati

transformation

ω1(t) = ρ(t)
a(t)z′′(t)
z′(t− τ1)

, t ≥ t2,

ω2(t) = ρ(t)
a(t− τ1)z′′(t− τ1)

z′(t− τ1)
, t ≥ t2

and

ω3(t) = ρ(t)
a(t + τ2)z′′(t + τ2)

z′(t− τ1)
, t ≥ t2,

respectively. Similar to the proof of Theorem 2.4, we get

ω
′
1(t)+a1ω

′
2(t)+a2ω

′
3(t)

≤−ρ(t)Q(t)
z(t− τ3)
z′(t− τ1)

+
(ρ ′(t))+

ρ(t)
ω1(t)−

(ω1(t))2

ρ(t)a(t− τ1)
+a1

(ρ ′(t))+
ρ(t)

ω2(t)

−a1
(ω2(t))2

ρ(t)a(t− τ1)
+a2

(ρ ′(t))+
ρ(t)

ω3(t)−a2
(ω3(t))2

ρ(t)a(t− τ1)
.

(2.19)

On the other hand, we have (2.16) for t ≥ t2. Then, by Lemma 2.2, for any k ∈ (0,1), we
find

z(t− τ3)
z′(t− τ1)

=
z(t− τ3)
z′(t− τ3)

z′(t− τ3)
z′(t− τ1)

≥ k(t− τ3)
2

z′(t− τ3)
z′(t− τ1)

≥ k(t− τ3)
2

due to τ1 ≥ τ3 and z′′(t) > 0 for t ≥ t2. Combining the above inequality with (2.19), we get

ω
′
1(t)+a1ω

′
2(t)+a2ω

′
3(t)

≤−ρ(t)
k(t− τ3)

2
Q(t)+

(ρ ′(t))+
ρ(t)

ω1(t)−
(ω1(t))2

ρ(t)a(t− τ1)
+a1

(ρ ′(t))+
ρ(t)

ω2(t)

−a1
(ω2(t))2

ρ(t)a(t− τ1)
+a2

(ρ ′(t))+
ρ(t)

ω3(t)−a2
(ω3(t))2

ρ(t)a(t− τ1)
.

(2.20)

Then, by (2.20), we find that

ω
′
1(t)+a1ω

′
2(t)+a2ω

′
3(t)≤−ρ(t)η(t)+

1+a1 +a2

4
a(t− τ1)((ρ ′(t))+)2

ρ(t)
.
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Integrating the above inequality from t2 to t, we obtain∫ t

t2

[
ρ(s)η(s)− 1+a1 +a2

4
a(s− τ1)((ρ ′(s))+)2

ρ(s)

]
ds≤ ω1(t2)+a1ω2(t2)+a2ω3(t2),

which contradicts (2.18).
Assume that case (2) holds. Then, by Lemma 2.3, we can obtain limt→∞ x(t) = 0. This

completes the proof.

Let ρ(t) = t. Then we can obtain the following corollary by Theorem 2.6.

Corollary 2.2. Assume that (2.1) holds. Suppose further that (2.4) holds, a′(t) ≥ 0 and
τ1 ≥ τ3. If

limsup
t→∞

∫ t

t1

[
sη(s)− 1+a1 +a2

4
a(s− τ1)

s

]
ds = ∞

holds for all sufficiently large t1, then every solution x of equation (1.1) oscillates or limt→∞ x(t)=
0.

Remark 2.1. Adding some restrictions on arguments τi(t), for i = 1, 2, 3, 4, our results
can be extended to the third-order mixed neutral functional equation(
a(t)(x(t)+ p1(t)x(t− τ1(t))+ p2(t)x(t + τ2(t)))

′′)′+q1(t)x(t−τ3(t))+q2(t)x(t +τ4(t))= 0

for t ≥ t0, the details are left to the reader.

3. Examples

Grace [10] and Yan [21] considered the oscillation of equation

(3.1) (x(t)+ cx(t−h)+Cx(t +H))′′′+qx(t−g)+Qx(t +G) = 0, t ≥ t0,

where c, C and Q are nonnegative real constants, and g, G, h, H and Q are positive real
constants. They obtained some oscillation theorems for equation (3.1). For example

Theorem 3.1. [10, Theorem 5] If g > h, and(
q

1+ c+C

)1/3(g−h
3

)
c > 1,

then every solution of equation (3.1) is oscillatory.

Theorem 3.2. [21, Theorem 5] If g > h, and

q
( e

3

)3
(g−h)3 > exp

[
−
(

q
1+ c+C

)1/3

h

]
+ c+C exp

[
−
(

q
1+ c+C

)1/3

(H +h)

]
,

then every solution of equation (3.1) is oscillatory.

We note that Theorem 3.1 and Theorem 3.2 are based on the condition g > h, that is, these
results cannot be applied to equation (3.1) for the case when g≤ h. Therefore, Theorem 2.6
obtained in this paper complements results of [10, 21].

In the following, we will give two examples to illustrate the main results.
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Example 3.1. Consider the third-order differential equation
(3.2)(

x(t)+
1
3

x(t−1)+
1
3

x(t +1)
)′′′

+
(

e−2 +
1
3

e−1
)

x(t−2)+
1
3

x(t +1) = 0, t ≥ t0.

Let

a(t) = 1, p1(t) = p2(t) =
1
3
, q1(t) = e−2 +

e−1

3
, q2(t) =

1
3
,τ1 = τ2 = τ4 = 1,τ3 = 2.

Clearly, (2.1) holds. Take ρ(t) = 1. Then condition (2.5) holds. On the other hand, we have
(2.4). Then, by Theorem 2.4, every solution x of equation (3.2) oscillates or limt→∞ x(t) =
0. It is easy to find that x(t) = e−t is a solution of equation (3.2). However, the results
established in [10, 21] do not apply to equation (3.2).

Example 3.2. Consider the third-order differential equation
(3.3)(

αt (x(t)+ p1(t)x(t− τ1)+ p2(t)x(t + τ2))
′′)′+ β

t
x(t− τ3)+

γ

t
x(t + τ4) = 0, t ≥ t0,

where α, β , γ are positive constants, 0≤ pi(t)≤ ai, for i = 1, 2, a1 +a2 < 1.
Let

a(t) = αt, p1(t) = p2(t) =
1
3
, q1(t) =

β

t
, q2(t) =

γ

t
.

It is easy to verify that all the conditions of Corollary 2.7 hold. Thus, from Corollary 2.7,
every solution x of equation (3.3) oscillates or limt→∞ x(t) = 0.

Remark 3.1. It remains an open problem to study equation (1.1) when
∫

∞

t0 1/a(t)dt < ∞ or
a′(t)≤ 0.
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