BULLETIN of the Bull. Malays. Math. Sci. Soc. (2) 35(3) (2012), 819-827
MALAYSIAN MATHEMATICAL
SCIENCES SOCIETY
http:/math.usm.my/bulletin

The Borel Radius and the S Radius of the K-Quasimeromorphic
Mapping in the Unit Disc

L2YINYING KONG AND 'HUILIN GAN

School of Mathematics and Computational Science,

Guangdong University of Business Studies, Guangzhou, 510320, China
2LLMAM, Université de Bretagne-Sud, Campus de Tohanic, 56017 Vannes, France;
Université Européenne de Bretagne, France
kongcoco@hotmail.com

Abstract. By using Ahlfors’ theory of covering surface, a fundamental inequality for the
K-quasimeromorphic mapping in the unit disc is established. As an application, some results
on the Borel radius and the S radius dealing with multiple values of the K-quasimeromorphic
mapping in the unit disc are obtained.
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1. Introduction

In 1997, the value distribution theory of meromorphic functions due to Nevanlinna (see
[11,12,15] for standard references) has been extended to the corresponding theory of the
K-quasimeromorphic mapping by Sun and Yang [10]. The K-quasimeromorphic mapping
is a more widespread function than the meromorphic function, but it has no derivative, even
the partial derivative does not exist everywhere. They established a fundamental inequality
on the complex plane and used it to prove the existence theorem of the Borel direction and
the filling disc theorem of the K-quasimeromorphic mapping. In 1999, Gao [5] established
a fundamental inequality dealing with multiple values on the complex plane and improved
some results of [10].

Recently, the singular direction is one of the interesting topics studied in the theory of
value distribution of the K-quasimeromorphic mapping on the complex plane such as Julia
direction, Borel direction, Nevanlinna direction and S direction, see [2,4,8,13,14,16]. Their
existence theorems and some connections between them have also been established, which
extends the relative properties of meromorphic function on the complex plane. In 2004,
Yang and Liu [16] used a fundamental inequality of an angular domain on the complex
plane to confirm the existence of a Borel direction of the K-quasimeromorphic mappings
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of the zero order. Later, Wu and Sun [14] proved the existence of a S direction for the
K-quasimeromorphic mapping on the complex plane, which was inspired by the idea of the
T-direction [6] for the meromorphic function.

Theorem 1.1. Let f (z) be K-quasimeromorphic mapping on the complex plane and satisfy
1im (S(r, f))/(Inr)? = oo, then there exists a ray argz = 0 (namely S direction) such that

forany € >0,
mn(Q(G —g,0+¢€),ra)

roe S(r,f)

holds for all a € C. := CUco, except for two possible exceptional values.

>0

It is well known that if f is a transcendental meromorphic function defined in |z] < 1,
it will share some properties with the one on the complex plane, see [1,7,11]. Thus a
natural question is: Is there a Borel radius or a S radius for the K-quasimeromorphic map-
ping in |z| < 1? However, until now only a few results on the singular radius of the K-
quasimeromorphic mapping have been discussed, see [3,9]. So in this paper, we establish
a more precise fundamental inequality for the K-quasimeromorphic mapping in the unit
disc and confirm the existence of the Borel radius and the S radius (dealing with multiple
values) for the K-quasimeromorphic mapping in the unit disc, which develop some results
of [4,10,13]. To do so, we recall some definitions and notations, which can be found
in [8, 10].

Definition 1.1. [10] Let f(s) be a homeomorphism from D to D If for any rectangle {z =
x+iy;a<x<b,c<y<d}inD,
(i) f(x+iy) is absolutely continuous of y for almost every fixed x € (a,b) and f(x+1iy)
is absolutely continuous of x for almost every fixed y € (c,d);
(ii) there exists a constant K > 1 such that

[fz@)]+ 1£22)] < K(|f2(2)| = 1 z(2)])

holds almost everywhere in D; then f is named an univalent K-quasimeromorphic
mapping in D.

Definition 1.2. [10] Letr f be a complex and continuous function in the region D. For a
point zo in D, if there is a neighborhood U (C D) and a positive integer n depending on 7,

such that
F(z) = { (f(z))l/na f(z0) =00
(F(=) = Fo) /" + f(z0),  f(z0) # oo
is an univalent K-quasimeromorphic mapping, then f is named n-valent K-quasimeromorphic
mappings at point zo. If f is n-valent K-quasimeromorphic at every point of D, then f is
called a K-quasimeromorphic mapping in D.

It is obvious that a meromorphic function is a 1-quasimeromorphic mapping. The com-
position function g o f of a meromorphic function g and a K-quasimeromorphic mapping
f is still a K-quasimeromorphic mapping. Let n(r,a) be the number of zero points of
f(z) —ain disc |z| < r. If the multiple zeros are counted only once, then we use 7(r,a).
Let n(Q(@ — €, + €),r,a) be the number of zero points f(z) —ain {@ — & < argz < @+
€} N{|z| < r}. If the multiple zeros are counted only once, we use 7I(Q(Q — €, ¢ +€),r,a).
Let i) (Q(@ — €,¢ + €),r,a) be the number of distinct roots with the multiplicity < I of
f(z) = a in the same region.
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Let V be a Riemann sphere whose diameter is 1. f(z) = u(x,y) +iv(x,y) is a K-quasime-
romorphic mapping in the angular domain E = Q(¢y, ¢2) N {|z| < r}. Set

F X X
S(E, f) = S(Q(¢1,¢2),7) ||v| //eE fﬁf V”y) rdrdo.

where |F;| is the area of the image of E on V and | V]| is the area of V. If E = {|z| < r}, then
S(E, f) can be replaced by S(r, f).

Definition 1.3. Let f(z) be a K-quasimeromorphic mapping defined in the unit disc. If
S(r,f) — +ooas r — 17, then we call f(z) transcendental. The order of the transcendental
K-quasimeromorphic mapping in the unit disc is defined by

InS(r, f)
p= rl—1>1*—ln(l—r)

Ifp= lil}li (InS(r, f))/(—=In(1—r)), then f(z) is of regular growth. Especially, when K = 1,

if S(r, f) is replaced by T (r, f) = [ S(¢, f)/tdt, then p is called the order of the meromor-
phic function f(z).

Definition 1.4. Let f(2) be a transcendental K-quasimeromorphic mapping defined in the
unit disc. A radius A(Q) = {z: argz = ¢, |z| < 1} is called a Borel radius of the order
p € (0,+400) for the K-quasimeromorphic mapping f(z) in the unit disc, provided that for
any € € (0,7),

llm lnﬁ(g((p - 87 (P + 8)) raa

)
>
i In L P

holds for all a € Co, except for two possible exceptional values.

Note that this definition of Borel radius meaningfully characterizes the growth of f(z)
only when 0 < p < . Inspired by the idea of [14], we give a definition of the S radius in
the unit disc.

Definition 1.5. Let f(2) be a transcendental K-quasimeromorphic mapping defined in the
unit disc. A radius A(@) is called a S radius of f(2) dealing with multiple values 1(> 3),
provided that for any € > 0,

7) —
llm n (Q((p 8’(p+8)7r7a)
r—1- S(I", f)
holds for all a € C., except for two possible exceptional values. If | — oo, A(Q) is called
the S radius of f(z) in the unit disc (S direction in the case of the complex plane).

>0

2. Preliminary lemmas

Lemma 2.1. [5] Let f(z) be a K-quasimeromorphic mapping in |z| < R and {ay,az," -,
aq} be q(q > 3) distinct points with the mutual spherical distance no less than 6 € (0,1/2),
then for any r € (0,R), we have

2 d (960+2gm)>  2°7*K R
_z ) : .
( -2 )<rf> L Ra)+ T

~Io
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Lemma 2.2. [7] Let f(z) be a meromorphic function defined in |z| < 1, then

— InT(r,f) —— InS(n, )
lim —————— = lim ———— = 1.
r—lglf—ln(l—r) p@rlr{lf—ln(l—r) pt

3. Main results and their proofs

Theorem 3.1. Let f(z) be a K-quasimeromorphic mapping in |z| < 1. A and Ay are two
angular domains with the common vertex on the center of the unit disc, where

A=Q(@—1,0+M) CA:=Q(¢—1Mo,¢+M0), 0<N <M, 0< ¢ <27
Then,

2 2In2 \ & 3+r 1
. _n_Z= < ) - a -
3.1 <q 2 I)S(A’r)— <1+ln l ) E n (AO, ) ,a)—l—()(lnl r)’

2In2 \ & 3 1
(3.2) (g—2)S(A,r) < <1+l nl )Zn(Ao,Ir,av)—l-O(lnl_r),

n1= ) =1

where ay,az,- -+ a4 are q distinct points in V with the mutual spherical distance not less

than 6 € (0,1/2), ro € (1/2,1) and r € (1o, 1).
Proof. Letry=1—(1-rg)/2" (i=0,1,---), then r; = (1+ro)/2. For any r € (ri,1),

there exists n € N, such that r, <r <ru41. So we set

rl.‘j:rl.+m (j=0,1,---n—1),

then r; o = r; and r;,, = r;4.1. For any positive integer i > 2, we set
Ao(rijyrivr jr1) == Do N{rij <lz| <rivr i}
So we can easily see that there exists an integer jo € [0,n — 1] such that

n+1

q
Zﬁl>(U Ao(7ijos Tijor1),av) <
v=1 i=0 v

ﬁ[) (A07 rn+27av)a

M-

S| =

1

where Ao (7 jy, Fijo+1) = Do N {rijy < |z| < 7ijo+1} Then, we set

A(r,{,rfﬂ) ::Aﬁ{rl{ <z < er} C Ao (7 jos Tit1,jo+1)s

where
p_ Tigo Flijort y _ Tikljo T it jotl
rp = v i = :
2 2
Without loss of generality, we suppose that ¢ = 0. Since
1—rg 1—jo , , l1—ro 2jo+1
i’i+l,j0+1_ri,j0—2i+2(2+ " ) Tl =7 = i 2- n ’

then Ag(r; jy,7it1,jo+1) (i =2,3,---) can map mutually by some transforms such that their
sub domains A(r},r7, ;) and whose centers ((r; +r/,;)/2,0) map each other, respectively.
Through the Riemann mapping theorem, for any fixed i, we can map the Ag(7; jy, 7it1,jo+1)

on |§| < 1 by a conformal mapping g such that the point ((r;+7}, )/2,0) of Ao(7i jy, Fis1,jo+1)
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becomes & = 0, then the image of A(r},r7, ) is contained in |§| < ¢ < 1, where ¢(> 0) is a
constant defined by 1, 1o and rg, independent of i. Hence by Lemma 2.1, we have

q
(q—Z—%)S(cufog h< Y a1, fog ! =a,)+ "
v=I

where H is a constant. Then,

2 g H .
(qzl) S(A(V;,V;Jrl),f)g Znl>(AO(ri,j()ari+l.jo+l)7av)+ 1 ) l:(),l,"',l’l.
v=1

Adding two sides of the above expression from i = 0 to n, we obtain

2\ & H
(q—2—1>25( rioTivn)s <ZZ” (Bo(rijosriv1,jo+1),av) + 7 (n+1).
i=0

i=0v=
Since r, < r < 141, then

3471, 34+4r 1—r 1 1 1 2n+l
= < <1-— < < = .
n42 4 = 4 4 rn+272n+2’ l—rfl—r,,ﬂ 1—ro
Hence 1 1 1 2In2
n
oM< 1<1+—1 < 1
Sioe TS NSy a Sl (r=17)

When r is sufficiently close to 17, we have

(q2?>S(A,r)§(q 2>ZS (i), )+<q2?)S(A,r1)

LA n+1 2
<Y Y A (Ao(rijorivn o) ) + %HCI—Z— 7)8(4,r1)
i=0v=1
nodq no4q 2H(n+1
< Z Zn >(A0(ri,j07ri.j0+l)aav)+Z Znl)(AO(ri,j0+l7ri+1,j0+1);av)+ %
i=0v=1 i=0v=1
l d 2H(n+1
DL B0 i2.) +
n = 1—c
2In2 \ ¢ 3+r 1
<1 i) ( Ao, —— o1 :
_< +ln1]r>vzln (o, y) ,av)+ n—
So (3.1) follows, the second inequality (3.2) can be obtained by the similar proof. 1

Remark 3.1. Theorem 3.1 gives a fundamental inequality for the K-quasimeromorphic
mapping in an angular domain of the unit disc, which is more precise than that of [3]. If
K =1, it is also better than [11, Theorem VII.14, P.291] and [7, Lemma 3].

Theorem 3.2. Let f(z) be a K-quasimeromorphic mapping in the unit disc with the order
p € (0,+0), then f(z) has a Borel radius of the order p.

Proof. Otherwise, for any ¢ € [0,27), there exists &, > 0 and three distinct complex num-
bers aj,a;, a3 € Co such that

— Inn(Q(@ — €y, 0+ ¢€p),1a; .

(3.3) i AP — o 0 H Ep)orar) o)

r—1- 11’1L
1—r
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It is obvious that the open sets {(¢ — £, /4,¢0 + &, /4)|¢ € [0,27)} cover the unit disc.
From the finite covering theorem, there exists a subsequence
_ Lo Sﬂ) . ( _ o () )
((Pl 4 7(p1+ 4 I ’ q)l‘l 4 ,(Pn"" 4
lying in (Qx — &g, @« +&p,) (k=1,---,n), such that for any £ > 0 and each k

3 1 pPo+E
Zn<sz<<p—s¢,<p+e¢>,r,a,-><3< ) .
i=1

1—r

By (3.2) of Theorem 3.1, it follows that

S(r, f) g): k——,<p+ )

2 1n2 €p, . r+3 1
—= )+ O(1 .
1 —r Z:.Z” ERA 2) 4 i)+ (nl—r)
Then, there is a positive constant C such that
2In2 1

1
S(r.f) < €L+ ) (7,7 +0(ln 5

—r —r

1—r

This is in contradiction to that f(z) is of the order p. 1

Corollary 3.1. Let f(z) be a meromorphic function in the unit disc with the order p €
(0,+4-o0), then f(z) has a Borel radius of the order p + 1.

Remark 3.2. Why the Borel radius is of the order p + 1? In fact, from Lemma 2.2

1 1
ara) = 050:1) =0 1570 ) =0 (11,1
—-r —r
in general comes into existence when r — 17. Hence for some ray to be a Borel radius for
a function f, it means that the function f has a maximal number(relative to its growth) of
a-points in an €—neighborhood of that ray.

Theorem 3.3. Let f(z) be a K-quasimeromorphic mapping defined in |z| < 1 and satisfy

(3.4) T S { ) _ oo,
r—1- lnm

then f(z) can take any complex number infinite times, except for two possible exceptional
values.

Proof. Otherwise, for any @ € [0,27) and r € (0, 1), there exists & > 0 and three distinct
complex numbers aj,a;,a3 € Ce such that

3
Zﬁ (¢ —2&),90+2¢&),ra;) Z n(r,a;) = 0(1).

w

By (3.2) of Theorem 3.1, we have
21n2 1
S(Q((P_%:(P‘FEO)J)SO(l-‘r] : >+0(ln>.

ni— 1—r
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Since @ is arbitrary, from the similar proof of Theorem 3.2, we have

21n2 1
S(r,f)gc<1+ - >+O(ln )
In — 1—r

1—r

where C is a positive constant. This is in contradiction to the hypothesis (3.4). 1

Corollary 3.2. Let f(z) be a meromorphic function defined in |z| < 1 and satisfy (3.4), then
f(z) can take any complex number infinite times with at most two exceptional values.

Theorem 3.4. Let f(z) be a K-quasimeromorphic mapping defined in |z| < 1. If f(z) satis-
fies (3.4) and

— )
) Jim =y <t

then f(z) has a S radius (dealing with multiple values (> 3)).

Proof. From the condition of (3.4), there exists an increasing sequence {r,} 11 (n — oo)
such that lim S(r,, f)/(In 1) = 4-eo. Using the finite covering theorem on [0,27), there
n—>00 n

must be some @y € [0,27) such that for any € € (0,7/4),
S((@o—& @0 +€),7n)
Tim > 0.
n—es S(ra; f)

Now we can predicatively say that the radius A(¢@p) = {z: argz = @, |z| < 1} is a S radius
of f(z) dealing with multiple values /. Otherwise, there are three distinct complex numbers
ay,az,a3 € C. and a positive 0 such that

EZizlﬁ’)(ﬂ(rpo—6,<po+5)7rn,a;)
n—oo S(ra, f)
By (3.1) of Theorem 3.1, when g = 3, for any 0 < € < 8, we have

(1-2)S(Qg0—e.q0 +).r2)

I
21n2 3 3+r’1
- _
—(1+lnlr ,;” (0= 8,90+ 8), =~ aj) + OIn =),
Hence
_275( ((PO_€7(P0+€),I’,,)
O )
3
7 8, ¢0+8), 4,
<TEa+ 21n2)jzln( (90 =390+ 9), )S(%,f) —Ofin )
Toametnds S f) S(ra f) 1> S(ras f)

It follows from (3.4) and (3.5) that 1 — % < 0, we get a contradiction. Hence the radius
A(@p) is a S radius of f(z) dealing with multiple values /. By the similar proof, the radius
A(@y) is also a S radius. i

Corollary 3.3. Let f(z) be a meromorphic function defined in |z| < 1 and satisfy the condi-
tions of (3.4) and (3.5), then f(z) has a S radius (dealing with multiple values [(> 3)).
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Theorem 3.5. Let f(z) be a K-quasimeromorphic mapping in the unit disc with order p €
[0, +0) and of regular growth, then every S radius (dealing with multiple values) is a Borel
radius of the order p.

Proof. Let A(@p) = {z: argz = ¢, |z| < 1} be a S radius dealing with multiple values for
f(z) in the unit disc, then for any € € (0,7/2) and each a (except for two possible excep-
tional values), we have

7t) _
llm n (Q((po 8?(p0+8)7r7a)
r—1- S(r,f)

Then, there exist {r, } for a sufficiently large n we have

> 6> 0.

P
) (Q¢0 — &0 +€).7,a) > 5 S(r.f)-

Since f(z) is of regular growth, it follows that

i) _ ) _
177 (Q(go e,fpo+6),r,a)2hmlnn (2(¢o 6,1<po+e),rn,a)Z

r—1- In L n—ee In
1—-r 1—ry

holds for all a € C.., except for two possible exceptional values. Hence every S radius (deal-
ing with multiple values) is a Borel radius of the order p. 1
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