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Abstract. Let R be a ring. Let m and n be positive integers, a right R-module M is called
(m,n)-small injective, if every right R-homomorphism from an n-generated submodule of
Jm to M extends to one from Rm to M. A ring R is called right (m,n)-small injective if
the right R module RR is (m,n)-small injective. In this paper, we give some properties of
(m,n)-small injective modules and right (m,n)-small injective rings.
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1. Introduction

Throughout the paper, R represents an associative ring with identity 1 6= 0 and all modules
are unitary R-modules. We write MR (resp. RM) to denote that M is a right (resp. left)
R-module. Unless otherwise mentioned, by a module we will mean a right R-module. We
recall some concepts and notations which will be used in this paper. We denote the Jacobson
radical of a ring (resp. module) R (resp. M) by J (resp. Rad(M)) and the injective hull of M
by E(M). If A is a submodule of M, we denote by A≤M.

We write N ≤e M, N � M to indicate that N is an essential submodule, a small sub-
module of M, respectively. A module M is called uniform if M 6= 0 and every non-zero
submodule of M is essential in M. A module M is called to have finite uniform dimension,
if M does not contain an infinite direct sum of non-zero submodules. Recall that a module
M is called torsionless, if given 0 6= m∈M, there exists α ∈Hom(M,R) such that α(m) 6= 0,
equivalently if M can be embedded in a direct product of copies of R. A ring R is called
right Kasch if every simple right R-module embeds in RR. A ring R is called semiregular
if R/J is von Neumann regular and idempotents can be lifted modulo J. Note that if R is
semiregular, then for every finitely generated right ideal I of R, R = H⊕K, where H ≤ I
and I∩K� R.

A right R-module M is called (m,n)-injective, if every R-homomorphism from an n-
generated submodule of Rm to M extends to one from Rm to M. In [2], some characteri-
zations (m,n)-injective modules are given. It is proved that R is right (m,n)-injective (i.e.
the right R-module RR is (m,n)-injective) if and only if every RN in an exact sequence
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RRm → RRn → RN → 0 is torsionless. This result is similar to the Jain’s result–a ring R is
right FP-injective if and only if every finitely presented right R-module is torsionless (see
[6]). A right R-module MR is called small injective, if every homomorphism from a right
small ideal to MR can be extended to a R-homomorphism from RR to MR and a ring R is
called right small injective, if RR is small injective. Yousif and Zhou introduced small in-
jective rings (modules) (see [11]). They proved that a semiperfect ring R with an essential
right socle is right self-injective if and only if R is right small injective. From this, some
characterizations of QF rings in terms of small injectivity were obtained. Later, in [8], Shen
and Chen claimed that if R is semilocal, then R is right self-injective if and only if R is right
small injective. Under the small injectivity condition, they gave some new characterizations
of QF rings and PF rings. General background material can be found in [1, 3, 10].

In this paper, we use the notation Rm×n for the set of all m×n matrices over R. For A ∈
Rm×n, AT will denote the transpose of A. In general, for an R-module N, we write Nm×n for
the set of all formal m×n matrices whose entries are elements of N. If X ⊆Ml×m, S⊆Rm×n

and Y ⊆ Nn×k, define

lMl×m(S) = {u ∈Ml×m| us = 0,∀s ∈ S}

rNn×k(S) = {v ∈ Nn×k| sv = 0;∀s ∈ S}
rRm×n(X) = {r ∈ Rm×n| xr = 0,∀x ∈ X}
lRm×n(Y ) = {r ∈ Rm×n| rs = 0,∀s ∈ Y}

We will write Nn = N1×n, Nn = Nn×1.

2. Main results

Definition 2.1. A right R-module M is called (m,n)-small injective, if every R-homomorphism
from an n-generated submodule of Jm (or Jm) to M can be extended to one from Rm(or Rm)
to M. A ring R is called right (m,n)-small injective, if RR is (m,n)-small injective.

Example 2.1.
(i) ZZ is (m,n)-small injective as a ZZ-module, but it is not (m,n)-injective.

(ii) Let R =
{(n x

0 n
)
| n ∈ ZZ,x ∈ ZZ2

}
(see [11, Example 1.6]). Then R is a commutative

ring and J = Sr = {
(

0 x
0 0

)
| x ∈ ZZ2}. Therefore R is small injective but not self-

injective. Thus R is (m,n)-small injective for all m and n. But it is easy to see that
R is not (1,1)-injective.

(iii) Let R = F [x1,x2, ...], where F is a field and xi are commuting indeterminants satis-
fying the relations: x3

i = 0 for all i, xix j = 0 for all i 6= j, and x2
i = x2

j for all i and j.
Then R is a commutative, FP-injective, local ring. We have R is (1,n)-injective, but
R is not a self-injective ring (see [7, Example 5.45]). Therefore R is (m,n)-injective
for all m and n but R is not small injective.

We next consider some properties of (m,n)-small injective modules. By an argument
similar to the one given in the proof of [2, Theorem 2.4], we have:

Proposition 2.1. The following statements are equivalent for a right R-module M:
(1) M is (m,n)-small injective;
(2) lMn rRn(α1,α2, . . . ,αm) = Mα1 + Mα2 + · · ·+ Mαm for any m-element subset {α1,

α2, . . . ,αm} of Jn.
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The following result is a slight modification of [2, Theorem 2.9].

Proposition 2.2. The following statements are equivalent for a right R-module M:
(1) M is (m,n)-small injective;
(2) M is (m,1)-small injective and lMn(I ∩K) = lMn(I)+ lMn(K), where I and K are

submodules of (Jm)R such that I +K is n-generated;
(3) M is (m,1)-small injective and lMn(I ∩K) = lMn(I)+ lMn(K), where I and K are

submodules of (Jm)R such that I is cyclic and K is (n−1)-generated (if n = 1, then
K = 0).

The next characterization of (m,n)-small injective module is motivated by [2, Theorem
2.15]. One can prove it by Proposition 2.1 and an similar argument in the proof of [2,
Theorem 2.15].

Proposition 2.3. The following statements are equivalent for a module MR:
(1) M is (m,n)-small injective;
(2) If m = (m1,m2, . . . ,mn) ∈Mn and A ∈ Jm×n satisfy rRn(A) ≤ rRn(m), then m = yA

for some y ∈Mm.

Corollary 2.1. A right R-module M is (m,n)-small injective if and only if for every A ∈
Jm×n, lMnrRn(A) = MmA.

Corollary 2.2. Let R be a right (m,n)-small injective ring and M be a left R-module. If
Rm→ Jn→R M→ 0 is exact, then M is torsionless.

Proof. Let Rm f→ Jn→R M→ 0 be exact. There exists A ∈ Jm×n such that f (z) = zA for all
z∈ Rm and so Im f = RmA. We claim that Jn/RmA is torsionless. In fact, let 0 6= z̄∈ Jn/RmA,
where z = (z1,z2, ...,zn) ∈ Jn. By Proposition 2.3, rRn(A) 6⊆ rRn(z). Therefore there exists
a = (a1,a2, ...,an)T ∈ Jn such that Aa = 0 but za 6= 0. Define g : Jn/RmA→ R such that
g(x̄) = xa for every x ∈ Jn. Clearly, g is well-defined, and g(z̄) = za 6= 0. So M ' Jn/RmA
is torsionless.

Motivated by [7, Lemma 5.1], we give the following characterization of right (m,n)-
small injective ring.

Theorem 2.1. The following statements are equivalent for a ring R:
(1) R is right (m,n)-small injective;
(2) lRn(BRn∩ rRn(A)) = lRn(B)+RmA for all A ∈ Jm×n and B ∈ Rn×n;
(3) If rRn(A)≤ rRn(B) with A ∈ Jm×n and B ∈ Rm×n, then RmB≤ RmA.

Proof. (1)⇒ (2). Let x ∈ lRn(BRn ∩ rRn(A)). For all y ∈ rRn(AB), ABy = 0 and so By ∈
BRn∩ rRn(A). It implies that xBy = 0 and so y ∈ rRn(xB). Therefore rRn(AB) ≤ rRn(xB) or
xB ∈ lRnrRn(xB)≤ lRnrRn(AB). Since A ∈ Jm×n, then AB ∈ Jm×n. By Proposition 2.3, there
exists y ∈ Rm such that xB = yAB. Thus x = (x− yA)+ yA ∈ lRn(B)+ RmA. From this, we
have lRn(BRn∩ rRn(A)) = lRn(B)+RmA.

(2)⇒ (1). Let B = In (identity matrix), then lRnrRn(A) = RmA. Thus R is right (m,n)-
small injective by Corollary 2.1.

(1)⇒ (3). Assume that rRn(A) ≤ rRn(B). For each x ∈ Rm, we have rRn(B) ≤ rRn(xB)
and so rRn(A) ≤ rRn(xB). It implies that xB ∈ lRnrRn(xB) ≤ lRnrRn(A). By Corollary 2.1,
lRnrRn(A) = RmA and hence xB ∈ RmA for all x ∈ Rn. Thus RmB≤ RmA.
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(3) ⇒ (1). Let A ∈ Jm×n. We have RmA ≤ lRnrRn(A). For each x ∈ lRnrRn(A), then
rRn(A) ≤ rRn(x). Let B =

( x
0
)
∈ Rm×n. Therefore rRn(x) = rRn(B) and hence rRn(A) ≤

rRn(B). By (3), Rm
( x

0
)

= RmB ≤ RmA. It follows that x ∈ RmA and so RmA = lRnrRn(A).
Thus R is right (m,n)-small injective.

Proposition 2.4. The following statements are equivalent for module M:
(1) M is (m,n)-small injective.
(2) For every n-generated submodule I of Jm and any f ∈ Hom(I,M), if (g,h) is the

pushout of ( f , i) in the following diagram (with i is the inclusion)

f

I Rm

M P
?

-i

?

g

-h

there exists α ∈ Hom(P,M) such that αh = idM.

Proof. Similar to [12, Theorem 2.5].
The dual module of P is denoted by P∗ = Hom(P,R).

Proposition 2.5. The following conditions are equivalent for a ring R:
(1) R is right (m,n)-small injective;
(2) If I is a m-generated and small submodule of a n-generated projective left R-module

P, then I = lPrP∗(I).

Proof. (1)⇒ (2). Let I = Ra1 +Ra2 + · · ·+Ram be a m-generated and small submodule of
a n-generated projective left R-module P. Since RP is projective, there exist x1,x2, ...,xn ∈ P

and f1, f2, ..., fn ∈ P∗ such that x =
n
∑

i=1
f (x)xi for all x ∈ P. For each x ∈ lPrP∗(I), we have

x =
n
∑

i=1
fi(x)xi and a j =

n
∑

i=1
fi(a j)xi for each j = 1,2, ...,m. Note that ai ∈ Rad(P), then

f (ai) ∈ J for each i = 1,2, ...,m. Let αi = ( fi(a1), fi(a2), ..., fi(am)), then αi ∈ Jm, ∀i =

1,2, ...,n. Let ϕ : α1R + α2R + · · ·αnR→ R via ϕ(
n
∑

i=1
αiri) =

n
∑

i=1
fi(x)ri. It is easy to see

that ϕ is a homomorphism. By the hypothesis, ϕ can be extended to Rm. There exists u =

(u1,u2, . . . ,um) ∈ Rm such that fi(x) = ϕ(αi) = uαT
i =

n
∑
j=1

u j fi(a j) for each i = 1,2, ...,n.

Thus x =
n
∑

i=1
fi(x)xi =

m
∑
j=1

u ja j ∈ I. It implies that I = lPrP∗(I).

(2)⇒ (1). For each α1,α2, . . .αm ∈ Jn. Let I = Rα1 + Rα2 + · · ·+ Rαm ≤ Rn. By (2),
I = lRnr(Rn)∗(I). But (Rn)∗ = Rn and so I = lRnrRn(I). Therefore Rα1 +Rα2 + · · ·+Rαm =
lRnrRn(α1,α2, . . . ,αm). Thus R is right (m,n)-small injective by Proposition 2.1.

Proposition 2.6. The following statements are equivalent for a ring R:
(1) Every n-generated right ideal of Jm is projective;
(2) Every quotient module of a (m,n)-small injective module is (m,n)-small injective;
(3) Every quotient module of a (m,n)-injective module is (m,n)-small injective;
(4) Every quotient module of a small injective module is (m,n)-small injective;
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(5) Every quotient module of an injective module is (m,n)-small injective.

Proof. Similar to [9, Theorem 2.17].
Next, we consider a case when the class of (m,n)-small injective modules coincides with

that of (m,n)-injective modules.

Theorem 2.2. Let R be a semiregular ring. Then M is (m,n)-small injective if and only if
M is (m,n)-injective.

Proof. Let f : K −→ MR be a R-homomorphism, where K is a n-generated submodule of
Rm. Since R is semiregular, then Rm is too. There exists a decomposition Rm = H ⊕ L,
where H ≤ K and K ∩ L� K. Hence Rm = K + L, K = H ⊕ (K ∩ L) and so K ∩ L is a
n-generated submodule of Jm. Thus there exists a homomorphism g : (Rm)R −→ M such
that g(x) = f (x) for all x ∈ K∩L. We construct a homomorphism ϕ : (Rm)R −→M defined
by ϕ(r) = f (k)+g(l) for any r = k + l, k ∈ K, l ∈ L. Now we show that ϕ is well defined.
Indeed, if k1 + l1 = k2 + l2, where ki ∈ K, li ∈ L, i = 1,2, then k1− k2 = l1− l2 ∈ K ∩L.
Hence f (k1 − k2) = g(l1 − l2), which implies that ϕ(k1 + l1) = ϕ(k2 + l2). Thus ϕ is a
homomorphism and ϕ|K = f .

Corollary 2.3. Let R be a semiregular ring. Then R is right (m,n)-small injective if and
only if R is right (m,n)-injective.

Note that a ring R is right (m,n)-small injective for all positive integers m and n if and
only if R is right (J,R)-FP-injective in the sense of Yousif and Zhou [11]. We shall conclude
this paper with some properties of such rings.

Theorem 2.3. The following statements are equivalent for a ring R:
(1) R is right (m,n)-small injective for all m,n ∈ IN.
(2) Rn×n is right (1,1)-small injective for all n ∈ IN.

Proof. The result follows by [11, Lemma 1.3].
A module MR is FP-injective, if for every finitely generated submodule K of a free right

R-module F , every homomorphism from K to M extends to one from F to M. In [7, Theorem
5.39], they proved that R is right FP-injective if and only if R is right (m,n)-injective for all
m,n ∈ IN

From Theorem 2.2 and Theorem 2.3, we have:

Corollary 2.4. Let R be a semiregular ring. Then R is right FP-injective if and only if R is
right (J,R)-FP-injective.

Proposition 2.7. If R is right Kasch and right (J,R)-FP-injective, then R is left (J,R)-FP-
injective.

Proof. By Theorem 2.3, we claim that Rn×n is left (1,1)-small injective for all m∈ IN. Since
R is right Kasch, Rn×n is too. Let T = Rn×n. For each x ∈ Jn×n = J(T ). Let y ∈ rT lT (xT )
we need to show that y ∈ xT . Assume that y 6∈ xT . Let L be a maximal submodule of
xT + yT such that xT ≤ L. Since R is right Kasch, there exists a T -monomorphism ϕ :
(xT + yT )/L→ T. Note that rT lT (J(T )) = J(T ) and so y ∈ J(T ). Let ψ : xT + yT → T via
ψ(z) = ϕ(z+L) for all z ∈ xT + yT . By hypothesis, there is u ∈ T such that ψ = u · . Then
ψ(y) = uy 6= 0 and ψ(x) = ux = 0 and so u ∈ lT (xT ). But y ∈ rT lT (xT ) and hence uy = 0,
this is a contradiction. Thus rT lT (xT ) = xT .
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