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Abstract. In this paper, we determine the general solution of the functional equation f (kx+
y)+ f (kx−y) = g(x+y)+g(x−y)+h(x)+ h̃(y) for fixed integers k with k 6= 0,±1 without
assuming any regularity condition on the unknown functions f ,g,h, h̃. The method used
for solving these functional equations is elementary but exploits an important result due to
Hosszú. The solution of this functional equation can also be determined in certain type of
groups using two important results due to Székelyhidi. The results improve and extend some
recent results.
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1. Introduction and preliminaries

Rassias [12] (in 2001) introduced the cubic functional equation:

(1.1) f (x+2y)−3 f (x+ y)+3 f (x)− f (x− y) = 6 f (y)

and established the solution of the Ulam-Hyers stability problem for this cubic functional
equation. Since the function f (x) = x3 satisfies the functional equation (1.1), this equation
is called cubic functional equation. Every solution of the cubic functional equation is said
to be a cubic function.

Jun and Kim [7] (in 2002) introduced the following cubic functional equation:

(1.2) f (2x+ y)+ f (2x− y) = 2 f (x+ y)+2 f (x− y)+12 f (x)

and established the general solution and the generalized Ulam-Hyers stability for the func-
tional equation (1.2). They proved that a function f between real vector spaces X and Y is
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a solution of (1.2) if and only if there exits a unique function C : X ×X ×X → Y such that
f (x) = C(x,x,x) for all x ∈ X , and C is symmetric for each fixed one variable and is additive
for fixed two variables. Recently, several further interesting discussions, modifications, ex-
tensions, and generalizations of the original problem of Ulam have been proposed (see, e.g.,
[5, 10, 13, 18–21] and the references therein). This cubic equation (1.2) can be generalized
to

(1.3) f (2x+ y)+ f (2x− y) = 2 f (x+ y)+2 f (x− y)+2 f (2x)−4 f (x).

It is easy to see that the function f (x) = ax3 + bx is a solution of the functional equation
(1.3), which is called a general mixed additive-cubic functional equation. Najati and Eskan-
dani [12] established the general solution of the functional equation (1.3) and investigated
the Ulam-Hyers stability of this equation in quasi-Banach spaces. In [20], we determined
the general solution of a general mixed additive-cubic functional equation

(1.4) f (kx+ y)+ f (kx− y) = k f (x+ y)+ k f (x− y)+2 f (kx)−2k f (x),

for a fixed integer k with k 6= 0,±1.
Rassias [15] (in 1999) introduced the first quartic functional equation:

(1.5) f (x+2y)−4 f (x+ y)+6 f (x)−4 f (x− y)+ f (x−2y) = 24 f (y)

and established the solution of the Ulam-Hyers stability problem for the quartic functional
equation. Since the function f (x) = x4 satisfies the functional equation (1.5), this equation is
called quartic functional equation. Lee, Im and Hwang [9] determined the general solution
of the quartic functional equation

(1.6) f (2x+ y)+ f (2x− y) = 4 f (x+ y)+4 f (x− y)+24 f (x)−6 f (y).

In [5], Gordji, Abbaszadeh and Park established the general solution of a generalized qua-
dratic and quartic type functional equation

f (kx+ y)+ f (kx− y) = k2 f (x+ y)+ k2 f (x− y)

+2( f (kx)− k2 f (x))−2(k2−1) f (y),
(1.7)

in quasi-Banach spaces for a fixed integer k with k 6= 0,±1.
Let k be a fixed integer with k 6= 0,±1, X and Y are real vector spaces. The functional

equations (1.3)–(1.7) can be generalized to

(1.8) f (kx+ y)+ f (kx− y) = g(x+ y)+g(x− y)+h(x)+ h̃(y).

for all x,y ∈ X , where f ,g,h, h̃ : X → Y are unknown functions to be determined. In this
paper, we determine the general solution of the functional equation (1.8) and some other
related functional equations. We will first solve these functional equations using an ele-
mentary technique (see [2, 17, 18, 22]) but without using any regularity condition on the
unknown functions. The motivation for studying these functional equations came from the
fact that recently polynomial equations have found applications in approximate checking,
self-testing, and self-correcting of computer programs that compute polynomials. The in-
terested reader should refer to [4, 16] and references therein.

Let X and Y be real vector spaces. A function A : X→Y is said to be additive if A(x+y) =
A(x)+ A(y) for all x,y ∈ X . It is easy to see that A(rx) = rA(x) for all x ∈ X and all r ∈ Q
(the set of rational numbers).



A Generalized Mixed Quadratic-Quartic Functional Equation 635

Let n ∈ N (the set of natural numbers). A function An : Xn→ Y is called n-additive if it
is additive in each of its variables. A function An is called symmetric if An(x1,x2, . . . ,xn) =
An(xπ(1),xπ(2), . . . ,xπ(n)) for every permutation {π(1),π(2), . . . ,π(n)} of {1,2, . . . ,n}. If
An(x1,x2, . . . ,xn) is an n-additive symmetric map, then An(x) will denote the diagonal An(x,x,
. . . ,x) for x ∈ X and note that An(rx) = rnAn(x) whenever x ∈ X and r ∈Q. Such a function
An(x) will be called a monomial function of degree n (assuming An 6≡ 0). Furthermore the
resulting function after substitution x1 = x2 = · · ·= xl = x and xl+1 = xl+2 = · · ·= xn = y in
An(x1,x2, . . . ,xn) will be denoted by Al,n−l(x,y).

A function p : X → Y is called a generalized polynomial (GP) function of degree n ∈ N
provided that there exist A0(x) = A0 ∈Y and i-additive symmetric functions Ai : X i→Y (for
1≤ i≤ n) such that

p(x) =
n

∑
i=0

Ai(x), for all x ∈ X

and An 6≡ 0.
For f : X → Y , let4h be the difference operator defined as follows:

4h f (x) = f (x+h)− f (x)

for h∈X . Furthermore, let40
h f (x)= f (x),41

h f (x)=4h f (x) and4h◦4n
h f (x)=4n+1

h f (x)
for all n ∈ N and all h ∈ X . Here4h ◦4n

h denotes the composition of the operators4h and
4n

h. For any given n ∈ N, the functional equation 4n+1
h f (x) = 0 for all x,h ∈ X is well

studied. In explicit form the last functional equation can be written as

4n+1
h f (x) =

n+1

∑
j=0

(−1)n+1− j
(

n+1
j

)
f (x+ jh) = 0.

The following theorem was proved by Mazur and Orlicz, and in greater generality by
Djoković (see [3]).

Theorem 1.1. Let X and Y be real vector spaces, n ∈ N and f : X → Y , then the following
are equivalent.

(1)4n+1
h f (x) = 0 for all x,h ∈ X.

(2)4x1,...,xn+1 f (x0) = 0 for all x0,x1, . . . ,xn+1 ∈ X.
(3) f (x) = An(x)+An−1(x)+A2(x)+A1(x)+A0(x) for all x∈ X, where A0(x) = A0 is an

arbitrary element of Y and Ai(x)(i = 1,2, . . . ,n) is the diagonal of an i-additive symmetric
function Ai : X i→ Y .

2. Solution of equation (1.8) on real vector spaces

In this section, we determine the general solution of the functional equations (1.7) and (1.8)
and some other related equations without assuming any regularity condition on the unknown
functions.

Theorem 2.1. Let X and Y be real vector spaces. If the functions f ,g,h, h̃ : X → Y satisfy
the functional equation

(2.1) f (kx+ y)+ f (kx− y) = g(x+ y)+g(x− y)+h(x)+ h̃(y)

for all x,y ∈ X, then f is a solution of the Fréchet functional equation

4x1,x2,x3,x4,x5 f (x0) = 0
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for all x0,x1,x2,x3,x4,x5 ∈ X.

Proof. Replacing kx + y by x0 and kx− y by y1 (that is, x = (x0/2k) + (y1/2k) and y =
(x0/2)− (y1/2)) in (2.1), respectively, we get

(2.2)
f (x0) + f (y1) = g

(
k + 1

2k
x0 −

k − 1
2k

y1

)
+ g

(
1− k

2k
x0 +

k + 1
2k

y1

)
+ h

(
1
2k

x0 +
1
2k

y1

)
+ h̃

(
1
2

x0 −
1
2

y1

)
.

Replacing x0 by x0 + x1 in (2.2), we have

(2.3)

f (x0 + x1) + f (y1) = g
(

k + 1
2k

(x0 + x1)−
k − 1

2k
y1

)
+ g

(
1− k

2k
(x0 + x1) +

k + 1
2k

y1

)
+ h

(
1
2k

(x0 + x1) +
1
2k

y1

)
+ h̃

(
1
2
(x0 + x1)−

1
2

y1

)
.

Subtracting (2.2) from (2.3), we get

(2.4)

f (x0 + x1)− f (x0) = g
(

k + 1
2k

(x0 + x1)−
k − 1

2k
y1

)
+ g

(
1− k

2k
(x0 + x1) +

k + 1
2k

y1

)
− g

(
k + 1

2k
x0 −

k − 1
2k

y1

)
− g

(
1− k

2k
x0 +

k + 1
2k

y1

)
+ h

(
1
2k

(x0 + x1) +
1
2k

y1

)
− h

(
1
2k

x0 +
1
2k

y1

)
+ h̃

(
1
2
(x0 + x1)−

1
2

y1

)
− h̃

(
1
2

x0 −
1
2

y1

)
.

Letting y2 = 1
2k x0 + 1

2k y1 (that is, y1 = 2ky2− x0) in (2.4), we have

(2.5)

f (x0 + x1)− f (x0) = g
(

x0 +
k + 1

2k
x1 − (k − 1)y2

)
+ g

(
−x0 +

1− k
2k

x1 + (k + 1)y2

)
− g(x0 − (k − 1)y2)

− g(−x0 + (k + 1)y2) + h
(

1
2k

x1 + y2

)
− h(y2) + h̃

(
x0 +

1
2

x1 − ky2

)
− h̃(x0 − ky2).



A Generalized Mixed Quadratic-Quartic Functional Equation 637

Replacing x0 by x0 + x2 in (2.5), we get

(2.6)

f (x0 + x1 + x2)− f (x0 + x2) = g
(

x0 + x2 +
k + 1

2k
x1 − (k − 1)y2

)
+ g

(
−x0 − x2 +

1− k
2k

x1 + (k + 1)y2

)
− g(x0 + x2 − (k − 1)y2)

− g(−x0 − x2 + (k + 1)y2)

+ h
(

1
2k

x1 + y2

)
− h(y2)

+ h̃
(

x0 + x2 +
1
2

x1 − ky2

)
− h̃(x0 + x2 − ky2).

Subtracting (2.5) from (2.6), we get

(2.7)

f (x0 + x1 + x2)− f (x0 + x1)− f (x0 + x2) + f (x0)

= g
(

x0 + x2 +
k + 1

2k
x1 − (k − 1)y2

)
+ g

(
−x0 − x2 +

1− k
2k

x1 + (k + 1)y2

)
− g(x0 + x2 − (k − 1)y2)− g(−x0 − x2 + (k + 1)y2) + g(x0 − (k − 1)y2)

− g
(

x0 +
k + 1

2k
x1 − (k − 1)y2

)
− g

(
−x0 +

1− k
2k

x1 + (k + 1)y2

)
− g(−x0 + (k + 1)y2) + h̃

(
x0 + x2 +

1
2

x1 − ky2

)
− h̃(x0 + x2 − ky2)− h̃

(
x0 +

1
2

x1 − ky2

)
+ h̃(x0 − ky2).

Letting y3 = x0− ky2 (that is, y2 = (x0− y3)/k in (2.7), we have

(2.8)

f (x0 + x1 + x2)− f (x0 + x1)− f (x0 + x2) + f (x0)

= g
(

1
k

x0 +
k + 1

2k
x1 + x2 +

k − 1
k

y3

)
+ g

(
1
k

x0 +
1− k

2k
x1 − x2 −

k + 1
k

y3

)
− g

(
1
k

x0 + x2 +
k − 1

k
y3

)
− g

(
1
k

x0 +
k + 1

2k
x1 +

k − 1
k

y3

)
− g

(
1
k

x0 +
1− k

2k
x1 −

k + 1
k

y3

)
+ g

(
1
k

x0 +
k − 1

k
y3

)
− g

(
1
k

x0 − x2 −
k + 1

k
y3

)
+ g

(
1
k

x0 −
k + 1

k
y3

)
+ h̃

(
1
2

x1 + x2 + y3

)
− h̃(x2 + y3)− h̃

(
1
2

x1 + y3

)
+ h̃(y3).
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Again replacing x0 by x0 + x3 in (2.8) and subtracting (2.8) from the resulting expression,
we get

(2.9)
f (x0 + x1 + x2 + x3)− f (x0 + x1 + x2)− f (x0 + x1 + x3)− f (x0 + x2 + x3) + f (x0 + x3)

+ f (x0 + x1) + f (x0 + x2)− f (x0) = g
(

1
k

x0 +
k + 1

2k
x1 + x2 +

1
k

x3 +
k − 1

k
y3

)
+ g

(
1
k

x0 +
1− k

2k
x1 − x2 −

k + 1
k

y3

)
− g

(
1
k

x0 + x2 +
1
k

x3 +
k − 1

k
y3

)
− g

(
1
k

x0 +
k + 1

2k
x1 +

1
k

x3 +
k − 1

k
y3

)
− g

(
1
k

x0 +
1− k

2k
x1 +

1
k

x3 −
k + 1

k
y3

)
+ g

(
1
k

x0 +
1
k

x3 +
k − 1

k
y3

)
− g

(
1
k

x0 − x2 +
1
k

x3 −
k + 1

k
y3

)
+ g

(
1
k

x0 +
1
k

x3 −
k + 1

k
y3

)
− g

(
1
k

x0 +
k + 1

2k
x1 + x2 +

k − 1
k

y3

)
− g

(
1
k

x0 +
1− k

2k
x1 − x2 −

k + 1
k

y3

)
+ g

(
1
k

x0 + x2 +
k − 1

k
y3

)
+ g

(
1
k

x0 +
k + 1

2k
x1 +

k − 1
k

y3

)
+ g

(
1
k

x0 +
1− k

2k
x1 −

k + 1
k

y3

)
− g

(
1
k

x0 +
k − 1

k
y3

)
+ g

(
1
k

x0 − x2 −
k + 1

k
y3

)
− g

(
1
k

x0 −
k + 1

k
y3

)
.

Putting y4 = (x0/k)+(k−1)/ky3 (that is, y3 = ky4/(k−1)− x0/(k−1)) in (2.9), we get

(2.10)
f (x0 + x1 + x2 + x3)− f (x0 + x1 + x2)− f (x0 + x1 + x3)− f (x0 + x2 + x3)

+ f (x0 + x3) + f (x0 + x1) + f (x0 + x2)− f (x0) = g
(

k + 1
2k

x1 + x2 +
1
k

x3 + y4

)
+ g

(
2

k − 1
x0 +

1− k
2k

x1 − x2 −
k + 1
k − 1

y4

)
− g

(
x2 +

1
k

x3 + y4

)
− g

(
k + 1

2k
x1 +

1
k

x3 + y4

)
− g

(
2

k − 1
x0 +

1− k
2k

x1 +
1
k

x3 −
k + 1
k − 1

y4

)
+ g

(
1
k

x3 + y4

)
− g

(
2

k − 1
x0 − x2 +

1
k

x3 −
k + 1
k − 1

y4

)
+ g

(
2

k − 1
x0 +

1
k

x3 −
k + 1
k − 1

y3

)
− g

(
k + 1

2k
x1 + x2 + y4

)
− g

(
2

k − 1
x0 +

1− k
2k

x1 − x2 −
k + 1
k − 1

y4

)
+ g(x2 + y4)

+ g
(

k + 1
2k

x1 + y4

)
+ g

(
2

k − 1
x0 +

1− k
2k

x1 −
k + 1
k − 1

y4

)
− g(y4)

+ g
(

2
k − 1

x0 − x2 −
k + 1
k − 1

y4

)
− g

(
2

k − 1
x0 −

k + 1
k − 1

y4

)
.
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Replacing x0 by x0 + x4 in (2.10) to get

(2.11)

f (x0 + x1 + x2 + x3 + x4)− f (x0 + x1 + x2 + x4)

− f (x0 + x1 + x3 + x4)− f (x0 + x2 + x3 + x4)

+ f (x0 + x3 + x4) + f (x0 + x1 + x4)

+ f (x0 + x2 + x4)− f (x0 + x4)

= g
(

k + 1
2k

x1 + x2 +
1
k

x3 + y4

)

+ g
(

2
k − 1

x0 +
1− k

2k
x1 − x2 +

2
k − 1

x4 −
k + 1
k − 1

y4

)

− g(x2 +
1
k

x3 + y4)− g
(

k + 1
2k

x1 +
1
k

x3 + y4

)

− g
(

2
k − 1

x0 +
1− k

2k
x1 +

1
k

x3 +
2

k − 1
x4 −

k + 1
k − 1

y4

)

+ g
(

1
k

x3 + y4

)
− g

(
2

k − 1
x0 − x2 +

1
k

x3 +
2

k − 1
x4 −

k + 1
k − 1

y4

)

+ g
(

2
k − 1

x0 +
1
k

x3 +
2

k − 1
x4 −

k + 1
k − 1

y4

)
− g

(
k + 1

2k
x1 + x2 + y4

)

− g
(

2
k − 1

x0 +
1− k

2k
x1 − x2 +

2
k − 1

x4 −
k + 1
k − 1

y4

)
+ g(x2 + y4)

+ g
(

k + 1
2k

x1 + y4

)
+ g

(
2

k − 1
x0 +

1− k
2k

x1 +
2

k − 1
x4 −

k + 1
k − 1

y4

)

− g(y4) + g
(

2
k − 1

x0 − x2 +
2

k − 1
x4 −

k + 1
k − 1

y4

)

− g
(

2
k − 1

x0 +
2

k − 1
x4 −

k + 1
k − 1

y4

)
.
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Subtract (2.10) from (2.11), we get

(2.12)
f (x0 + x1 + x2 + x3 + x4)− f (x0 + x1 + x2 + x3)− f (x0 + x1 + x2 + x4)

− f (x0 + x1 + x3 + x4)− f (x0 + x2 + x3 + x4) + f (x0 + x1 + x2)

+ f (x0 + x1 + x3) + f (x0 + x2 + x3) + f (x0 + x3 + x4)

+ f (x0 + x1 + x4) + f (x0 + x2 + x4)− f (x0 + x1)

− f (x0 + x2)− f (x0 + x3)− f (x0 + x4) + f (x0)

= g
(

2
k − 1

x0 +
1− k

2k
x1 − x2 +

2
k − 1

x4 −
k + 1
k − 1

y4

)

− g
(

2
k − 1

x0 +
1− k

2k
x1 +

1
k

x3 +
2

k − 1
x4 −

k + 1
k − 1

y4

)

− g
(

2
k − 1

x0 − x2 +
1
k

x3 +
2

k − 1
x4 −

k + 1
k − 1

y4

)

+ g
(

2
k − 1

x0 +
1
k

x3 +
2

k − 1
x4 −

k + 1
k − 1

y4

)

− g
(

2
k − 1

x0 +
1− k

2k
x1 − x2 +

2
k − 1

x4 −
k + 1
k − 1

y4

)

+ g
(

2
k − 1

x0 +
1− k

2k
x1 +

2
k − 1

x4 −
k + 1
k − 1

y4

)

+ g
(

2
k − 1

x0 − x2 +
2

k − 1
x4 −

k + 1
k − 1

y4

)
− g

(
2

k − 1
x0 +

2
k − 1

x4 −
k + 1
k − 1

y4

)

−g
(

2
k − 1

x0 +
1− k

2k
x1−x2−

k + 1
k − 1

y4

)
+g

(
2

k − 1
x0 +

1− k
2k

x1 +
1
k

x3−
k + 1
k − 1

y4

)

+ g
(

2
k − 1

x0 − x2 +
1
k

x3 −
k + 1
k − 1

y4

)
− g

(
2

k − 1
x0 +

1
k

x3 −
k + 1
k − 1

y4

)

+ g
(

2
k − 1

x0 +
1− k

2k
x1 − x2 −

k + 1
k − 1

y4

)
+ g

(
2

k − 1
x0 +

1− k
2k

x1 −
k + 1
k − 1

y4

)

− g
(

2
k − 1

x0 − x2 −
k + 1
k − 1

y4

)
+ g

(
2

k − 1
x0 −

k + 1
k − 1

y4

)
.
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Setting y5 = (2/(k−1))x0− ((k+1)/(k−1))y4 (that is, y4 = (2/(k+1))x0− ((k−1)/(k+
1))y5) in (2.12), we have

(2.13)
f (x0 + x1 + x2 + x3 + x4)− f (x0 + x1 + x2 + x3)− f (x0 + x1 + x2 + x4)

− f (x0 + x1 + x3 + x4)− f (x0 + x2 + x3 + x4) + f (x0 + x1 + x2) + f (x0 + x1 + x3)

+ f (x0 + x2 + x3) + f (x0 + x3 + x4) + f (x0 + x1 + x4) + f (x0 + x2 + x4)− f (x0 + x1)

− f (x0 + x2)− f (x0 + x3)− f (x0 + x4) + f (x0) = g
(

1− k
2k

x1 − x2 +
2

k − 1
x4 + y5

)
− g

(
1− k

2k
x1 +

1
k

x3 +
2

k − 1
x4 + y5

)
− g

(
−x2 +

1
k

x3 +
2

k − 1
x4 + y5

)
+ g

(
1
k

x3 +
2

k − 1
x4 + y5

)
− g

(
1− k

2k
x1 − x2 +

2
k − 1

x4 + y5

)
+ g

(
1− k

2k
x1 +

2
k − 1

x4 + y5

)
+ g

(
−x2 +

2
k − 1

x4 + y5

)
− g

(
2

k − 1
x4 + y5

)
− g

(
1− k

2k
x1 − x2 + y5

)
+ g

(
1− k

2k
x1 +

1
k

x3 + y5

)
+ g

(
−x2 +

1
k

x3 + y5

)
−g

(
1
k

x3 +y5

)
+g

(
1− k

2k
x1−x2 +y5

)
+g

(
1− k

2k
x1 +y5

)
−g(−x2 +y5)+g(y5).

Replacing x0 by x0 + x5 in (2.13) to get

(2.14)
f (x0 + x1 + x2 + x3 + x4 + x5)− f (x0 + x1 + x2 + x3 + x5)− f (x0 + x1 + x2 + x4 + x5)

− f (x0 + x1 + x3 + x4 + x5)− f (x0 + x2 + x3 + x4 + x5) + f (x0 + x1 + x2 + x5)

+ f (x0 + x1 + x3 + x5) + f (x0 + x2 + x3 + x5) + f (x0 + x3 + x4 + x5)

+ f (x0 + x1 + x4 + x5) + f (x0 + x2 + x4 + x5)− f (x0 + x1 + x5)− f (x0 + x2 + x5)

− f (x0 + x3 + x5)− f (x0 + x4 + x5) + f (x0 + x5) = g
(

1− k
2k

x1 − x2 +
2

k − 1
x4 + y5

)
− g

(
1− k

2k
x1 +

1
k

x3 +
2

k − 1
x4 + y5

)
− g

(
−x2 +

1
k

x3 +
2

k − 1
x4 + y5

)
+ g

(
1
k

x3 +
2

k − 1
x4 + y5

)
− g

(
1− k

2k
x1 − x2 +

2
k − 1

x4 + y5

)
+ g

(
1− k

2k
x1 +

2
k − 1

x4 + y5

)
+ g

(
−x2 +

2
k − 1

x4 + y5

)
− g

(
2

k − 1
x4 + y5

)
− g

(
1− k

2k
x1 − x2 + y5

)
+ g

(
1− k

2k
x1 +

1
k

x3 + y5

)
+ g

(
−x2 +

1
k

x3 + y5

)
−g

(
1
k

x3 +y5

)
+g

(
1− k

2k
x1−x2 +y5

)
+g

(
1− k

2k
x1 +y5

)
−g(−x2 +y5)+g(y5).
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Subtract (2.13) from (2.14), we get

f (x0 + x1 + x2 + x3 + x4 + x5)− f (x0 + x1 + x2 + x3 + x4)
− f (x0 + x1 + x2 + x3 + x5)− f (x0 + x1 + x2 + x4 + x5)
− f (x0 + x1 + x3 + x4 + x5)− f (x0 + x2 + x3 + x4 + x5)
+ f (x0 + x1 + x2 + x3) + f (x0 + x1 + x2 + x4) + f (x0 + x1 + x3 + x4)
+ f (x0 + x2 + x3 + x4) + f (x0 + x1 + x2 + x5) + f (x0 + x1 + x3 + x5)
+ f (x0 + x2 + x3 + x5) + f (x0 + x3 + x4 + x5) + f (x0 + x1 + x4 + x5)
+ f (x0 +x2 +x4 +x5)− f (x0 +x1 +x5)− f (x0 +x2 +x5)− f (x0 +x3 +x5)
− f (x0 + x4 + x5)− f (x0 + x1 + x2)− f (x0 + x1 + x3)− f (x0 + x2 + x3)
− f (x0 + x3 + x4)− f (x0 + x1 + x4)− f (x0 + x2 + x4) + f (x0 + x5)
+ f (x0 + x1) + f (x0 + x2) + f (x0 + x3) + f (x0 + x4)− f (x0) = 0

which is4x1,x2,x3,x4,x5 f (x0) = 0 for all x0,x1,x2,x3,x4,x5 ∈ X .
As an application of Theorem 2.1, we can get the following theorem which is proved in

[5, Theorem 2.2].

Theorem 2.2. If X and Y are real vector spaces, then the function f : X → Y satisfies the
functional equation
(2.15)

f (kx+ y)+ f (kx− y) = k2 f (x+ y)+ k2 f (x− y)+2( f (kx)− k2 f (x))−2(k2−1) f (y),

for all x,y ∈ X if and only if f is of the form

f (x) = A4(x)+A2(x), for all x ∈ X ,

where Ai(x) is the diagonal of the i-additive symmetric map Ai : X i→ Y for i = 2,4.

Proof. Assume that f satisfies the functional equation (2.15). By Theorem 2.1 we see that f
is a solution of the Fréchet functional equation4x1,x2,x3,x4,x5 f (x0)= 0 for all x0,x1,x2,x3,x4 ∈
X . Thus from Theorem 1.1 we have

(2.16) f (x) = A4(x)+A3(x)+A2(x)+A1(x)+A0(x), for all x ∈ X ,

where A0(x) = A0 is an arbitrary element of Y , and Ai(x) is the diagonal of the i-additive
symmetric map Ai : X i→ Y for i = 1,2,3,4.

By letting x = y = 0 in (2.15), we get f (0) = 0. Hence A0(x) = A0 = 0. Let us set x = 0 in
(2.15) to get f (y) = f (−y) for all y ∈ X . So the function f is even. Thus we have A3(x)≡ 0
and A1(x)≡ 0. Therefore we have f (x) = A4(x)+A2(x). The proof of the converse can be
easily checked.

Theorem 2.3. If X and Y are real vector spaces, then the function f : X → Y satisfies the
functional equation

(2.17) f (kx+y)+ f (kx−y) = k2 f (x+y)+k2 f (x−y)+2k2(k2−1) f (x)−2(k2−1) f (y),

if and only if f is of the form

f (x) = A4(x), for all x ∈ X ,

where A4(x) is the diagonal of the 4-additive symmetric map A4 : X4→ Y .
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Proof. Assume that f satisfies the functional equation (2.17). Putting x = y = 0 in (2.17),
we have f (0) = 0. Putting x = 0 in (2.17), we have f (−y) = f (y) for all y∈ X . By Theorem
2.1 we see that f is a solution of the Fréchet functional equation4x1,x2,x3,x4,x5 f (x0) = 0 for
all x0,x1,x2,x3,x4 ∈ X . Thus from Theorem 1.1 we have

(2.18) f (x) = A4(x)+A3(x)+A2(x)+A1(x)+A0(x), for all x ∈ X ,

where A0(x) = A0 is an arbitrary element of Y , and Ai(x) is the diagonal of the i-additive
symmetric map Ai : X i → Y for i = 1,2,3,4. Hence f (x) = A4(x) + A2(x) for all x ∈ X .
Putting f (x) = A4(x)+A2(x) into (2.17), and noting that{

A4(x+ y)+A4(x− y) = 2A4(x)+2A4(y)+12A2,2(x,y),
A2(x+ y)+A2(x− y) = 2A2(x)+2A2(y),

and A2,2(kx,y) = k2A2,2(x,y), we conclude that A2(x) = 0 for all x∈ X . Hence f (x) = A4(x)
for all x ∈ X . The proof of the converse can be easily checked.

Remark 2.1. We observe that in case k = 2, equation (2.17) yields the quartic functional
equation (1.6). Therefore, Theorem 2.3 is a generalized version of the theorem for a solution
of quartic functional equations [9, Theorem 2.1].

Theorem 2.4. If X and Y are real vector spaces, then the functions f ,g,h, h̃ : X→Y satisfy
the functional equation

(2.19) f (kx+ y)+ f (kx− y) = g(x+ y)+g(x− y)+h(x)+ h̃(y)

for all x,y ∈ X if and only if

f (x) = A4(x)+A3(x)+A2(x)+A1(x)+A0(x),

g(x) = k2A4(x)+ kA3(x)+B2(x)+B0(x)+C1(x)+D0(x),

h(x) = (2k4−2k2)A4(x)+(2k3−2k)A3(x)+2k2A2(x)+2kA1(x)+2A0(x)

−2B2(x)−2C1(x)−2B0(x),

h̃(x) = (2−2k2)A4(x)+2A2(x)−2B2(x)−2D0(x),

(2.20)

where A0(x)= A0, B0(x)= B0 and D0(x)= D0 are arbitrary elements of Y , and Ai(x),Bi(x),Ci(x)
are the diagonal of the i-additive symmetric maps Ai,Bi,Ci : X i → Y , respectively, for
i = 1,2,3,4.

Proof. Assume that f ,g,h, h̃ satisfy the functional equation (2.19). By Theorem 2.1 we
see that f is a solution of the Fréchet functional equation 4x1,x2,x3,x4,x5 f (x0) = 0 for all
x0,x1,x2,x3,x4,x5 ∈ X . Hence from Theorem 1.1 we have

(2.21) f (x) = A4(x)+A3(x)+A2(x)+A1(x)+A0(x), for all x ∈ X ,

where A0(x) = A0 is an arbitrary element of Y , and Ai(x) is the diagonal of the i-additive
symmetric map Ai : X i→ Y for i = 1,2,3,4. Putting (2.21) into (2.19), and noting that

A4(x+ y)+A4(x− y) = 2A4(x)+2A4(y)+12A2,2(x,y),
A3(x+ y)+A3(x− y) = 2A3(x)+6A1,2(x,y),
A2(x+ y)+A2(x− y) = 2A2(x)+2A2(y),
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and A2,2(kx,y) = k2A2,2(x,y), A1,2(kx,y) = kA1,2(x,y), we conclude that

g(x + y) + g(x− y) + h(x) + h̃(y) = 2k4A4(x) + 2A4(y) + 12k2A2,2(x,y)
+ 2k3A3(x) + 6kA1,2(x,y) + 2k2A2(x)
+ 2A2(y) + 2kA1(x) + 2A0(x).

Therefore

(2.22)

g(x + y) + g(x− y) + h(x) + h̃(y)
= k2A4(x + y) + k2A4(x− y) + kA3(x + y) + kA3(x− y)

+ (2k4 − 2k2)A4(x) + (2k3 − 2k)A3(x) + 2k2A2(x)
+ 2kA1(x) + 2A0(x) + (2− 2k2)A4(y) + 2A2(y).

Letting

(2.23) G(x) = g(x)− k2A4(x)− kA3(x), H̃(x) =−h̃(x)+(2−2k2)A4(x)+2A2(x)

and

(2.24)
H(x) = −h(x) + (2k4 − 2k2)A4(x) + (2k3 − 2k)A3(x) + 2k2A2(x) + 2kA1(x) + 2A0(x).

Then from (2.22) we have
(2.25) G(x + y) + G(x− y) = H(x) + H̃(y).

Let G satisfies (2.25). We decompose G into the even part and odd part by putting

Ge(x) =
1
2
(G(x)+G(−x)),Go(x) =

1
2
(G(x)−G(−x))

for all x ∈ X . It is clear that G(x) = Ge(x) + Go(x) for all x ∈ X . Similarly, we have
H(x) = He(x)+Ho(x) and H̃(x) = H̃e(x)+ H̃o(x). Thus

(2.26) Ge(x+ y)+Ge(x− y) = He(x)+ H̃e(y),

and

(2.27) Go(x+ y)+Go(x− y) = Ho(x)+ H̃o(y).

Letting y = 0 in (2.26), we have He(x) = 2Ge(x)− H̃e(0). Setting x = 0 in (2.26) to get
H̃e(y) = 2Ge(y)−He(0). Hence

(2.28) Ge(x+ y)+Ge(x− y) = 2Ge(x)+2Ge(y)−2Ge(0),

for all x,y ∈ X . Setting M(x) = Ge(x)−Ge(0), we get

(2.29) M(x+ y)+M(x− y) = 2M(x)+2M(y)

which is the quadratic functional equation and its solution is given by

M(x) = B2(x) for all x ∈ X ,

where B2(x) is the diagonal of the 2-additive symmetric map B2 : X2→ Y . In this case, we
obtain

(2.30) Ge(x) = B2(x)+G(0), He(x) = 2B2(x)+He(0), H̃e(x) = 2B2(x)+ H̃e(0).

Similarly, letting y = 0 in (2.27), we have Ho(x) = 2Go(x). Setting x = 0 in (2.27) to get
H̃o(y) = 0. Then from (2.27) we have

(2.31) Go(x+ y)+Go(x− y) = 2Go(x),



A Generalized Mixed Quadratic-Quartic Functional Equation 645

which is the Jensen functional equation and its solution is given by

(2.32) Go(x) = C1(x),

where C1 : X → Y is an additive function. Thus

(2.33)
G(x) = Ge(x)+Go(x) = B2(x)+B0(x)+D0(x)+C1(x),
H(x) = He(x)+Ho(x) = 2B2(x)+2C1(x)+2B0(x),
H̃(x) = H̃e(x)+ H̃o(x) = 2B2(x)+2D0(x).

where B0(x) = B0 and D0(x) = D0 are arbitrary elements of Y . Therefore from (2.23),
(2.24), (2.29), we obtain the asserted solution (2.20). The proof of the converse can be
easily checked.

3. Solution of equation (1.8) on commutative groups

In this section, we solve the functional equation (1.8) on commutative groups with some
additional requirements.

A group G is said to be divisible if for every element b ∈G and every n ∈N, there exists
an element a ∈G such that na = b. If this element a is unique, then G is said to be uniquely
divisible. In a uniquely divisible group, this unique element a is denoted by b/n. That
the equation na = b has a solution is equivalent to saying that the multiplication by n is
surjective. Similarly, that the equation na = b has a unique solution is equivalent to saying
that the multiplication by n is bijective. Hence the notions of n-divisibility and n-unique
divisibility refer, respectively, to surjectivity and bijectivity of the multiplication by n.

Lemma 3.1. (Hosszú [6]) Let n≥ 0 be an integer, G and S be abelian groups. Furthermore
let S be uniquely divisible. The map F from G into S satisfies the functional equation

4x1,...,xn+1F(x0) = 0

for all x0,x1, . . . ,xn+1 ∈ G if and only if F is given by

F(x) = An(x)+ · · ·+A1(x)+A0(x), for all x ∈ G,

where A0(x) = A0 is an arbitrary element of S and An(x) is the diagonal of an n-additive
symmetric function An : Gn→ S.

The solution of the functional equation (2.15) can be determined in certain type of groups
by using Lemma 3.1. As the proof is identical with the proof of Theorem 2.2 we simply
state the theorem without a proof.

Theorem 3.1. Let G and S be uniquely divisible abelian groups. Then the function f : G→ S
satisfies the functional equation (2.15) for all x,y ∈ G, if and only if f is of the form

f (x) = A4(x)+A2(x), for all x ∈ G,

where Ai(x) is the diagonal of the i-additive symmetric map Ai : Gi→ S for i = 2,4.

Theorem 3.2. Let G and S be uniquely divisible abelian groups. Then the function f : G→ S
satisfies the functional equation (2.17), if and only if f is of the form

f (x) = A4(x), for all x ∈ X ,

where A4(x) is the diagonal of the 4-additive symmetric map A4 : G4→ S.
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Proof. It can be proved in the same manner as in the proof of Theorem 2.3 by using Lemma
3.1.

Similar to the Theorem 2.4, we have the following theorem. As the proof is identical
with the proof of Theorem 2.6 we simply state the theorem without a proof.

Theorem 3.3. Let G and S be uniquely divisible abelian groups. Then the functions f ,g,h, h̃ :
G→ S satisfy the functional equation (1.8) for all x,y ∈ G, if and only if

f (x) = A4(x)+A3(x)+A2(x)+A1(x)+A0(x),

g(x) = k2A4(x)+ kA3(x)+B2(x)+B0(x)+C1(x)+D0(x),

h(x) = (2k4−2k2)A4(x)+(2k3−2k)A3(x)+2k2A2(x)+2kA1(x)+2A0(x)

−2B2(x)−2C1(x)−2B0(x),

h̃(x) = (2−2k2)A4(x)+2A2(x)−2B2(x)−2D0(x),

where A0(x)= A0, B0(x)= B0 and D0(x)= D0 are arbitrary elements of S, and Ai(x),Bi(x),Ci(x)
are the diagonal of the i-additive symmetric maps Ai,Bi,Ci : Gi → S, respectively, for i =
1,2,3,4.

Theorems 3.1–3.3 can be further strengthened using two important results due to Székelyhidi
[17]. By the use of the two important results, the proofs becomes even shorter but not so
elementary any more. The results needed for this improvement are the following (see [17]).

Theorem 3.4. Let G be a commutative semigroup with identity, S a commutative group
and n a nonnegative integer. Let the multiplication by n! be bijective in S. The function
f : G→ S is a solution of Fréchet functional equation

(3.1) 4x1,...,xn+1 f (x0) = 0

for all x0,x1, . . . ,xn+1 ∈ G if and only if f is a polynomial of degree at most n.

Theorem 3.5. Let G and S be commutative groups, n a nonnegative integer, ϕi,ψi additive
functions from G into G and ϕi(G)⊆ ψi(G)(i = 1,2, . . . ,n+1). If the functions f , fi : G→
S(i = 1,2, . . . ,n+1) satisfy

(3.2) f (x)+
n+1

∑
i=1

fi(ϕi(x)+ψi(y)) = 0,

then f satisfies Fréchet functional equation4x1,...,xn+1 f (x0) = 0.

Using these two theorems, Theorems 3.1–3.3 can be further improved.

Theorem 3.6. Let G and S be commutative groups. Let the multiplication by k be surjective
in G and let the multiplication by 24 and 2(k2− 1) be bijective in S. Then the function
f : G→ S satisfies the functional equation (2.15) for all x,y ∈ G, if and only if f is of the
form

f (x) = A4(x)+A2(x), for all x ∈ G,

where Ai(x) is the diagonal of the i-additive symmetric map Ai : Gi→ S for i = 2,4.
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Proof. Assume that f satisfies the functional equation (2.15). Using the unique divisibility
of S by 2(k2−1) and interchange x with y in (2.15), we can rewrite the functional equation
(2.15) in the form

f (x)+
5

∑
i=1

fi(ϕi(x)+ψi(y)) = 0

where f1(·) = f2(·) = (1/(2(k2−1))) f (·), f3(·) = f4(·) = ((−k2)/(2(k2−1))) f (·), f5(·) =
((−2)/(2(k2− 1)))( f (k·)− k2 f (·)), ϕ1(x) = ϕ3(x) = x, ϕ2(x) = ϕ4(x) = −x, ϕ5(x) = 0,
and ψ1(y) = ψ2(y) = ky, ψ3(y) = ψ4(y) = ψ5(y) = y. From these ϕi and ψi we see that
ϕi(G) ⊆ ψi(G) for i = 1,2,3,4,5. Thus by Theorem 3.5, f satisfies the Fréchet functional
equation (3.1). By Theorem 3.4, f is a generalized polynomial function of degree at most
4, that is f is of the form

f (x) = A4(x)+A3(x)+A2(x)+A1(x)+A0(x), for all x ∈ G,

where A0(x) = A0 is an arbitrary element of S, and Ai(x) is the diagonal of the i-additive
symmetric map Ai : Gi→ S for i = 1,2,3,4. By letting x = y = 0 in (2.15), we get f (0) = 0.
Hence A0(x) = A0 = 0. Setting x = 0 in (2.15) to get f (y) = f (−y) for all y ∈ G. So the
function f is even. Thus we have A3(x) = 0 and A1(x) = 0. Therefore we have f (x) =
A4(x)+A2(x). The proof of the converse can be easily checked.

Similar to the Theorem 2.3 and Theorem 3.6, we have the following theorem.

Theorem 3.7. Let G and S be commutative groups. Let the multiplication by 24 and
2k2(k2− 1) be bijective in S. Then the function f : G→ S satisfies the functional equa-
tion (2.17) for all x,y ∈ G, if and only if f is of the form

f (x) = A4(x), for all x ∈ G,

where A4(x) is the diagonal of the 4-additive symmetric map A4 : G4→ S.

Proof. Assume that f satisfies the functional equation (2.17). Using the unique divisibility
of S by 2k2(k2−1), we can rewrite the functional equation (2.17) in the form

f (x)− f (kx+ y)
2k2(k2−1)

− f (kx− y)
2k2(k2−1)

+
k2 f (x+ y)
2k2(k2−1)

+
k2 f (x− y)
2k2(k2−1)

− 2(k2−1)
2k2(k2−1)

f (y) = 0.

Thus by Theorem 3.5, f satisfies the Fréchet functional equation (3.1). By Theorem 3.4, f
is a generalized polynomial function of degree at most 4, that is f is of the form

f (x) = A4(x)+A3(x)+A2(x)+A1(x)+A0(x), for all x ∈ G,

where A0(x) = A0 is an arbitrary element of S, and Ai(x) is the diagonal of the i-additive
symmetric map Ai : Gi → S for i = 1,2,3,4. The remaining assertion goes through by the
similar way to corresponding part of Theorem 2.3.

Theorem 3.8. Let G and S be commutative groups. Let the multiplication by 2k2(k2−1) be
surjective in G and let the multiplication by 24 be bijective in S. Then the function f : G→ S
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satisfies the functional equation (1.8) for all x,y ∈ G, if and only if f is of the form

f (x) = A4(x)+A3(x)+A2(x)+A1(x)+A0(x),

g(x) = k2A4(x)+ kA3(x)+B2(x)+B0(x)+C1(x)+D0(x),

h(x) = (2k4−2k2)A4(x)+(2k3−2k)A3(x)+2k2A2(x)+2kA1(x)+2A0(x)

−2B2(x)−2C1(x)−2B0(x),

h̃(x) = (2−2k2)A4(x)+2A2(x)−2B2(x)−2D0(x),

where A0(x)= A0, B0(x)= B0 and D0(x)= D0 are arbitrary elements of Y , and Ai(x),Bi(x),Ci(x)
are the diagonal of the i-additive symmetric maps Ai,Bi,Ci : X i → Y , respectively, for
i = 1,2,3,4.

Proof. Assume that f satisfies the functional equation (1.8). Using the multiplication by
2k2(k2−1) be surjective in G, we can rewrite the functional equation (1.8) in the form

f (x)+ f (−x+2k2y)− f (x+(k− k2)y)− f (−x+(k + k2)y)−h(ky)− h̃(x− k2y) = 0.

Thus by Theorem 3.5, f satisfies the Fréchet functional equation (3.1). By Theorem 3.4, f
is a generalized polynomial function of degree at most 4, that is f is of the form

f (x) = A4(x)+A3(x)+A2(x)+A1(x)+A0(x), for all x ∈ G,

where A0(x) = A0 is an arbitrary element of S, and Ai(x) is the diagonal of the i-additive
symmetric map Ai : Gi → S for i = 1,2,3,4. The remaining assertion goes through by the
similar way to corresponding part of Theorem 2.4.
Acknowledgement. The authors would like to thank the referees for giving useful sugges-
tions for the improvement of this paper.
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332 (2007), no. 2, 1119–1133.
[2] J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math.

Soc. 40 (2003), no. 4, 565–576.
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