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Abstract. In this paper, we are concerned with oscillation of the nonlinear difference equa-
tion ∆(cn [∆(dn∆xn)]

γ )+qn f (xg(n)) = 0, n≥ n0, where γ > 0 is the quotient of odd pos-
itive integers, cn, dn and qn are positive sequences of real numbers, g(n) is a sequence of
nonnegative integers and f ∈ C(R,R) such that u f (u) > 0 for u 6= 0. We establish some
new sufficient conditions for oscillation by employing the Riccati substitution and the anal-
ysis of the associated Riccati difference inequality. Our results extend and improve some
previously obtained ones. Some examples are considered to illustrate the main results.
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1. Introduction

In recent years, the asymptotic properties and oscillation of difference equations and their
applications have been and still are receiving intensive attention. In fact, in the last few
years several monographs and hundreds of research papers have been written, see for ex-
ample the monographs [1, 3, 6, 11]. Determination of oscillatory behavior for solutions of
first and second order difference equations has occupied a great part of researchers’ interest.
Compared to the first and second order difference equations, the study of third order differ-
ence equations has received considerably less attention in the literature, even though such
equations arise in the study of economics, mathematical biology, and other areas of math-
ematics which discrete models are used (see for example [4]). For contributions, we refer
the reader to the papers [2,5,7,8,13–19] and the references cited therein. For completeness
and comparison, we present below some of these results.

In this paper, we are concerned with oscillation of the nonlinear difference equation

(1.1) ∆(cn [∆(dn∆xn)]
γ)+qn f (xg(n)) = 0, n≥ n0,

where γ > 0 is quotient of odd positive integers. Throughout this paper, we will assume the
following hypotheses:

(h1). cn, dn, qn are positive sequences of real numbers, g(n) : N→ Z, limn→∞ g(n) = ∞,
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(h2). f : R→ R is continuous, f (−u) =− f (u), for u 6= 0, and f (u)/uγ > K > 0.
Equation (1.1) is called a delay equation if g(n) < n and is called an advanced equation

if g(n) > n. Since, we are interested in oscillation and asymptotic behavior of solutions near
infinity, we make a standing hypothesis that the equation under consideration does possess
such solutions and the solutions vanishing in some neighborhood of infinity will be excluded
from our consideration. Our attention is restricted to those solutions of (1.1) which exist on
[nx, ∞) and satisfy sup{|xn| : n > n1} > 0 for any n1 ≥ nx. A solution xn of (1.1) is said
to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is
nonoscillatory. The equation (1.1) is said to be oscillatory in case there exists at least one
oscillatory solution.

Here are a few background details that serve the readers and motivate the contents of this
paper. For oscillation of linear difference equation Smith in [16] considered the equation of
the form

(1.2) ∆
3xn− pnxn+2 = 0, n≥ n0,

and proved that if

(1.3)
∞

∑
n=n0

pn = ∞,

then (1.2) is oscillatory. The main investigation depends on the value of the functional
G(xn) = (∆xn)2−2xn+1∆2xn, which is the discrete analogy of the function defined by Lazer
[12] for third order differential equations. Further in [16] the author considered the quasi-
adjoint difference equation

(1.4) ∆
3xn + pnxn+1 = 0, n≥ n0,

where pn > 0 for n≥ n0 and proved that (1.2) is oscillatory if and only if (1.4) is oscillatory.
But one can easily see that the results cannot be applied if pn = n−α for α > 1.

In [14] the authors considered the difference equation of the form

(1.5) ∆
3xn + pnxn = 0, n≥ n0,

and proved that if pn is a positive sequence and

(1.6) pn > 1, for n≥ n0,

then (1.5) is oscillatory. In [15] the author considered the equation (1.4) where pn > 0 for
n≥ n0 and proved that if

(1.7)
∞

∑
l=n0

[
l−1

∑
t=n0

t−1

∑
s=n0

ps

]
= ∞,

and there exists a positive sequence ρn such that,

(1.8) lim
n→∞

sup
n

∑
s=n0

[
ρs ps−

(∆ρs)
2

4ρs(s−n0)

]
= ∞,

then the solution xn of (1.4) is oscillatory or satisfies limn→∞ xn = 0. One can easily see that
the results established in [15] provided substantial improvement for those obtained in [16]
and [14].

In [17] the author considered the linear difference equation

(1.9) ∆
3xn + pn+1∆xn+2 +qnxn+2 = 0, n≥ n0,
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where pn and qn are real sequences satisfying

(1.10) pn ≥ 0, qn < 0 and
∞

∑
s=n0

(∆pn−2qn) = ∞,

and proved that if pn+1 +qn≤ 0 for n≥ n0, then (1.9) has both oscillatory and nonoscillatory
solutions. Further it was proved that if there is a solution xn of (1.9) such that F(xn) > 0, then
xn is oscillatory where the functional F(xn) is defined by F(xn) := (∆xn)2− 2xn+1∆2xn−
pnx2

n+2. However one can easily see that the condition depends on the solution itself whose
determination might not be possible.

In [18] the author considered the equation

(1.11) ∆(∆2xn− pn+1xn+1)−qn+2xn+2 = 0, n≥ n0,

where pn and qn are nonnegative real sequences and satisfying (1.10). The author proved
that if xn is a nonoscillatory solution then there exists an integer N for which either xn∆xn > 0
or xn∆xn < 0 for all n > N and proved that the equation (1.11) is oscillatory if and only if
the equation

(1.12) ∆
3xn− pn+1∆xn+1 +qn+1xn+1 = 0, n≥ n0,

is oscillatory. Further the author gave a connection between the behavior of solutions of
(1.12) and (1.11) by proving that if un is a solution of (1.12), then the two independent
solutions of (1.11) satisfy the self-adjoint second order difference equation

(1.13) ∆

(
∆xn

un

)
+
(

∆2un+1− pn+1un+2

un+1un+2

)
xn+1 = 0.

Also in [18] the author proved that if vn is a nonoscillatory solution of (1.11), then the two
independent solutions of (1.12) satisfy the self-adjoint second order equation

(1.14) ∆

(
∆xn

vn

)
+
(

∆2vn−1− pnvn

vnvn+1

)
xn+1 = 0.

Specifically the author proved that the equation (1.11) is oscillatory if and only if (1.13)
is oscillatory and also (1.12) is oscillatory if and only if (1.14) is oscillatory. In fact these
results can be considered as the discrete analogy of the results that has been given for third
order differential equations by Jones [10] where he considered the equation

(1.15) x
′′′
(t)+ p(t)x

′
(t)+q(t)x(t) = 0, t ≥ t0,

and gave a relationship between oscillation of (1.15) and nonoscillation of its self-adjoint
equation

(1.16) x
′′′
(t)+ p(t)x

′
(t)+(p

′
(t)−q(t))x(t) = 0,

and proved that if N is a nonoscillatory solution of the adjoint equation (1.16), then there
are two independent oscillatory solutions of (1.15) satisfying the equation

(1.17)

(
x
′
(t)

N(t)

)′
+

(
N
′′
(t)+ p(t)N(t)

N2(t)

)
x(t) = 0.

In [13] the authors considered the difference equation of the form

(1.18) yn+3 + rnyn+2 +qnyn+1 + pnyn = 0,
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where rn, pn, qn are sequences of real numbers such that pn 6= 0. The authors proved that
if pn < 0, qn < 0 and rn < 0 then equation (1.18) admits two oscillatory solutions and if
pn < 0, qn > 0 and rn > 0 then equation (1.18) admits a nonoscillatory solution. In [8] the
authors studied the oscillation of the nonlinear difference equation

(1.19) ∆(cn∆(dn∆(xn)))+qn f (xn−σ+1) = 0, n≥ n0,

where σ is a nonnegative integer, f : R→ R is continuous such that u f (u) > 0 for u 6= 0,
and

(1.20) f (u)− f (v) = g(u,v)(u− v), for u,v 6= 0 and g(u,v) > µ > 0,

and cn, dn are positive sequences of real numbers such

(1.21)
∞

∑
n=n0

(
1
cn

)
=

∞

∑
n=n0

(
1
dn

)
= ∞, and ∆cn > 0.

For the linear case they used the Riccati transformation technique and established some
sufficient conditions which ensure that every solution of (1.19) is oscillatory. They proved
that if f (u) = u and there exist real valued sequences h,H : N×N→R such that H(n,n) = 0,
H(n,s) > 0 for n > s≥ n0, −∆2H(n,s) = h(n,s)

√
H(n,s) and

lim sup
n→∞

1
H(n,n1)

∑
s=n1

[
H(n,s)qs−

csds−σ h2(n,s)
4(s−σ −n0)

]
= ∞,

n+m−1

∑
i=n

qi

[
i

∑
j=n

1
d j

(
i

∑
k= j

1
ck

)]
> 1,

then every solution of (1.19) is oscillatory. In the nonlinear case some oscillation criteria
are given by reducing the oscillation of the equation to the existence of positive solution of
a Riccati difference inequality. But one can easily see that the condition (1.20) cannot be
tested when f (u) = uγ for γ > 0 and the results are valid only when ∆cn > 0. They proved
that if (1.20) and (1.21) hold and there exists a positive sequence such that

∞

∑
s=n1

[
ρsqs−

csds−σ (∆ρs)
2

4µ(s−σ −n0)

]
= ∞,

and

lim sup
n→∞

n+m−1

∑
i=n

qi

[
i

∑
j=n

1
d j

(
i

∑
k= j

1
ck

)]
= ∞,

then every solution of (1.19) is oscillatory. Note that these results cannot be applied on the
equation

(1.22) ∆
3xn +

8n+12
(n−σ +1)(1+(n−σ +1)2))

xn−σ+1(1+ x2
n−σ+1) = 0, for n≥ n0,

where σ is an odd positive integer, f (u) = u(1 + u2) ≥ u satisfies f (−u) = − f (u). Note
that this equation has an oscillatory solution xn = (−1)nn. So one of our aims in this paper
is to establish some sufficient conditions bypass these restrictions.

In [7] the authors considered the nonlinear delay difference equation

(1.23) ∆(cn
(
∆

2xn
)γ

)+qn f (x(gn)) = 0, n≥ n0,
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where cn, gn, qn are sequences of nonneagtive real numbers, gn < n, γ is quotient of odd
positive integers, f : R→ R is continuous such that u f (u) > 0 for u 6= 0, f

′
(x) > 0, and

− f (−xy)≥ f (xy)≥ f (x) f (y) for xy > 0 and

(1.24)
∞

∑
n=n0

(
1
cn

)γ

< ∞.

The main approach of proving the results in [7] is the reduction of the oscillation of (1.23)
to the oscillation of first order delay difference equation. They proved that if both of the two
difference equations

∆yn + cqn f

(
gn−1

∑
k=n1

k

c
1
γ (n)

)
f (y

1
γ (gn)) = 0,

∆yn +qn f (ξ (n))−gn f

(
η(n)−1

∑
k=ξ (n)

k

c
1
γ (n)

)
f (y

1
γ (η(n))) = 0,

are oscillatory, and

∞

∑
l=n1

(
1
cl

l−1

∑
k=n1

q(k) f

(
∞

∑
s=gk

1

c
1
γ (n)

)) 1
γ

= ∞,

then equation (1.23) is oscillatory. But the results can be applied only in the case when
gn < n. Also the restriction f ′(x) > 0 is required. This condition does not hold and cannot be
applied in the case when f (x) = x

(
1/9+1/(1+ x2)

)
, since f ′(x) = (x2−2)(x2−5)/9(1+

x2)2 changes sign four times. Note that in this case we have f (−x) = −x(1/9 + 1/(1 +
x2)) =− f (x) which means that condition (h2) is satisfied.

We note that the equation (1.19) is a special case of (1.1) when γ = 1 and the equation
(1.23) is also a special case of (1.1) when dn = 1. Also the results that has been established
for the equation (1.19) in [8] depend on condition (1.21) and the results that in [7] has been
established in the special case when dn = 1. Therefore it will be great of interest to establish
oscillation criteria for (1.1) when

(1.25)
∞

∑
n=n0

(
1
cn

)γ

= ∞,
∞

∑
n=n0

(
1
dn

)
= ∞.

The main aim of this paper is to establish some sufficient conditions which guarantee that
the equation (1.1) has oscillatory solutions or the solutions tend to zero as n→ ∞. The
paper is organized as follows: In Section 2, we state and prove some useful lemmas that
will be used in the proofs of the main results. In Section 3, we consider the case when
(1.25) holds. In the Subsection 3.1, we consider the advanced case when g(n) > n and
in the Subsection 3.2, we consider the delay case when g(n) < n. The main investigation
of the main oscillation results depends on the Riccati substitution and the analysis of the
associated Riccati difference inequality. Our results improve the results improve the results
in [8] in the sense that the results do not require the conditions (1.21) and (1.20). Also the
results complement the results in [7] in the sense that the results do not require the condition
f
′
(x) > 0 and dn = 1 and can be applied on the case when g(n) ≥ n. Some examples and

applications are considered throughout the paper to illustrate the main results.
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2. Some preliminary lemmas

In this section, we state and prove some fundamental lemmas that will be used in the proofs
of the main results. For the solution xn of the equation (1.1), we define the quasi differences
by

(2.1) x[0]
n = xn, x[1]

n = dn∆xn, x[2]
n = cn

[
∆x[1]

n

]γ

, and x[3]
n = ∆

(
x[2]

n

)
.

We note that if xn is a solution of (1.1) then z = −x is also solution of (1.1), since from
(h2), f (−u) =− f (u) for u 6= 0. Thus, concerning nonoscillatory solutions of (1.1), we can
restrict our attention only to the positive ones. We start with the following Lemma which
provides the signs of the quasi differences of the solution xn of (1.1).

Lemma 2.1. Assume that (h1)− (h2) hold. If xn is a nonoscillatory solution of (1.1), then
there exists N > n0 such that x[i]

n 6= 0 for i = 0,1,2 for n≥ N.

Proof. Without loss of generality, we may assume that xn be an eventually positive solution
of (1.1) and there exists a n1 ≥ n0 such that xn > 0 and xg(n) > 0 for n ≥ n1. Then, since

qn > 0, x[3]
n < 0, and there exists n2 ≥ n1 such that x[2]

n is either positive or negative for
n ≥ n2. Thus x[1]

n is either increasing or decreasing for n ≥ n2 and so there exists N ≥ n2

such that x[1]
n is either positive or negative for n≥ N. The proof is complete.

In view of Lemma 2.1, we deduce that all nonoscillatory solutions of (1.1) belong to the
following classes:

C0 ={x : ∃ N such that xnx[1]
n < 0, xnx[2]

n > 0 for n≥ N},

C1 ={x : ∃ N such that xnx[1]
n > 0, xnx[2]

n < 0 for n≥ N},

C2 ={x : ∃ N such that xnx[1]
n > 0, xnx[2]

n > 0 for n≥ N},

C3 ={x : ∃ N such that xnx[1]
n < 0,xnx[2]

n < 0 for n > N}.

Lemma 2.2. Assume that (h1)− (h2) and (1.25) hold. If xn be a nonoscillatory solution of
(1.1), then xn ∈C0∪C2.

Proof. Without loss of generality, we may assume that xn is an eventually positive solution
of (1.1). Then there exists n1 > n0 such that xn and xg(n) > 0 for n > n1. Then in view

Lemma 2.1, x[0]
n , x[1]

n and x[2]
n are monotone and eventually of one sign. So to complete the

proof, we prove that the possible cases are the following two cases for n > n1 sufficiently
large:
Case (I): x[0]

n > 0, x[1]
n > 0, x[2]

n > 0,

Case (II): x[0]
n > 0, x[1]

n < 0, x[2]
n > 0.

This means that it is enough to claim that there exists n2 > n1 such that x[2]
n > 0 for

n > n2, . Suppose to the contrary that x[2]
n ≤ 0 for n > n2. From (1.1) and (h2), we see that

x[3]
n < 0 for n > n1 and then x[2]

n is decreasing. Therefore there exist a negative constant C
and n3 > n2 such that x[2]

n ≤C for n > n3. So that

x[1]
n ≤ x[1]

n3 +C
1
γ

n−1

∑
s=n3

1

(cs)
1
γ

,
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which implies by (1.25) that limn→∞ x[1]
n = −∞. Thus, there is an integer n4 > n3 such that

for n > n4, dn∆(xn)≤ dn4∆(xn4) < 0. This implies that after summing from n4 to n−1, that

xn− xn4 ≤ dn4∆(xn4)
n−1

∑
s=n3

1
ds

,

which implies by (1.25) that xn→−∞ as n→ ∞. This is a contradiction with xn > 0. Then
x[2]

n > 0. The proof is complete.

Remark 2.1. We note that most of the results that has been presented in the introduction
are obtained under some conditions on the coefficients which ensure that the solutions are
of type C0 and C2. In the following Lemma, we give a condition which ensure that C3 = /0
and we will consider it in the reminder of the paper. So it would be great of interest to find
new conditions for oscillation of (1.1) when (2.2) does not hold and this will be left to the
interested reader.

Lemma 2.3. Assume that (h1)−(h2) hold. If

(2.2)
∞

∑
n=n1

1
dn

n−1

∑
s=n1

1

(cs)
1
γ

= ∞,

then C3 is empty.

Proof. To prove that C3 is empty, we prove that if there is a positive solution xn of (1.1),
then

xnx[1]
n < 0, xnx[2]

n < 0, f or n≥ N > n0,

is impossible. Assume for the sake of contradiction that there exists n1 > n0 such that xn and
xg(n) > 0, x[2]

n < 0 and x[1]
n < 0 for n≥ n1. Denote a0 = x[2]

n1 < 0. Then, since x[2]
n is decreasing

we have cn(∆x[1]
n )γ < a0 for n≥ n1 and thus by summation from n1 to n−1, we have

x[1]
n < x[1]

n1 +a
1
γ

0

n−1

∑
s=n1

1

(cs)
1
γ

.

Now, since x[1]
n1 < 0, we see after summation from n1 to n−1, that

xn < xn1 +a
1
γ

0

n−1

∑
n=n1

1
dn

n−1

∑
s=n1

1

(cs)
1
γ

.

Letting n→ ∞, we get by (2.2) that limn→∞ xn =−∞, which contradicts the positivity.

Remark 2.2. In the proof [7, Theorem 2.1] the authors assumed that the case xn > 0, ∆xn <
0 and ∆2xn < 0 cannot hold (this equivalent to the case C3 = /0). In fact this is not the case,
since to prove this we should assume that ∆2xn is decreasing. From the equation (1.23),
we see that the term which is decreasing is cn(∆2xn)γ (not ∆2xn) and then cn(∆2xn)γ <

cn1(∆
2xn1)

γ for n > n1. Then, we get ∆2xn < Ac−1/γ
n , where A = cn1(∆

2xn1)
γ < 0. This

implies that ∆xn−∆xn1 < A∑
n−1
n1

c−1/γ
s , and since ∆xn1 < 0, we get ∆xn < ACn where Cn =

∑
n−1
n1

c−1/γ
s . After summing, we get xn < xn1 −A∑

n−1
n1

Cn. So to get a contradiction with the

positivity of xn, we have to assume that ∑
∞
n1

Cn = ∑
∞
n=n1 ∑

n−1
s=n1

c−1/γ
s = ∞.
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Lemma 2.4. Assume that (h1)− (h2) hold. Let xn is a nonoscillatory solution of (1.1) such
that xn ∈C0. If

(h3).∑∞
n=n0

1
dn

∑
n−1
t=n0

(
1
ct

∑
t−1
s=n0

qs

) 1
γ = ∞.

Then limn→∞ xn = 0.

Proof. Without loss of generality, we may assume that xn > 0, xg(n) > 0 for n ≥ n1 where
n1 > n0 is chosen sufficiently large. Since xn ∈ C0, then there exists n1 > n0 such that
x[1]

n < 0, x[2]
n > 0 for n≥ n1. From (1.1), we obtain

(2.3) ∆(cn [∆(dn∆xn)]
γ)+Kqnxγ

g(n) ≤ 0, n≥ n2.

Since xn is positive and decreasing it follows that limn→∞ xn = b ≥ 0. Now we claim
that b = 0. If not then xγ

g(n) → bγ > 0 as n→ ∞, and hence there exists n2 ≥ n1 such that

xγ

g(n) ≥ bγ . Therefore from (2.3), we have

∆(cn [∆(dn∆xn)]
γ)+Kqnbγ ≤ 0, n≥ n2.

Define the sequence un = cn [∆(dn∆xn)]
γ for n≥ n2. Then ∆un ≤−Aqn, where A = Kbγ > 0.

Summing the last inequality from n2 to n−1, we get un ≤ un2 −A∑
n−1
s=n2

qs. In view of (h3),
it is possible to choose an integer n3 sufficiently large such that un ≤ −(A/2)∑

n−1
s=n2

qs for
all n≥ n3. Hence

[∆(dn∆xn)]
γ ≤−A

2
1
cn

n−1

∑
s=n2

qs.

Summing the last inequality from n3 to n−1, we obtain

dn∆xn ≤ dn3∆xn3 −
(

A
2

) 1
γ n−1

∑
t=n3

(
1
ct

t−1

∑
s=n2

qs

) 1
γ

.

Since ∆xn < 0 for n≥ n0, the last inequality implies that

∆xn ≤−
(

A
2

) 1
γ 1

dn

n−1

∑
t=n3

(
1
ct

t−1

∑
s=n2

qs

) 1
γ

.

Summing from n3 to n−1, we have

xn ≤ xn3 −
(

A
2

) 1
γ n−1

∑
l=n3

1
dl

l−1

∑
t=n3

(
1
ct

t−1

∑
s=n2

qs

) 1
γ

.

Condition (h3) implies that xn→−∞ as n→ ∞ which is a contradiction with the fact that
xn is positive. Then b = 0 and this completes the proof.

To prove the next lemma we will use the functions hk(n,s) which are define by

(2.4) hk(n,s) :=
(n− s)(k)

k!
, k = 0,1,2, ...,

where t(k) = t(t−1) · · ·(t− k +1) is the so-called falling function (cf. Kelley and Peterson
[11]). The summation and difference of the functions in (2.4) are defined by

hk+1(n,s) =
n−1

∑
τ=s

hk(τ,s), ∆1hk(n,s) = hk−1(n,s) and ∆2hk(n,s) =−hk−1(n,s),
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where ∆1 denotes the difference with respect to n and ∆2 denotes the difference with respect
to s. As a special case when n = 2, we see that n(2) = n(n−1) and we can prove easily that
∆n(2) = 2n. Also one can easily see that ∆(1/n(2)) = −2/(n + 1)(3) and then deduce that

∑
∞
s=n

(
−2/(n+1)(3)

)
= 1/n(2).

This lemma will be used in the proof of delay case.

Lemma 2.5. Assume that g(n)≤ n, and

(2.5) xn > 0, ∆xn > 0, ∆
2xn > 0, and ∆

3xn < 0, f or n≥ n0.

Then

(2.6) liminf
n→∞

nxn

h2(n,n0)∆xn
≥ 1,

and there exists N > n0 such that

(2.7)
∆xg(n)

∆xn+1
≥ g(n)−N

n+1−N
.

Proof. First, we prove that (2.6) holds. To do this we define Gn by

Gn := (n−N)xn−
(n−N)(2)

2
∆xn.

Then GN = 0, and

∆Gn =(n+1−N)∆xn + xn−
(n+1−N)(2)

2
∆

2xn− (n−N)∆xn

=∆xn + xn−
(n+1−N)(2)

2
∆

2xn

=xn+1−
(n+1−N)(2)

2
∆

2xn

=xn+1−
n

∑
τ=N

(τ−N)∆2xn.

By the discrete Taylor’s Theorem [1, Theorem 1.113] of the sequence fn,

fn :=
m−1

∑
k=0

hk(n,α)∆k f (α)+
1

(m−1)!

n−m

∑
τ=α

hm−1(n,τ +1)∆m f (τ),

where hn(t,s) be as defined by (2.4). Putting fn = xn+1 and m = 2, we have

xn+1 =
2−1

∑
k=0

hk(n+1,N)∆kxN +
1

(2−1)!

n+1−2

∑
τ=N

h2−1(n+1,τ +1)∆2xτ

= xN +(n+1−N)∆xN +
n−1

∑
τ=N

h1(n+1,τ +1)∆2xτ

≥ xN +(n+1−N)∆xN +∆
2xn

n−1

∑
τ=N

h1(n+1,τ +1),
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since from (2.5) ∆2xn is decreasing. It would follow that ∆Gn > 0 on [N,∞) provided,
we can prove that

n−1

∑
τ=N

h1(n+1,τ +1) =
n

∑
τ=N

(τ−N).

To see this, we use the summation by parts formula [1, Theorem 1.77],
b

∑
τ=a

f (τ +1)∆g(τ) = f (τ)g(τ)]b+1
a −

b

∑
τ=a

∆ f (τ)g(τ),

to get
n

∑
τ=N

h1(n+1,τ +1) = h1(n+1,τ)(τ−N)τ=n+1
τ=N −

n

∑
τ=N

(−1)(τ−N) =
n

∑
τ=N

(τ−N),

which is the desired result. Hence ∆Gn > 0 for n ≥ N. Since GN = 0, we get that Gn > 0
for n≥ N. This implies that

(2.8)
(n−N)xn

h2(n,N)∆xn
≥ 1, for n≥ N.

Therefore, since
nxn

h2(n,n0)∆xn
=

(n−N)xn

h2(n,N)∆xn

n
n−N

h2(n,N)
h2(n,n0)

,

and since

lim
n→∞

n
n−N

= 1 = lim
n→∞

h2(n,N)
h2(n,n0)

,

we get that

liminf
n→∞

nx(n)
h2(n,n0)∆xn

≥ 1.

which proves (2.6). Next, we prove that (2.7) holds. From (2.5), since ∆2xn is decreasing,
we have

∆xn−∆xN ≥ ∆
2xn(n−N).

Dividing by ∆xn∆xn+1, we get

∆xn−∆xN−∆2xn(n−N)
∆xn∆xn+1

≥ 0.

This implies that

∆

(
n−N
∆xn

)
≥ 0,

which proves that ((n−N)/∆xn) is a nondecreasing function. Then, since g(n)≤ n < n+1,
we have

(n+1−N)
∆xn+1

≥ (g(n)−N)
∆xg(n)

.

Hence (
∆xg(n)

)γ ≥
(

(g(n)−N)
(n+1−N)

)γ

(∆xn+1)
γ ,

which proves (2.7). The proof is complete.



Oscillation of a Certain Class of Third Order Nonlinear Difference Equations 661

3. Main oscillation results

In this section, we consider that case when (1.25) holds and establish some sufficient con-
ditions which guarantee that the solution xn of (1.1) oscillates or satisfies limn→∞ xn = 0. In
view of Lemma 2.2, it is clear that if xn is a solution of (1.1), then the solution xn ∈C0∪C2.

3.1. The case when g(n) > n

To simplify the presentation of the results, we introduce the following notations:

Qn = Kqn

(
Dn (cn)

1
γ Cn

(cn)
1
γ Cn +1

)γ

, Cn :=
n−1

∑
s=N

c
− 1

γ

s , Dn =
g(n)−1

∑
s=n

1
ds

.

r : = liminf
n→∞

nγ wn+1

cn
, R := limsup

n→∞

nγ wn+1

cn
,

q∗ : = liminf
n→∞

1
n

n−1

∑
s=N

sγ+1

cs
Qs, p∗ := liminf

n→∞

nγ

cn

∞

∑
s=n+1

Qs,

Theorem 3.1. Assume that (h1), (h2) and (1.25) hold. Furthermore assume that g(n) > n.
Let xn be a solution of (1.1) such that xn ∈C2 and make the Riccati substitution

(3.1) wn :=
x[2]

n(
x[1]

n

)γ .

Then wn > 0, and

(3.2) ∆wn +Qn +
γ

(cn)
1
γ

(wn+1)
1+ 1

γ ≤ 0, for n ∈ [N,∞).

Proof. Let xn be as in the statement of this Theorem and without loss of generality, we may
assume that there is n1 > n0 such that xn > 0 and xg(n) > 0. Since xn ∈C2, then there exists

N > n1 such that x[0]
n > 0, x[1]

n > 0, x[2]
n > 0, x[3]

n ≤ 0. By the difference quotient rule, we have

∆wn =∆
x[2](
x[1]
)γ =

(
x[1]

n

)γ

x
[3]
n −∆

(
x[1]

n

)γ

x[2]
n

(x[1]
n )γ(x[1]

n+1)γ

=
x

[3]
n

(
x[0]

g(n)

)γ

(
x[0]

g(n)

)γ (
x[1]

n+1

)γ −
∆

(
x[1]

n

)γ

x[2]
n

(x[1]
n )γ(x[1]

n+1)γ

≤−Kqn

(
x[0]

g(n)

)γ

(
x[1]

n+1

)γ −
∆

(
x[1]

n

)γ

x[2]
n

(x[1]
n )γ(x[1]

n+1)γ
.(3.3)

Using the inequality ( [9, p. 39]),

(3.4) γxγ−1(x− y)≥ xγ − yγ ≥ γyγ−1(x− y) for all x 6= y and γ ≥ 1,

we have

∆

(
x[1]

n

)γ

=
(

x[1]
n+1

)γ

−
(

x[1]
n

)γ

≥ γ

(
x[1]

n

)γ−1(
∆x[1]

n

)
, when γ ≥ 1.
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From the definition of x[2]
n = cn

(
∆x[1]

n

)γ

, we see that ∆x[1]
n =

(
x[2]

n
cn

) 1
γ

. So that

(3.5) ∆

(
x[1]

n

)γ

≥ γ

(
x[1]

n

)γ−1
(

x[2]
n

cn

) 1
γ

.

Using the inequality ( [9, p. 39]),

(3.6) γyγ−1(x− y)≥ xγ − yγ ≥ γxγ−1(x− y) for all x 6= y and 0 < γ ≤ 1,

we have, when 0 < γ ≤ 1, that

(3.7) ∆

(
x[1]

n

)γ

=
(

x[1]
n+1

)γ

−
(

x[1]
n

)γ

≥ γ

(
x[1]

n+1

)γ−1(
∆x[1]

n

)
≥ γ

(
x[1]

n+1

)γ−1
(

x[2]
n

cn

) 1
γ

.

From (3.5) and (3.7), since x[1]
n is increasing and x[2] is decreasing, we get

∆

(
x[1]

n

)γ

x[2]
n(

x[1]
n

)γ (
x[1]

n+1

)γ ≥
γx[2]

n (x[2]
n )

1
γ

(cn)
1
γ

(
x[1]

n

)(
x[1]

n+1

)γ

≥
γ

(
x[2]

n+1

)(
x[2]

n+1

) 1
γ

(cn)
1
γ

(
x[1]

n+1

)(
x[1]

n+1

)γ

=
γ

(cn)
1
γ

(wn+1)
1
γ
+1 , for γ > 0.

Substituting in (3.3), we have

(3.8) ∆wn ≤−Kqn

(
xg(n)

x[1]
n+1

)γ

− γ

(cn)
1
γ

(wn+1)
1+ 1

γ .

Next, we consider the coefficient of qn in (3.8). Since x[1]
n+1 = x[1]

n +∆(x[1]
n ), we have

x[1]
n+1/x[1]

n = 1+∆(x[1])/x[1]
n = 1+ c

− 1
γ

n

(
x[2]

n

) 1
γ

/x[1]
n .

Also since x[2]
n is decreasing, we get

(3.9) x[1]
n = x[1]

N +
n−1

∑
s=N

(
x[2]

s

) 1
γ 1

(cs)
1
γ

≥ x[1]
N +

(
x[2]

n

) 1
γ

n−1

∑
s=N

1

(cs)
1
γ

>
(

x[2]
n

) 1
γ

n−1

∑
s=N

1

(cs)
1
γ

.

It follows that

(3.10) x[1]
n /
(

x[2]
n

) 1
γ ≥

n−1

∑
s=N

1

(cs)
1
γ

= Cn.

Hence

(x[1]
n+1)/x[1]

n = 1+
(

∆(x[1])/(x[1]
n )
)

= 1+

(
1

(cn)
1
γ

(
x[2]

n

) 1
γ

/x[1]
n

)
≤ (cn)

1
γ Cn +1

(cn)
1
γ Cn

.
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Hence, we have

x[1]
n

(x[1]
n+1)

≥ (cn)
1
γ Cn

(cn)
1
γ Cn +1

.

So that

(3.11)
xg(n)

x[1]
n+1

=

(
xg(n)

x[1]
n

)(
x[1]

n

x[1]
n+1

)
≥

(
xg(n)

x[1]
n

)
(cn)

1
γ Cn

(cn)
1
γ Cn +1

.

Now, since g(n) > n and x[1]
n is increasing, we have

xg(n) > xg(n) − xn =
g(n)−1

∑
s=n

∆xs =
g(n)−1

∑
s=n

x[1]
s

ds
≥ x[1]

n

g(n)−1

∑
s=n

1
ds

= x[1]
n Dn.

This and (3.11) show that

(3.12)
xg(n)

x[1]
n+1

≥ Dn(cn)
1
γ Cn

(cn)
1
γ Cn +1

.

Substituting from (3.12) into (3.8), we have the inequality (3.2) and this completes the
proof.

In order for the definition of p∗ to make sense, we assume that

(3.13)
∞

∑
s=n0

Qs < ∞,

which is different from the assumption that has been posed in all the above mentioned results
in the introduction.

Now, we are ready to state and prove the main oscillation theorem in the advanced case.

Theorem 3.2. Assume that (h1)− (h3), and (1.25) hold. Furthermore assume that g(n) > n,
and ∆cn ≥ 0. Let xn be a solution of (1.1). If

(3.14) p∗ >
γγ

(γ +1)γ+1 ,

or

(3.15) p∗+q∗ > 2γ(γ+1).

Then either xn oscillates or limn→∞ xn = 0.

Proof. Suppose the contrary and assume that xn is a nonoscillatory solution of equation
(1.1). Without loss of generality, we may assume that xn > 0, xg(n) > 0 for n ≥ n1 where
n1 is chosen so large. We consider only this case, because the proof when xn < 0 is similar,
since f (−u) = − f (u). From Lemma 2.2, since (1.25) holds, we see that xn ∈ C0 ∪C2.
If xn ∈ C0, then since (h3) holds, we are back to the proof of Lemma 2.4 to show that
limn→∞ xn = 0. Next, we consider the case when xn ∈ C2 and define the sequence wn be
as given by (3.1) in Theorem 3.1. Then from Theorem 3.1, there exists n2 > n1 such that
wn > 0 and satisfies the difference inequality

(3.16) ∆wn ≤−Qn−
γ

(cn)
1
γ

(wn+1)
1+ 1

γ for n≥ n2.
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Also from Theorem 3.1, since

x[1]
n >

(
x[2]

n

) 1
γ

n−1

∑
s=N

1

(cs)
1
γ

,

we see that

wn :=
x[2]

n(
x[1]

n

)γ <

(
n−1

∑
s=N

1

(cs)
1
γ

)−γ

.

Then from (1.25), we have limn→∞ wn = 0. First, we assume that (3.14) holds. Summing
(3.16) from n+1 to ∞ and using that limn→∞ wn = 0, we get

(3.17) wn+1 ≥
∞

∑
n+1

Qs + γ

∞

∑
n+1

c
− 1

γ

s (ws+1)
1
γ ws+1.

It follows from (3.17) that

(3.18)
nγ wn+1

cn
≥ nγ

cn

∞

∑
n+1

Qs + γ
nγ

cn

∞

∑
n+1

1

(cs)
1
γ

(ws+1)
1
γ ws+1.

Let ε > 0, then by the definition of p∗ and r we can pick N ≥ n2, sufficiently large, so that

(3.19)
nγ

cn

∞

∑
n+1

Qs ≥ p∗− ε, and
nγ wn+1

cn
≥ r− ε, for n≥ N.

From (3.18) and (3.19) and using the fact ∆cn ≥ 0, we get that

nγ wn+1

cn
≥ (p∗− ε)+ γ

nγ

cn

∞

∑
n+1

cs

sγ+1
s(ws+1)

1
γ

(cs)
1
γ

sγ ws+1

cs

≥ (p∗− ε)+(r− ε)1+ 1
γ

nγ

cn

∞

∑
n+1

γcs

sγ+1

≥ (p∗− ε)+(r− ε)1+ 1
γ nγ

∞

∑
n+1

γ

sγ+1 .(3.20)

Using the inequality (3.4), we have

(3.21) ∆

(
−1
sγ

)
=

(s+1)γ − sγ

sγ(s+1)γ
≤ γ(s+1)γ−1

sγ(s+1)γ
=

γ

sγ(s+1)
<

γ

sγ+1 , γ ≥ 1.

Using the inequality (3.6), we have

∆

(
−1
sγ

)
=

(s+1)γ − sγ

sγ(s+1)γ
≤ γ(s)γ−1

sγ(s+1)γ
=

γ

s(s+1)γ
<

γ

sγ+1 , 0 < γ < 1.

So that for γ > 0, we have

(3.22)
∞

∑
n+1

γ

sγ+1 >
∞

∑
n+1

∆

(
−1
sγ

)
=

1
(n+1)γ

.

Then from (3.20), (3.21) and (3.22), we obtain

nγ wn+1

cn
≥ (p∗− ε)+(r− ε)1+ 1

γ

(
n

n+1

)γ

, for γ > 0.
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Taking the liminf of both sides as n→ ∞, we get that

r ≥ p− ε +(r− ε)1+ 1
γ .

Since ε > 0 is arbitrary, we get

(3.23) p∗ ≤ r− r1+ 1
γ .

Using the fact that

u−u
γ+1

γ ≤ γγ

(γ +1)γ+1 ,

we have

p∗ ≤
γγ

(γ +1)γ+1 ,

which contradicts (3.14). Next, we assume (3.15) holds. Multiplying both sides of (3.16)
by nγ+1

cn
, and summing from N to n−1 (n−1≥ N), we get

n−1

∑
s=N

sγ+1

cs
∆ws ≤−

n−1

∑
s=N

sγ+1

cs
Qs− γ

n−1

∑
s=N

(
sγ ws+1

cs

) γ+1
γ

.

Using summation by parts, we obtain

nγ+1wn

cn
≤ Nγ+1wN

cN
+

n−1

∑
s=N

∆

(
sγ+1

cs

)
ws+1−

n

∑
s=N

sγ+1

cs
Qs− γ

n−1

∑
s=N

(
sγ ws+1

cs

) γ+1
γ

.

By the quotient rule, we have

(3.24) ∆

(
sγ+1

cs

)
=

∆(sγ+1)
cs+1

− sγ+1∆cs

cscs+1
≤ (γ +1)(s+1)γ

cs+1
≤ (γ +1)(s+1)γ

cs
.

Hence

nγ+1wn

cn
≤ Nγ+1wN

cN
−

n−1

∑
s=N

sγ+1

cs
Qs +

n−1

∑
s=N

(γ +1)
(

(s+1)γ ws+1

cs

)

−γ

n−1

∑
s=N

(
sγ ws+1

cs

) γ+1
γ

.

Now, since s > n0 > 0 we can assume for s sufficiently large that (s +1)≤ Ls < 2s. Using
this and the last inequality, we obtain

nγ+1wn

cn
≤ Nγ+1wN

cN
−

n−1

∑
s=N

sγ+1

cs
Qs +

n−1

∑
s=N

{
(γ +1)LγWs+1− γW

γ+1
γ

s+1

}
.

where Ws+1 := sγ ws+1
cs

. Using the inequality

Bu−Au
γ+1

γ ≤ γγ

(γ +1)γ+1
Bγ+1

Aγ
,

we have

nγ+1wn

cn
≤ Nγ+1wN

cN
−

n−1

∑
s=N

sγ+1

cs
Qs +

n−1

∑
s=N

γγ

(γ +1)γ+1
[(γ +1)Lγ ]γ+1

γγ
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=
Nγ+1wN

cN
−

n−1

∑
s=N

sγ+1

cs
Qs +Lγ(γ+1)(n−N).

It follows from this that

nγ wn

cn
≤ Nγ+1wN

ncN
− 1

n

n−1

∑
s=N

sγ+1

cs
Qs +Lγ(γ+1)

(
1− N

n

)
.

Since wn+1 ≤ wn, we get

nγ wn+1

cn
≤ Nγ+1wN

ncN
− 1

n

n−1

∑
s=N

sγ+1

cs
Qs +Lγ(γ+1)

(
1− N

n

)
.

Taking the limsup of both sides as n→ ∞, we obtain

R≤−q∗+Lγ(γ+1) =−q∗+Lγ(γ+1),

which implies that
R≤−q∗+2γ(γ+1).

Using this and the inequality (3.23), we get

p∗ ≤ r− r1+ 1
γ ≤ r ≤ R≤−q∗+2γ(γ+1).

Therefore
p∗+q∗ ≤ 2γ(γ+1),

which contradicts (3.15). The proof is complete.
From Theorem 3.2, we have the following results immediately.

Corollary 3.1. Assume that (h1)− (h3) and (1.25) hold. Furthermore assume that g(n) > n,
and ∆cn ≥ 0. Let xn be a solution of (1.1). If

(3.25) liminf
n→∞

nγ

cn

∞

∑
s=n+1

Qs > 2γ(γ+1),

then either xn oscillates or limn→∞ xn = 0.

Corollary 3.2. Assume that (h1)− (h3) and (1.25) hold. Furthermore assume that g(n) > n,
and ∆cn ≥ 0. Let xn be a solution of (1.1). If

(3.26) liminf
n→∞

1
n

n

∑
s=N

sγ+1

cs
Qs > 2γ(γ+1),

then either xn oscillates or limn→∞ xn = 0.

3.2. The case when g(n)≤ n and dn = 1

For the delay case we introduce the following notations:

A∗ := liminf
n→∞

nγ

cn

∞

∑
s=n+1

As, B∗ := liminf
n→∞

1
n

n−1

∑
s=N

sγ+1

cs
As, An = Kqn

(
h2(g(n),n0)

n+1

)γ

.

If xn is a solution of (1.1) such that xn ∈C2, dn = 1 and ∆cn ≥ 0, then we can deduce that if
xn > 0, then

(3.27) ∆xn > 0, ∆
2xn > 0, and ∆

3xn < 0,
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and the quasi differences in this case defined by

y[0]
n = xn > 0, y[1]

n = ∆xn, y[2]
n = cn

[
∆

2xn
]γ

, y[3]
n = ∆(y[2]

n ).

In order for the definition of A∗ to make sense, we assume that
∞

∑
s=n+1

As < ∞.

Theorem 3.3. Assume that (h1)− (h2) and (1.25) hold. Furthermore assume that dn = 1,
∆cn ≥ 0, and g(n)≤ n. Let xn be a solution of (1.1) such that xn ∈C2 and make the Riccati
substitution

un :=
y[2]

n(
y[1]

n

)γ .

Then un > 0, and

(3.28) ∆un +An +
γ

(cn)
1
γ

(un+1)
1+ 1

γ ≤ 0, for n≥ N.

Proof. Let xn be as in the statement of this Theorem and without loss of generality, we may
assume that there is n1 > n0 such that xn > 0 and xg(n) > 0. Now, since xn ∈C2 then there

exists N > n1 such that xn > 0, y[1] = ∆xn > 0, y[2]
n = cn

[
∆2xn

]γ
> 0, y[3]

n ≤ 0. Since, ∆cn ≥ 0
then (3.27) is satisfied. From the definition of un, by quotient rule and continue as in the
proof of Theorem 3.1, we get

(3.29) ∆un ≤−Kqn

(
xg(n)

y[1]
n+1

)γ

− γ

(cn)
1
γ

(un+1)
1+ 1

γ .

Now we consider the coefficient of qn in (3.29). This coefficient can be written in the form

(3.30)
xg(n)

y[1]
n+1

=
xg(n)

y[1]
g(n)

y[1]
g(n)

y[1]
n+1

.

From Lemma 2.5, since limt→∞ g(n) = ∞, we can choose Nk ≥ N such that

(3.31)
xg(n)

y[1]
g(n)

=
g(n)xg(n)

∆xg(n)
≥
√

k
h2(g(n),n0)

g(n)
, for n > Nk,

and

(3.32)
y[1]

g(n)

y[1]
n+1

=
∆xg(n)

∆xn+1
≥ 1√

k
g(n)

(n+1)
, for 0 < k < 1.

Then from (3.30)–(3.32), we have

(3.33)
xg(n)

∆xn+1
≥ h2(g(n),n0)

g(n)
g(n)
n+1

=
h2(g(n),n0)

(n+1)
.

Substituting from (3.33) into (3.29), we have the inequality (3.28) and this completes the
proof.
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The following theorem gives sufficient conditions for oscillation of (1.1) in the delay
case.

Theorem 3.4. Assume that (h1)− (h3) and (1.25) hold. Furthermore assume that dn = 1,
∆cn ≥ 0, f (u)/uγ > K > 0 and g(n)≤ n. Let xn be a solution of (1.1). If

(3.34) A∗ >
γγ

(γ +1)γ+1 ,

or

(3.35) A∗+B∗ > 2γ(γ+1).

then xn is oscillatory or limn→∞ xn = 0.

Proof. The proof is similar to the proof of Theorem 3.2, by replacing wn by un, and Qn by
An and hence is omitted.

From Theorem 3.4, we have the following results.

Corollary 3.3. Assume that (h1)− (h3) and (1.25) hold. Furthermore assume that dn = 1,
∆cn ≥ 0, and g(n)≤ n. Let xn be a solution of (1.1). If

(3.36) liminf
n→∞

1
n

n−1

∑
s=N

sγ+1

cs
As > 2γ(γ+1).

Then xn is oscillatory or limn→∞ xn = 0.

Corollary 3.4. Assume that (h1)− (h3) and (1.25) hold. Furthermore assume that dn = 1,
∆cn ≥ 0, and g(n)≤ n. Let xn be a solution of (1.1). If

(3.37) liminf
n→∞

nγ

cn

∞

∑
s=n+1

As > 2γ(γ+1).

Then xn is oscillatory or limn→∞ xn = 0.

For more illustration, we consider the following example with explicit values of the roots
of the characteristic equation.

Example 3.1. Consider the difference equation

(3.38) ∆
3xn +

8n+12
n(1+n2)

xn(1+ x2
n) = 0, where g(n) = n for n≥ 1.

It is clear that (h1)− (h3) and (3.36) hold. Then the conditions of Corollary 3.3 are satisfied
and then the solution xn of (3.38) is oscillatory or converges to zero. In fact xn = (−1)nn is
such a solution.
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