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Abstract. Let g ∈ H(D), n be a nonnegative integer and ϕ be an analytic self-map of D.
We study the boundedness and compactness of the integral operator Cn

ϕ,g defined by

(Cn
ϕ,g f )(z) =

∫ z

0
f (n)(ϕ(ξ ))g(ξ )dξ , z ∈ D, f ∈ H(D),

from H∞ to Zygmund-type spaces on the unit disk.
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1. Introduction

A positive continuous function φ on [0,1) is called normal if there exist positive numbers s
and t, 0 < s < t, and δ ∈ [0,1) such that

φ(r)
(1− r)s is decreasing on [δ ,1) and lim

r→1

φ(r)
(1− r)s = 0;

φ(r)
(1− r)t is increasing on [δ ,1) and lim

r→1

φ(r)
(1− r)t = ∞

(see, e.g. [11]). From now on we always assume that ω and µ are normal functions and
non-negative functions on [0,1) such that ω(tn),µ(tn) > 0 for some sequence {tn}∞

0 ⊂ [0,1)
with limn→∞ tn = 1.

Let D be the open unit disk in the complex plane C, and H(D) be the class of all analytic
functions on D. We denote by H∞ = H∞(D) the bounded analytic function space on D. An
f ∈ H(D) is said to belong to the Zygmund-type space, denoted by Zµ , if

sup
z∈D

µ(|z|)| f ′′(z)|< ∞.

Under the norm

‖ f‖Zµ
= | f (0)|+ | f ′(0)|+ sup

z∈D
µ(|z|)| f ′′(z)|,
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it is easy to see that Zµ is a Banach space. The little Zygmund-type space Zµ,0 is defined
to be the subspace of Zµ consisting of those f ∈Zµ such that

lim
|z|→1

µ(|z|)| f ′′(z)|= 0.

When µ(r) = (1− r2), the induced spaces Zµ and Zµ,0 become the classical Zygmund
space and the little Zygmund space respectively (see [2, 4, 6]).

Let ϕ be an analytic self-map of D. The composition operator Cϕ is defined by

(Cϕ f )(z) = f (ϕ(z)), f ∈ H(D).

It will be of interest to provide a function theoretic characterization of when ϕ induces
a bounded or compact composition operator between spaces of analytic functions. The
composition operator has been studied by many researchers on various spaces (see, e.g.,
[1, 18] and the references therein).

Let g ∈H(D) and ϕ be an analytic self-map of D. In [6], the authors defined and studied
the generalized composition operator as follows

(Cg
ϕ f )(z) =

∫ z

0
f ′(ϕ(ξ ))g(ξ )dξ , f ∈ H(D), z ∈ D.

The boundedness and compactness of the generalized composition operator on Zygmund
spaces and Bloch spaces were investigated in [6]. In [3], Li studied another type Volterra
composition operator between weighted Bergman spaces and Bloch spaces. In [22], the
author of this paper generalized the operator Cg

ϕ to the unit ball and studied the boundedness
and compactness of the corresponding operator on some function spaces. Some related
results can be found, e.g., in [5, 7–9, 12–17, 19–22].

Here we generalize the generalized composition operator Cg
ϕ from another point of view.

Let g ∈ H(D), n be a nonnegative integer and ϕ be an analytic self-map of D. We define

(Cn
ϕ,g f )(z) =

∫ z

0
f (n)(ϕ(ξ ))g(ξ )dξ , z ∈ D, f ∈ H(D).

When n = 1, then C1
ϕ,g is the generalized composition operator defined by Li and Stević

in [6]. When n = 0, then C0
ϕ,g is the Volterra composition operator defined by Li in [3]. To

the best of our knowledge, the operator Cn
ϕ,g is studied in the present paper for the first time.

The purpose of this paper is to study the operator Cn
ϕ,g. The boundedness and compact-

ness of the operator Cn
ϕ,g from H∞ to Zygmund-type spaces are completely characterized.

Throughout the paper, C denotes a positive constant which may differ from one occurrence
to the other.

2. Main results and proofs

In this section, we give the main results and proofs. Before proving the main results, it is
necessary to give some lemmas. By standard arguments (see for e.g. [1, Proposition 3.11]),
the following lemma follows.

Lemma 2.1. Let g ∈ H(D), n be a nonnegative integer and ϕ be an analytic self-map of
D. Then Cn

ϕ,g : H∞→Zµ is compact if and only if Cn
ϕ,g : H∞→Zµ is bounded and for any

bounded sequence ( fk)k∈N in H∞ which converges to zero uniformly on compact subsets of
D as k→ ∞, we have ‖Cn

ϕ,g fk‖Zµ
→ 0 as k→ ∞.
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Lemma 2.2. A closed set K in Zµ,0 is compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

µ(|z|)| f ′′(z)|= 0.(2.1)

Proof. The proof is similar to that of [10, Lemma 1], and the details are omitted here.
By the Cauch integral formula, we have

Lemma 2.3. Let f ∈ H∞. Then for each m ∈ N, there is a positive constant C independent
of f such that

sup
z∈D

(1−|z|2)m| f (m)(z)| ≤C‖ f‖∞.(2.2)

Now we are in a position to state and prove the main results of this paper.

Theorem 2.1. Let g ∈ H(D), n be a nonnegative integer and ϕ be an analytic self-map of
D. Then Cn

ϕ,g : H∞→Zµ is bounded if and only if

sup
z∈D

µ(|z|)|ϕ ′(z)||g(z)|
(1−|ϕ(z)|2)n+1 < ∞ and sup

z∈D

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n < ∞.(2.3)

Proof. Suppose that Cn
ϕ,g : H∞ → Zµ is bounded, i.e., there exists a constant C such that

‖Cn
ϕ,g f‖Zµ

≤ C‖ f‖∞ for all f ∈ H∞. Taking f (z) = zn and f (z) = zn+1, and using the
boundedness of the function ϕ(z), we get

sup
z∈D

µ(|z|)|g′(z)|< ∞,(2.4)

and

sup
z∈D

µ(|z|)|g(z)||ϕ ′(z)|< ∞.(2.5)

For w ∈ D, set

hw(z) =
1−|w|2

1−wz
− 1

n+1
(1−|w|2)2

(1−wz)2 .

It is easy to check that hw ∈ H∞, ‖hw‖∞ < (2n+6)/(n+1) for every w ∈ D,

h(n)
ϕ(λ )(ϕ(λ )) = 0 and |h(n+1)

ϕ(λ ) (ϕ(λ ))|= n!|ϕ(λ )|n+1

(1−|ϕ(λ )|2)n+1 .

It follows that

∞ > ‖Cn
ϕ,ghϕ(λ )‖Zµ

≥ n!µ(|λ |)|g(λ )||ϕ ′(λ )||ϕ(λ )|n+1

(1−|ϕ(λ )|2)n+1(2.6)

for every λ ∈ D.
For any fixed r ∈ (0,1), from (2.6) we have

sup
|ϕ(λ )|>r

µ(|λ |)|g(λ )||ϕ ′(λ )|
(1−|ϕ(λ )|2)n+1 ≤ sup

|ϕ(λ )|>r

1
rn+1

µ(|λ |)|g(λ )||ϕ ′(λ )||ϕ(λ )|n+1

(1−|ϕ(λ )|2)n+1

≤C‖Cn
ϕ,g‖H∞→Zµ

< ∞.(2.7)

By (2.5),

sup
|ϕ(λ )|≤r

µ(|λ |)|g(λ )||ϕ ′(λ )|
(1−|ϕ(λ )|2)n+1 ≤ 1

(1− r2)n+1 sup
|ϕ(λ )|≤r

µ(|λ |)|g(λ )||ϕ ′(λ )|< ∞.(2.8)
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Therefore, (2.7) and (2.8) yield the first inequality of (2.3).
Next, set fw(z) = (1−|w|2)/(1−wz). Then fw ∈ H∞ and supw∈D ‖ fw‖∞ ≤ 2. Hence,

∞ > 2‖Cn
ϕ,g‖H∞→Zµ

≥ ‖Cn
ϕ,g fϕ(λ )‖Zµ

≥ sup
z∈D

µ(|z|)|(Cn
ϕ,g fϕ(λ ))

′′(z)|

= sup
z∈D

µ(|z|)
∣∣∣ f (n+1)

ϕ(λ ) (ϕ(z))g(z)ϕ ′(z)+ f (n)
ϕ(λ )(ϕ(z))g′(z)

∣∣∣
≥ µ(|λ |)

∣∣∣∣n!g′(λ )(ϕ(λ ))n

(1−|ϕ(λ )|2)n +
(n+1)!g(λ )ϕ ′(λ )(ϕ(λ ))n+1

(1−|ϕ(λ )|2)n+1

∣∣∣∣
≥ µ(|λ |)

∣∣∣∣n!g′(λ )(ϕ(λ ))n

(1−|ϕ(λ )|2)n

∣∣∣∣−µ(|λ |)
∣∣∣∣ (n+1)!g(λ )ϕ ′(λ )(ϕ(λ ))n+1

(1−|ϕ(λ )|2)n+1

∣∣∣∣
=

n!µ(|λ |)|g′(λ )||ϕ(λ )|n

(1−|ϕ(λ )|2)n − (n+1)!µ(|λ |)|g(λ )||ϕ ′(λ )||ϕ(λ )|n+1

(1−|ϕ(λ )|2)n+1

for every λ ∈ D. Therefore

µ(|λ |)|g′(λ )||ϕ(λ )|n

(1−|ϕ(λ )|2)n ≤ 2
n!
‖Cn

ϕ,g‖H∞→Zµ
+

(n+1)µ(|λ |)|g(λ )||ϕ ′(λ )||ϕ(λ )|n+1

(1−|ϕ(λ )|2)n+1 .(2.9)

From (6) and (9), we get

sup
λ∈D

µ(|λ |)|g′(λ )||ϕ(λ )|n

(1−|ϕ(λ )|2)n < ∞.(2.10)

Combining (2.10) with (2.4), similar to the former proof, we get the second inequality
of (2.3).

For the converse, suppose that (2.3) holds. For any f ∈ H∞, by Lemma 2.3, we have

µ(|z|)|(Cn
ϕ,g f )′′(z)|= µ(|z|)|( f (n)(ϕ)g)′(z)|

≤ µ(|z|)|g(z)||ϕ ′(z)|| f (n+1)(ϕ(z))|+ µ(|z|)|g′(z)|| f (n)(ϕ(z))|

≤C
µ(|z|)|g(z)||ϕ ′(z)|
(1−|ϕ(z)|2)n+1 ‖ f‖∞ +C

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n ‖ f‖∞.

Moreover, |(Cn
ϕ,g f )(0)|= 0 and

|(Cn
ϕ,g f )′(0)|= | f (n)(ϕ(0))g(0)| ≤ |g(0)|

(1−|ϕ(0)|2)n ‖ f‖∞.

From (2.3), we see that

‖Cn
ϕ,g f‖Zµ

= |(Cn
ϕ,g f )(0)|+ |(Cn

ϕ,g f )′(0)|+ sup
z∈D

µ(|z|)|(Cn
ϕ,g f )′(z)|< ∞.

Therefore Cn
ϕ,g : H∞→Zµ is bounded. The proof of the theorem is complete.

Theorem 2.2. Let g ∈ H(D), n be a nonnegative integer and ϕ be an analytic self-map of
D. Then Cn

ϕ,g : H∞→Zµ is compact if and only if Cn
ϕ,g : H∞→Zµ is bounded,

lim
|ϕ(z)|→1

µ(|z|)|g(z)||ϕ ′(z)|
(1−|ϕ(z)|2)n+1 = 0 and lim

|ϕ(z)|→1

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n = 0.(2.11)
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Proof. Suppose that Cn
ϕ,g : H∞ → Zµ is compact. Then Cn

ϕ,g : H∞ → Zµ is bounded. Let
(zk)k∈N be a sequence in D such that |ϕ(zk)| → 1 as k→ ∞. Set

hk(z) =
1−|ϕ(zk)|2

1−ϕ(zk)z
− 1

n+1
(1−|ϕ(zk)|2)2

(1−ϕ(zk)z)2
, k ∈ N.

Notice that hk is a sequence in H∞ and converges to 0 uniformly on compact subsets of D
as k→ ∞,

h(n)
k (ϕ(zk)) = 0 and |h(n+1)

k (ϕ(zk))|=
n!|ϕ(zk)|n+1

(1−|ϕ(zk)|2)n+1 .

The compactness of Cn
ϕ,g : H∞ → Zµ implies limk→∞ ‖Cn

ϕ,ghk‖Zµ
= 0. On the other hand,

similar to the proof of Theorem 2.1, we have

n!
µ(|zk|)|g(zk)||ϕ ′(zk)||ϕ(zk)|n+1

(1−|ϕ(zk)|2)n+1 ≤ ‖Cn
ϕ,ghk‖Zµ

,

i.e. we get

lim
k→∞

µ(|zk|)|g(zk)||ϕ ′(zk)||ϕ(zk)|n+1

(1−|ϕ(zk)|2)n+1 = lim
k→∞
‖Cn

ϕ,ghk‖Zµ
= 0.

Therefore

lim
|ϕ(zk)|→1

µ(|zk|)|g(zk)||ϕ ′(zk)|
(1−|ϕ(zk)|2)n+1 = lim

|ϕ(zk)|→1

µ(|zk|)|g(zk)||ϕ ′(zk)||ϕ(zk)|n+1

(1−|ϕ(zk)|2)1+n

= lim
k→∞

µ(|zk|)|g(zk)||ϕ ′(zk)||ϕ(zk)|n+1

(1−|ϕ(zk)|2)n+1 = 0.

(2.12)

Next, set

fk(z) =
1−|ϕ(zk)|2

1−ϕ(zk)z
, k ∈ N.

Then fk ∈H∞ and fk→ 0 uniformly on compact subsets of D as k→∞. Since Cn
ϕ,g : H∞→

Zµ is compact, we have limk→∞ ‖Cn
ϕ,g fk‖Zµ

= 0. On the other hand, we have

‖Cn
ϕ,g fk‖Zµ

≥ n!µ(|zk|)|g′(zk)||ϕ(zk)|n

(1−|ϕ(zk)|2)n − (n+1)!µ(|zk|)|g(zk)||ϕ ′(zk)||ϕ(zk)|n+1

(1−|ϕ(zk)|2)n+1 ,

which implies that

lim
|ϕ(zk)|→1

(n+1)µ(|zk|)|g(zk)||ϕ ′(zk)||ϕ(zk)|n+1

(1−|ϕ(zk)|2)1+n = lim
|ϕ(zk)|→1

µ(|zk|)|g′(zk)||ϕ(zk)|n

(1−|ϕ(zk)|2)n ,

if one of these two limits exists. From the last equality and (2.12), we have

lim
|ϕ(zk)|→1

µ(|zk|)|g′(zk)|
(1−|ϕ(zk)|2)n = lim

|ϕ(zk)|→1

µ(|zk|)|g′(zk)||ϕ(zk)|n

(1−|ϕ(zk)|2)n = 0.(2.13)

From (2.12) and (2.13) we obtain the desired results.
Conversely, suppose that Cn

ϕ,g : H∞→Zµ is bounded and (2.11) holds. Assume ( fk)k∈N
is a sequence in H∞ such that fk converges to 0 uniformly on compact subsets of D as k→∞.
By the assumption, for any ε > 0, there exists a δ ∈ (0,1),

µ(|z|)|ϕ ′(z)||g(z)|
(1−|ϕ(z)|2)n+1 < ε and

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n < ε,(2.14)
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when δ < |ϕ(z)|< 1. By the boundedness of Cn
ϕ,g : H∞→Zµ and the proof of Theorem 2.1,

C1 = sup
z∈D

µ(|z|)|g′(z)|< ∞ and C2 = sup
z∈D

µ(|z|)|g(z)||ϕ ′(z)|< ∞.(2.15)

Let K = {z ∈ D : |ϕ(z)| ≤ δ}. Then by (2.14) and (2.15), we have that

sup
z∈D

µ(|z|)|(Cn
ϕ,g fk)′′(z)|

≤ sup
z∈K

µ(|z|)|g(z)||ϕ ′(z)|| f (n+1)
k (ϕ(z))|+ sup

z∈K
µ(|z|)|g′(z)|| f (n)

k (ϕ(z))|

+C sup
z∈D\K

µ(|z|)|g(z)||ϕ ′(z)|
(1−|ϕ(z)|2)n+1 ‖ fk‖∞ +C sup

z∈D\K

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n ‖ fk‖∞

≤C2 sup
z∈K
| f (n+1)

k (ϕ(z))|+C1 sup
z∈K
| f (n)

k (ϕ(z))|+Cε‖ fk‖∞,

i.e. we get

‖Cn
ϕ,g fk‖Zµ

≤C2 sup
|w|≤δ

| f (n+1)
k (w)|+C1 sup

|w|≤δ

| f (n)
k (w)|

+Cε‖ fk‖∞ + |g(0)|| f (n)
k (ϕ(0))|.

(2.16)

Since fk converges to 0 uniformly on compact subsets of D as k→ ∞, Cauchy’s estimate
gives that f (n)

k → 0 as k→ ∞ on compact subsets of D. Hence, letting k→ ∞ in (2.16),
and using the fact that ε is an arbitrary positive number, we obtain limk→∞ ‖Cn

ϕ,g fk‖Zµ
= 0.

Applying Lemma 2.1 the result follows.

Theorem 2.3. Let g ∈ H(D), n be a nonnegative integer and ϕ be an analytic self-map of
D. Then Cn

ϕ,g : H∞→Zµ,0 is compact if and only if

lim
|z|→1

µ(|z|)|g(z)||ϕ ′(z)|
(1−|ϕ(z)|2)n+1 = 0 and lim

|z|→1

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n = 0.(2.17)

Proof. Assume that Cn
ϕ,g : H∞ → Zµ,0 is compact. Then Cn

ϕ,g : H∞ → Zµ is compact and
Cn

ϕ,g : H∞→Zµ,0 is bounded. Taking f (z) = zn and f (z) = zn+1, and using the boundedness
of Cn

ϕ,g : H∞→Zµ,0 and the function ϕ(z), we get

lim
|z|→1

µ(|z|)|g′(z)|= 0(2.18)

and

lim
|z|→1

µ(|z|)|g(z)||ϕ ′(z)|= 0.(2.19)

If ‖ϕ‖∞ < 1, from (2.18) and (2.19) we get

lim
|z|→1

µ(|z|)|g(z)||ϕ ′(z)|
(1−|ϕ(z)|2)n+1 ≤

1
(1−‖ϕ‖2

∞)n+1 lim
|z|→1

µ(|z|)|g(z)||ϕ ′(z)|= 0

and

lim
|z|→1

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n ≤

1
(1−‖ϕ‖2

∞)n lim
|z|→1

µ(|z|)|g′(z)|= 0.

The result follows.
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Now we assume that ‖ϕ‖∞ = 1. By the compactness of Cn
ϕ,g : H∞→Zµ and Theorem 2.2

we have

lim
|ϕ(z)|→1

µ(|z|)|g(z)||ϕ ′(z)|
(1−|ϕ(z)|2)n+1 = 0(2.20)

and

lim
|ϕ(z)|→1

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n = 0.(2.21)

From (2.18) and (2.21), for any ε > 0, there exists an r ∈ (0,1) such that

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n < ε

when r < |ϕ(z)|< 1 and there exists a σ ∈ (0,1) such that

µ(|z|)|g′(z)| ≤ ε(1− r2)n

when σ < |z|< 1. Therefore, when σ < |z|< 1 and r < |ϕ(z)|< 1, we have

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n < ε.(2.22)

On the other hand, when σ < |z|< 1 and |ϕ(z)| ≤ r, we have

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n <

1
(1− r2)n µ(|z|)|g′(z)|< ε.(2.23)

Combining (2.22) and (2.23), we obtain the second equality of (2.17). Similar to the above
proof we get the first equality of (2.17).

Conversely suppose that (2.17) holds. Let f ∈ H∞. We have

µ(|z|)|(Cn
ϕ,g f )′′(z)| ≤C

(
µ(|z|)|g(z)||ϕ ′(z)|
(1−|ϕ(z)|2)n+1 +

µ(|z|)|g′(z)|
(1−|ϕ(z)|2)n

)
‖ f‖∞.

Taking the supremum in this inequality over all f ∈ H∞ such that ‖ f‖∞ ≤ 1, apply (2.17)
we obtain

lim
|z|→1

sup
‖ f‖∞≤1

µ(|z|)|(Cn
ϕ,g f )′′(z)|= 0.

The result follows from Lemma 2.2.
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[4] S. Li and S. Stević, Volterra-type operators on Zygmund spaces, J. Inequal. Appl. 2007, Art. ID 32124, 10

pp.
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[13] S. Stević, On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, Appl.
Math. Comput. 206 (2008), no. 1, 313–320.
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