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Abstract. In credibility models, the so-called structural parameters must be estimated be-
fore the credibility estimators can be calculated. Several existing methods provide estima-
tors, but these estimators are not necessarily unbiased or simple to use. In this paper, we
introduce alternative unbiased estimators for structural parameters in credibility models with
dependence induced by common effects. The main advantage of our estimators is their ease
of application.
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1. Introduction

One of the basic challenges of developing insurance policies is determining their premiums.
If we have observations of past claims for a set of contracts, it might be possible to calculate
an appropriate premium for a future period. These premiums must strongly reflect the fea-
tures the expected insurance risks. Several methodologies of insurance pricing have been
developed for this purpose; one of the most important methods is credibility ratemaking. In
credibility techniques, the premiums of each contract in a heterogeneous portfolio are sepa-
rately and adaptively determined by combining the policyholder’s claim experiences and the
portfolio‘s particular risk features. According to Klugman et al. [1], ”Credibility theory is
a set of quantitative tools which allows an insurer to perform prospective experience rating
(adjust future premiums based on past experience) on a risk or group of risks.” Based on
the experience and the collective premium, the credibility theory determines the credibility
premium by the following credibility form:

Credibility premium = Z× (experience)+(1−Z)× (collective premium),
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where Z, a value between 0 and 1, is the credibility factor and needs to be chosen. Clearly,
the choice of the credibility factor Z is of an immense importance and has attracted a lot of
research interest.

In credibility models, there are so-called structural parameters that must be estimated
before the credibility estimators can be calculated. The focus of this paper is the esti-
mation of the variance structure parameters in the hierarchical credibility model and their
applications to a credibility model with dependence induced by common effects. Several
textbooks present unbiased estimators of the structural parameters for the Bühlmann and
Bühlmann-Straub models. There are simple estimators for structural parameters for Jew-
ell’s hierarchical credibility model that are not necessarily unbiased; see, e.g., [2]. Ohlsson
[3] presented an alternative, unbiased estimator, similar to those of the Bühlmann-Straub
model. The estimation of structural parameters in higher-level hierarchical credibility mod-
els can be found, e.g., in [4]. Belhadj et al. [5] focused on the estimation of structural
parameters of the hierarchical credibility model. The authors reviewed the estimators of
the structural parameters, emphasizing three main sets of variance components estimators:
the iterative pseudo-estimators, Ohlsson estimators and Bühlmann-Gisler estimators. Using
simulation, the authors then assessed the relative performance of the three sets of estima-
tors and showed that the Bühlmann-Gisler and iterative pseudo-estimators were generally
superior to the Ohlsson estimators, but by a minuscule margin.

In this paper, we present alternative, simple estimators of structural parameters of cred-
ibility models with dependence induced by common effects. The main advantage of our
estimators is their simplicity in calculation and application. In section 2, the construction
of the two- and three-level common-effect model, assumptions, and Ohlsson estimators are
introduced. In section 3, we derive unbiased estimators of structural parameters for two-
and three-level common-effect models for portfolios with the Bühlmann model’s structure.
The results are extended to the Bühlmann-Straub model in section 4. Section 5 presents two
examples. We conclude in section 6.

2. Preliminaries

The purpose of this paper is to study unbiased estimators of structural parameters under
a type of dependence structure involving portfolios and individuals and containing com-
mon effects. The credibility models with two- and three-level common effects of claim
dependence are formulated in a hierarchical way, as described below. Note that all random
variables are defined on a common probability space (Ω,F,P). Also, all claim variables are
square-integrable.

2.1. The two-level common-effect model of dependence

A common practice in calculating premiums is to group individual risks to ensure homo-
geneity and achieve a fair and equitable premium across individuals. Under this approach,
the risks within each group are as homogeneous as possible in terms of certain observable
risk characteristics. However, not all risks in the group are truly homogeneous. Some unob-
servable factors will always affect the degree of heterogeneity among the individuals. Thus,
the risk level of each individual in the group can be characterized by a risk parameter θ such
that all possible values of θ are modeled by a random variable Θ following a probability
distribution π(θ).
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Consider a portfolio of insurance contracts that consists of I insured individuals, and
further suppose that each individual has a total of T time periods of history available. Denote
by Xit , the claim amount for individual i during period t. To simplify our exposition, the
same time periods will be applied to all individuals; we refer to this scenario as the “balanced
model.” These assumptions can be modified for the unbalanced model. The claim amounts
and individuals can be written as Xi = (Xi1,Xi2, ...,XiT )

′
and i = 1,2, ..., I, respectively.

In the classical credibility models of Bühlmann [6] and Bühlmann-Straub [7] and studied
by many subsequent researchers, a common assumption is that the random vectors (Xi,Θi),
i = 1,2, ..., I, are independent across individuals (i.e., independence over risks) and that
for each i, Xi1,Xi2, ...,XiT are conditionally independent given Θi (i.e., conditional indepen-
dence over time). Although such independence assumptions may be at least approximately
appropriate in some practical situations, Yeo and Valdez [8] have shown that there exist
many important insurance scenarios in which these classical assumptions are certainly vio-
lated. In their analysis, claims X1t ,X2t , ...,XIt are first assumed to be not independent across
individuals for a fixed time t, implying that the claims of one insured individual can directly
impact those of other insured individuals. For example, in home insurance, geographic
proximity of insureds may result in exposure to a common catastrophe, and in motor in-
surance, accidents may involve several insureds in the same collision. Second, for a fixed
individual i = 1,2, ..., I, claims Xi1,Xi2, ...,XiT are not always assumed to be independent
across different time periods. In motor insurance, for example, an individual may suffer
from accident proneness. Yeo and Valdez [8] have addressed a simultaneous dependence
of claims across individuals for a fixed time period and across time periods for a fixed in-
dividual. The authors introduced one common effect affecting all individuals and another
common effect affecting a fixed individual over time. They used a random variable Λ to
describe the common dependence across the insured individuals, and for a fixed individual
i, the random variable Θi was used to describe the common dependence across the time
periods.

Wen et al. [9] studied the Bühlmann and Bühlmann-Straub models with a dependence
structure characterized by a stochastic latent risk parameter (referred to as a common effect,
following the terminology of Yeo and Valdez [8]). They derived credibility formulas for
general credibility models with common effects.

The model of dependence proposed in this subsection allows for both dependence or
common effects among individual risks at any point in time and the dependence of a par-
ticular individual’s risk experience over time. The risk quality of an individual i is charac-
terized by a risk parameter Θi, and the common effect is represented by a random variable
Λ. Conditional on this common effect Λ, the vectors (Xi,Θi) of individual i’s experience Xi
and random variables Θi are independent and identically distributed (i.i.d.) over individuals
i = 1,2, ..., I. Furthermore, given the risk structure Θi, the claims Xi j are assumed to be i.i.d.
The formal assumptions of the model are stated below.

(A1). Given Λ, the random vectors (Xi,Θi), i = 1,2, ..., I, are mutually independent and
identically distributed.

(A2). For fixed contract i, given Λ and Θi, the claims Xi1,Xi2, ...,XiT are conditionally
i.i.d., with E(Xi j|Θi,Λ) = µ(Θi,Λ) and Var(Xi j|Θi,Λ) = σ2(Θi,Λ).

In the analysis, we use the following notations:

E [µ(Θi,Λ)|Λ] = µ(Λ), Var [µ(Θi,Λ)|Λ] = σ
2
θ (Λ),E

[
σ

2
θ (Λ)

]
= σ

2
θ ,
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Var(µ(Λ)) = σ
2
λ
, E [µ(Λ)] = µ,E

[
σ

2
x (Θi,Λ)

]
= σ

2
x (Λ),E

[
σ

2
x (Λ)

]
= σ

2
x .

Wen et al. [9] have shown that under assumptions (A1) and (A2) and above notations,
the optimal linear inhomogeneous unbiased estimator for Xi,T+1, i = 1,2, ..., I, is given by
X̂i,T+1 = Z1X i. +Z2X .. +(1−Z1−Z2)µ , i = 1,2, ..., I where µ is collective mean or manual
premium and

Z1 =
T σ2

θ

T σ2
θ

+σ2
x
, Z2 =

T Iσ2
λ

σ2
x(

T σ2
θ

+σ2
x
)(

T Iσ2
λ

+T σ2
θ

+σ2
x
) , X i. =

1
T

T

∑
t=1

Xit ,X .. =
1
I

I

∑
i=1

X i.

Here and in the future, the dot notation is used to indicate summation.

2.2. The three-level common-effect model of dependence

Consider a set of insurance contracts consisting of K portfolios. For each portfolio, there
are I insured individuals. Suppose that each individual has available a history that is T
time periods long. Denote by Xkit the claim amount in the portfolio k of individual i during
period t. We shall use the random matrix Xk = (X′k1,X

′
k2, . . . ,X

′
kI) to denote the matrix

of claims of a particular portfolio k = 1,2, ...,K, where Xki is a random vector with Xki =
(Xki1,Xki2, ...,XkiT )′, the vector of claims in the portfolio k for a particular individual i =
1,2, ..., I.

In the usual three-level credibility models with hierarchical structure, a common assump-
tion is that the random matrices (Xk,Λk), k = 1,2, ...,K, are independent across portfolios
(i.e., independence over portfolios). In addition, for each k, the random vectors (Xki,Θki),
i = 1,2, ..., I, are typically assumed to be independent across individuals (i.e., independence
over risks) and for each i, Xki1,Xki2, ...,XkiT are conditionally independent given Θki (i.e.,
conditional independence over time)(see, e.g., [4,5,10]).

In practice, these classical assumptions are certainly violated in some insurance scenarios
with a hierarchical structure. In these scenarios, the random matrices X1,X2, ...,XK are
not independent: the claims of one portfolio can directly impact those of other portfolios.
Additionally, for a fixed portfolio k = 1,2, ...,K, as addressed by Wen et al. [9], the random
vectors (Xki,Θki), i = 1,2, ..., I, have a dependent structure across individuals and across
different time periods. For example, in motor insurance, different makes of cars are grouped
in different portfolios. The claims of one portfolio might affect other portfolios if bad
weather conditions lead to accidents are common. For a given make of car, as described
by Yeo and Valdez [8], a common economic environment would make dependence across
individuals and across different time periods a reasonable assumption.

In this section, the model of dependence allows for the dependence among portfolio
risks, dependence of the individual risks and the dependence of experience for a particular
individual risk over time. The dependence among portfolio risks is described by a common-
effect random variable Γ. Realization of this common effect is denoted by γ . Conditionally
on this common effect, the random matrices Xk, k = 1, . . . ,K are mutually independent and
identically distributed. Because Γ is a common effect among all portfolios, it will define the
dependence structure between portfolios. Thus,

A1. Given Γ, the random matrices Xk, k = 1, . . . ,K are mutually independent and iden-
tically distributed.

For a fixed portfolio k, the dependence among the individual risks is described by an-
other common-effect random variable Λk. Realization of this common effect is denoted by
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λk. Given this common effect and Γ, the random vectors Xki, i = 1, . . . , I, are mutually in-
dependent and identically distributed. Similar to Γ, because Λk is a common effect among
all risks, it will define the dependence structure between risks. Additional assumptions
regarding this common effect are:

A2. The random variables Λ1,Λ2, . . . ,ΛK are pairwise independent; that is, Λm is inde-
pendent of Λn for all m 6= n where m,n = 1, . . . ,K.

A3. For a fixed portfolio k, the random variable Λk is independent of Γ.
A4. For a fixed portfolio k, given Λk, the random vectors Xki, i = 1, . . . , I, are mutually

independent and identically distributed.
Assumption A2 states that portfolio risk parameters are independent of one another. This

assumption is reasonable because the random variable Γ already takes into account all of
the common effects across portfolio risks, and thus, Λk are truly peculiar common effects
within portfolios. Assumption A3 states that the overall risk parameter is independent of
all portfolio risk parameters. Assumption A4 merely asserts that given the overall risk
parameter and the portfolio’s risk parameter, all individuals are independent.

For a fixed portfolio k and fixed individual i, the dependence of claims across time is
described by another common-effect random variable, Θki. Realization of this common
effect is denoted by θki. Additional assumptions regarding this common effect are:

A5. For a fixed portfolio k, the random variables Θk1, . . . ,ΘkI are pairwise independent;
that is, Θkm is independent of Θkn for all m 6= n where m,n = 1, . . . , I.

A6. For a fixed portfolio k and a fixed contract i, the random variable Θki is independent
of Λk.

A7. For a fixed portfolio k and a fixed contract i, given the common effects Γ, Λk
and Θki, the claims Xki1,Xki2, ...,XkiT are conditionally independent and identi-
cally distributed with E(Xkit |Θki,Λk ,Γ) = µ(Θki,Λk,Γ) and Var(Xkit |Θki,Λk,Γ) =
σ2(Θki,Λk, Γ).

Assumption A5 states that for a fixed portfolio k, individual risk parameters are inde-
pendent of one another. This assumption is reasonable because the random variable Λk
already takes into account the common characteristics across individual risks, and thus Θki
represents truly peculiar individual characteristics. Assumption A6 states that for a fixed
portfolio k, the portfolio risk parameter is independent of all individual risk parameters. Fi-
nally, assumption A7 merely states that given the overall risk parameter, the portfolio’s risk
parameter and the individual’s risk parameter, the individual risk’s experience at a particular
time period is independent of that of all other individuals at that point in time as well as the
individual risk’s experience at other time periods.

The following notations will be used in the analysis:

E [µ (Θki,Λk,Γ) |Λk,Γ] = µ (Λk,Γ) , Var [µ (Θki,Λk,Γ) |Λk,Γ] = σ
2
θ (Λk,Γ),

Var [µ (Λk,Γ) |Γ] = σ
2
λ
(Γ), E

[
σ

2
λ
(Γ)
]
= σ

2
λ
, E

[
σ

2
θ (Λk,Γ) |Γ

]
= σ

2
θ (Γ),

E
[
σ

2
θ (Γ)

]
= σ

2
θ , E

[
σ

2(Θki,Λk,Γ)|Λk,Γ
]
= σ

2
x (Λk,Γ) , E

[
σ

2
x (Λk,Γ) |Γ

]
= σ

2
x (Γ),

E
[
σ

2
x (Γ)

]
= σ

2
x , E [µ (Λk,Γ) |Γ] = µ(Γ), Var [µ(Γ)] = σ

2
γ , E [µ(Γ)] = µ.

Ebrahimzadeh et al. [11] have shown that under assumptions A1 to A7 and above no-
tations, the optimal linear inhomogeneous unbiased estimator for Xk,i,T+1, i = 1,2, ..., I,
is given by X̂k,i,T+1 = Z1Xki. + Z2Xk.. + Z3X ... + (1− Z1 − Z2 − Z3)µ , k = 1,2, ...,K and



834 M. Ebrahimzadeh, N. A. Ibrahim, A. A. Jemain and A. Kilicman

i = 1,2, ..., I where µ is collective mean or manual premium and

Z1 =
T σ2

θ

T σ2
θ

+σ2
x
, Z2 =

T Iσ2
λ

σ2
x(

T σ2
θ

+σ2
x
)(

T Iσ2
λ

+T σ2
θ

+σ2
x
) ,

Z3 =
T IKσ2

γ σ2
x(

T Iσ2
λ

+T σ2
θ

+σ2
x
)(

T IKσ2
γ +T Iσ2

λ
+T σ2

θ
+σ2

x
) , Xki. =

1
T

T

∑
t=1

Xkit ,

Xk.. =
1
I

I

∑
i=1

Xki. and X ... =
1
K

K

∑
k=1

Xk...

3. New estimators in Bühlmann model’s structure

Here and in the next section, we do not discuss about estimator for the collective mean,
µ . This is well established in the actuarial literature (see, e.g., [1,3,4,5]) and is not subject
to much controversy. In this section, we consider the unbiased estimation of structural
parameters, σ2

x , σ2
θ

, σ2
λ

and σ2
γ in two- and three-level common-effect situations, assuming

that each portfolio has the Bühlmann model’s structure. The following lemma will be used
later.

Lemma 3.1. Consider a portfolio consisting of I individuals; suppose that each individual
has available a history of length T time periods; and E(Xit |Θi) = µ(Θi), Var(Xit |Θi) =
v(Θi), and Var [µ(Θi)] = a. Furthermore, Xi1,Xi2, ...,XiT are conditionally independent.
Also assume that different individuals’ past data are independent. In this case E [v(Θi)] = v,
and unbiased estimators for v(Θi), v and a are given by

v̂i = v̂(Θi) = 1
T−1

T
∑

t=1
(Xit −X i.)2, v̂ = 1

I

I
∑

i=1
v̂i, â = 1

I−1

I
∑

i=1
(X i.−X ..)2− v̂

T

Proof. See pages 592–593 of [1].

3.1. The estimators of the two-level common-effect model

Theorem 3.1. Consider R portfolios of the two-level common-effect model satisfying as-
sumptions (A1) and (A2) of subsection 2.1. Using the notations in subsection 2.1, unbiased
estimators for the structural parameters, σ2

x , σ2
θ

and σ2
λ

, are given by

(1) σ̂2
x = 1

RI

R
∑

r=1

I
∑

i=1
V̂ar(Xrit),

(2) σ̂2
θ

= 1
R

R
∑

r=1

̂Var(X ri.)− σ̂2
x

T , and

(3) σ̂2
λ

= V̂ar(X r..)−
σ̂2

θ

I ,

where X ri. = 1
T

T
∑

t=1
Xrit , X r.. = 1

I

I
∑

i=1
X ri., X ...= 1

R

R
∑

r=1
X r.., V̂ar(Xrit) = 1

T−1

T
∑

t=1
(Xrit −X ri.)2,

̂Var(X ri.) = 1
I−1

I
∑

i=1
(X ri.−X r..)2 and V̂ar(X r..) = 1

R−1

R
∑

r=1
(X r..−X ...)2.

Proof. (1) and (2) are straightforward; see, e.g., [1] and [4].
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Here, we only prove (3). We have

E(X r..|Λ) =
1
I

I

∑
i=1

E(X ri.|Λ) =
1
I

I

∑
i=1

µ(Λ) = µ(Λ).

Thus,
E(X r..) = E

[
E(X r..|Λ)

]
= E [µ(Λ)] = µ

and

Var(X r..) = Var
[
E(X r..|Λ)

]
+E

[
Var(X r..|Λ)

]
= Var [µ(Λ)]+E

[
σ2

θ
(Λ)
I

]
= σ

2
λ

+
σ2

θ

I
.

Therefore, X1..,X2.., ...,XR.. are independent with common mean µ and common variance

σ2
λ

+ σ2
θ

I . Consequently, an unbiased estimator of σ2
λ

+ σ2
θ

I is V̂ar(X r..) = 1
R−1 ∑

R
r=1(X r..−X ...)2,

and an unbiased estimator of σ2
λ

is given by

σ̂2
λ

= V̂ar(X r..)−
σ̂2

θ

I
.

3.2. The estimators of the three-level common-effect model

Theorem 3.2. Consider R sets of portfolios of the three-level common-effect model satisfy-
ing assumptions A1 to A7 of subsection 2.2. Under the notations in subsection 2.2, unbiased
estimators for structural parameters, σ2

x , σ2
θ

, σ2
λ

and σ2
γ are given by

(1) σ̂2
x = 1

RKI

R
∑

r=1

K
∑

k=1

I
∑

i=1

̂Var(Xrkit),

(2) σ̂2
θ

= 1
RK

R
∑

r=1

K
∑

k=1

̂Var(X rki.)− σ̂2
x

T , and

(3) σ̂2
λ

= 1
R

R
∑

r=1

̂Var(X rk..)−
σ̂2

θ

I ,

(4) σ̂2
γ = ̂Var(X r...)−

σ̂2
λ

K ,
where

X rki. =
1
T

T

∑
t=1

Xrkit , X rk.. =
1
I

I

∑
i=1

X rki., X r... =
1
K

K

∑
k=1

X rk..,X ....=
1
R

R

∑
r=1

X r...,

̂Var(Xrkit) =
1

T −1

T

∑
t=1

(Xrkit −X rki.)2, ̂Var(X rki.) =
1

I−1

I

∑
i=1

(X rki.−X rk..)2,

̂Var(X rk..) =
1

K−1

K

∑
k=1

(X rk..−X r...)2 and ̂Var(X r...) =
1

R−1

R

∑
r=1

(X r...−X ....)2.

Proof. As above, theorems (1) and (2) are straightforward; see, e.g., [1] and [4].

To prove (3), for the rth set, r = 1,2, ...,R, we can use Lemma 3.1 to replace a, v and
T by br = Var [µ(Λk)], ar = E [ark(Λk)] and I, respectively. An unbiased estimator of br is
given by

b̂r = ̂Var(X rk..)−
âr

I
= ̂Var(X rk..)−

1
KI

K

∑
k=1

[
̂Var(X rki.)−

1
IT

I

∑
i=1

̂Var(Xrkit)

]
.
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Similarly, an unbiased estimator of ar is

âr =
1
K

K

∑
k=1

ârk =
1
K

K

∑
k=1

[
̂Var(X rki.)−

1
IT

I

∑
i=1

̂Var(Xrkit)

]
.

Furthermore,

E
(

b̂r

)
= E

[
E
(

b̂r|Γ
)]

= E [br(Γ)] = E {Var [µ(Λk,Γ)|Γ]}= E
[
σ

2
λ
(Γ)
]
= σ

2
λ
,

and b̂r is unbiased for σ2
λ

. Hence, an unbiased estimator of σ2
λ

based on all data is

σ̂2
λ

=
1
R

R

∑
r=1

b̂r =
1
R

R

∑
r=1

̂Var(X rk..)−
σ̂2

θ

I
.

To prove (4), we have

E(X r...|Γ) =
1
K

K

∑
k=1

E(X rk..|Γ) =
1
K

K

∑
k=1

µ(Γ) = µ(Γ).

Thus,
E(X r...) = E

[
E(X r...|Γ)

]
= E [µ(Γ)] = µ

and

Var(X r...) = Var
[
E(X r...|Γ)

]
+E

[
Var(X r...|Γ)

]
= σ

2
γ +

σ2
λ

K
.

Therefore, as before, we can show that an unbiased estimator of σ2
γ +

σ2
λ

K is
̂Var(X r...) = 1

R−1 ∑
R
r=1(X r...−X ....)2. Consequently, an unbiased estimator of σ2

γ is given by

σ̂2
γ = ̂Var(X r...)−

σ̂2
λ

K
.

4. New estimators under the structure of the Bühlmann-Straub model

The credibility model with weights was developed by Bühlmann and Straub [7] and hence
is known as the Bühlmann-Straub model, see also, e.g. [4]. This model has been broadly
applied in the practice of insurance, and it has thus been one of the building blocks of
credibility theory. In this section, we consider unbiased estimation of structural parameters
σ2

x , σ2
θ

, σ2
λ

and σ2
γ in two- and three-level common-effect scenarios, assuming that each

portfolio has the structure of the Bühlmann-Straub model. The lemmas below will be used
later.

Lemma 4.1. Consider a portfolio consisting of I individuals; suppose that each individual
has available a history of length T time periods; and E(Xit |Θi) = µ(Θi), Var(Xit |Θi) =
v(Θi) /mit , and Var [µ(Θi)] = a, where mit is a known constant measuring exposure. Fur-
thermore, Xi1,Xi2, ...,XiT are independent, conditional on Θi, and X = m−1

.. ∑
I
i=1 mi.X i, where

mi. = ∑
T
t=1 mit and m..= ∑

I
i=1 mi.. In addition, different individuals’ past data are indepen-

dent. In this case, E [v(Θi)] = v, and unbiased estimators of v(Θi), v and a are given by

v̂i = v̂(Θi) =
1

T −1

T

∑
t=1

mit(Xit −X i.)2, v̂ =
1
I

I

∑
i=1

v̂i, and
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â =

(
m..−m−1

..

I

∑
i=1

m2
i.

)−1[ I

∑
i=1

mi.(X i.−X ..)2− v̂(I−1)

]
.

Proof. See pages 594–596 of [1].

Lemma 4.2. Suppose X1,X2, ...,XT are independent with common mean µ = E(X j) and
variance Var(X j) = β +α/m j; α,β > 0 and all m j ≥ 1. Let m = ∑

T
j=1 m j. Then

E

[
T

∑
j=1

m j(X j−X)2

]
= β

(
m−m−1

T

∑
j=1

m2
j

)
+α(T −1).

Proof. See pages 525–528 of [1].

4.1. The estimators of the two-level common-effect model

Consider we are given a portfolio of I risks or “individuals” under assumptions (A1) of
subsection 2.1 and the following (A2)′:
(A2)′. For a fixed contract i, given Λ and Θi, Xi1,Xi2, ...,XiT are conditionally independent

with E(Xi j|Θi,Λ) = µ(Θi,Λ) and Var(Xi j|Θi,Λ) = σ2
x (Θi,Λ)/mi j, where mi j are

known weights.

Theorem 4.1. Consider R portfolios of the two-level common-effect model satisfying as-
sumptions (A1) and (A2)

′
. Under the notations in subsection 2.1, unbiased estimators of

structural parameters, σ2
x , σ2

θ
and σ2

λ
are given by

(1) σ̂2
x = 1

RI

R
∑

r=1

I
∑

i=1
v̂ri,

(2) σ̂2
θ

= 1
R

R
∑

r=1

{(
mr..−m−1

r..

I
∑

i=1
m2

ri.

)−1 [ I
∑

i=1
mri.(X ri.−X r..)2− v̂r(I−1)

]}
, and

(3) σ̂2
λ

= V̂ar(X r..)−
σ̂2

θ

I ,

where mri. =
T
∑

t=1
mrit , mr.. =

I
∑

i=1
mri., X ri. = 1

mri.

T
∑

t=1
mritXrit , X r.. = 1

I

I
∑

i=1
X ri., X ...= 1

R

R
∑

r=1
X r..,

v̂ri = 1
T−1

T
∑

t=1
mrit(Xrit −X ri.)2, v̂r = 1

I

I
∑

i=1
v̂ri and V̂ar(X r..) = 1

R−1

R
∑

r=1
(X r..−X ...)2.

Proof. (1) Consider

v̂ri =
1

T −1

T

∑
t=1

mrit(Xrit −X ri.)2.

Recall that for fixed r = 1,2, ...,R and fixed i = 1,2, ..., I, the random variables Xri1, Xri2, . . . ,
XriT are independent with common mean µ and variances Var(Xrit |Θi,Λ) = σ2

x (Θi,Λ)/mrit ,
conditional on Θi and Λ. Consequently, by using Lemma 4.2 with β = 0 and α = σ2

x (Θi,Λ),
we have

E(v̂ri|Θi,Λ) =
1

T −1
E

[(
T

∑
t=1

mrit(Xrit −X ri.)2

)
|Θi,Λ

]
= σ

2
x (Θi,Λ).

Thus,
E(v̂ri) = E [E(v̂ri|Θi,Λ)] = E

{
E
[
σ

2
x (Θi,Λ)|Λ

]}
= E

[
σ

2
x (Λ)

]
= σ

2
x
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and v̂ri is unbiased for σ2
x . Hence, an unbiased estimator of σ2

x based on all data is

σ̂2
x =

1
RI

R

∑
r=1

I

∑
i=1

v̂ri.

(2) For the rth portfolio, r = 1,2, ...,R, by using Lemma 4.1 to replace a, v and mit by ar,
vr and mrit , respectively, an unbiased estimator of ar is given by

âr =

(
mr..−m−1

r..

I

∑
i=1

m2
ri.

)−1[ I

∑
i=1

mri.(X ri.−X r..)2− v̂r(I−1)

]
.

Furthermore,

E (âr) = E [E (âr|Λ)] = E [ar(Λ)] = E {Var [µ(Θi,Λ)|Λ]}= E
[
σ

2
θ (Λ)

]
= σ

2
θ

and âr is unbiased for σ2
θ

. Hence, an unbiased estimator of σ2
θ

based on all data is

σ̂2
θ

=
1
R

R

∑
r=1


(

mr..−m−1
r..

I

∑
i=1

m2
ri.

)−1[ I

∑
i=1

mri.(X ri.−X r..)2− v̂r(I−1)

] .

(3) As for (3) of Theorem 3.1.

Remark 4.1. For the model in this subsection, Ohlsson [3] presented the following estima-
tors of σ2

λ
and σ2

θ
:

σ̂2
θ

=

[
m...−

R

∑
r=1

(
I

∑
i=1

m2
ri.)/mr..

]−1[ R

∑
r=1

I

∑
i=1

mri.

(
Xω

ri.−Xωω

r..

)2
− σ̂2

x R(I−1)

]
and

σ̂2
λ

=

(
z..−

R

∑
r=1

z2
r./z..

)−1[ R

∑
r=1

zr.

(
X zω

r.. −X zzω

...

)2
− σ̂2

θ
(R−1)

]
,

where

Xω

ri. =
∑

T
t=1 mritXrit

∑
T
t=1 mrit

, Xωω

r.. = ∑
I
i=1 mri.X

ω

ri.

∑
I
i=1 mri.

, zri =
mri.

mri. + σ̂2
x /σ̂2

θ

,

zr. =
1
I

I

∑
i=1

zri, z.. =
1
R

R

∑
r=1

zr., X zω

r.. = ∑
I
i=1 zriX

ω

ri.

∑
I
i=1 zri

and X zzω

... = ∑
R
r=1 zr.X

zω

r..

∑
R
r=1 zr.

.

4.2. The estimators of the three-level common-effect model

Assume that we are given a set of insurance contracts consisting of K portfolios. For each
portfolio, there are I insured individuals. In addition, the model satisfies assumptions A1 to
A6 of subsection 2.2, and the following A7′:

A7′ For a fixed portfolio k and a fixed contract i, given the common effects Γ, Λk and
Θki, the claims Xki1,Xki2, ...,XkiT are conditionally independent and identically dis-
tributed with E(Xkit |Θki,Λk, Γ) = µ(Θki,Λk,Γ) and variance Var(Xkit |Θki,Λk,Γ)
= σ2(Θki,Λk, Γ)/mkit , where mkit are known weights.

Theorem 4.2. Consider R sets of portfolios of the three-level common-effect model satisfy-
ing assumptions A1 to A6 of subsection 2.2 and A7

′
. Under the notations in subsection 2.2,

unbiased estimators of the structural parameters, σ2
x , σ2

θ
, σ2

λ
and σ2

γ , are given by
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(1) σ̂2
x = 1

RKI

R
∑

r=1

K
∑

k=1

I
∑

i=1
v̂rki,

(2) σ̂2
θ

= 1
RK

R
∑

r=1

K
∑

k=1

{(
mrk..−m−1

rk..

I
∑

i=1
m2

rki.

)−1 [ I
∑

i=1
mrki.(X rki.−X rk..)2− v̂rk(I−1)

]}
,

(3) σ̂2
λ

= 1
R

R
∑

r=1

[
̂Var(X rk..)− v̂r

I

]
, and

(4) σ̂2
γ = ̂Var(X r...)−

σ̂2
λ

K ,
where

mrki. =
T

∑
t=1

mrkit , mrk.. =
I

∑
i=1

mrki., X rki. =
1

mrki.

T

∑
t=1

mrkitXrkit ,

X rk.. =
1
I

I

∑
i=1

X rki., X r... =
1
K

K

∑
k=1

X rk.., X ....=
1
R

R

∑
r=1

X r...,

v̂rki =
1

T −1

T

∑
t=1

mrkit(Xrkit −X rki.)2, v̂rk =
1
I

I

∑
i=1

v̂rki, v̂r =
1
K

K

∑
k=1

v̂rk,

̂Var(X rk..) =
1

K−1

K

∑
k=1

(X rk..−X r...)2 and ̂Var(X r...) =
1

R−1

R

∑
r=1

(X r...−X ....)2.

Proof. (1) Consider

v̂rki =
1

T −1

T

∑
t=1

mrkit
(
Xrkit −X rki.

)2
.

Recall that for fixed r = 1,2, ...,R, fixed k = 1,2, ...,K and fixed i = 1,2, ..., I, the ran-
dom variables Xrki1,Xrki2, ...,XrkiT are independent with common mean µ and variances
Var(Xrkit |Θki,Λk,Γ) = σ2

x (Θki,Λk,Γ)/mrkit , conditional on Θki, Λk and Γ. Consequently,
by using Lemma 4.2 with β = 0 and α = σ2

x (Θki,Λk,Γ), we have

E(v̂rki|Θki,Λk,Γ) =
1

T −1
E

[(
T

∑
t=1

mrkit(Xrkit −X rki.)2

)
|Θki,Λk,Γ

]
= σ

2
x (Θki,Λk,Γ).

Thus,

E(v̂rki) = E (E {E [E(v̂rki|Θki,Λk,Γ)|Λk,Γ] |Γ}) = E
(
E
{

E
[
σ

2
x (Θki,Λk,Γ)|Λk,Γ

]
|Γ
})

= σ
2
x

and v̂rki is unbiased for σ2
x . Hence, an unbiased estimator of σ2

x based on all data is

σ̂2
x =

1
RKI

R

∑
r=1

K

∑
k=1

I

∑
i=1

v̂rki.

(2) For the kth portfolio, k = 1,2, ...,K, from the rth set, r = 1,2, ...,R, by using Lemma
4.1 to replace a, v and mit by ark, vrk and mrkit , respectively, an unbiased estimator of ark is
given by

ârk =

(
mrk..−m−1

rk..

I

∑
i=1

m2
rki.

)−1[ I

∑
i=1

mrki.(X rki.−X rk..)2− v̂rk(I−1)

]
.

Furthermore,

E (ârk) = E [E (ârk|Λk,Γ)] = E {E [E (ârk|Λk,Γ) |Γ]}= E {E [ark(Λk,Γ)|Γ]}= σ
2
θ ,
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and ârk is unbiased for σ2
θ

. Hence an unbiased estimator of σ2
θ

based on all data is

σ̂2
θ

=
1

RK

R

∑
r=1

K

∑
k=1


(

mrk..−m−1
rk..

I

∑
i=1

m2
rki.

)−1[ I

∑
i=1

mrki.(X rki.−X rk..)2− v̂rk(I−1)

] .

(3) As for (3) of Theorem 3.2.
(4) As for (4) of Theorem 3.2.

Remark 4.2. We can obtain a similar proof for (1) and (2) for theorems 3.1, 3.2, 4.1 and
4.2 in standard textbooks on credibility models; see, e.g., [2] and [4].

Remark 4.3. Note that due to the subtraction in estimators σ̂2
θ

, σ̂2
λ

and σ̂2
γ , it is possible for

each of them to be negative. When the estimator is negative, it is customary to set it equals
to zero.

Remark 4.4. Considering the two- and three-level common-effect formulas in this paper,
one can easily conjecture the multi-level model formulas if all assumptions are maintained.
The multi-level model as follows.

For the multi-level formula of the Bühlmann model, consider that Xnh,nh−1,...,n1,n0 gives
the claim amount for individual n1during the period n0 in the h-level common-effect model
where n j = 1,2, ...,N j and j = 0,1,2, ...,h. Unbiased estimators of the structural parameters
are given by

(1) σ̂2
0 =

1
h
∏
j=1

N j

Nh

∑
nh=1

Nh−1

∑
nh−1=1

...
N1

∑
n1=1

V̂ar(Xnh,nh−1,...,n1,n0
),

(2) σ̂2
g =

1
h
∏

j=g+1
N j

Nh

∑
nh=1

Nh−1

∑
nh−1=1

...
Ng+1

∑
ng+1=1

V̂ar(Xnh,nh−1,...,ng,.,...,.)−
σ̂2

g−1

Ng−1
, for 1≤ g < h, and

(3) σ̂2
h = V̂ar(Xh,.,...,.)−

σ̂2
h−1

Nh−1
,

where

Xnh,nh−1,...,ng,.,...,. =
1

Ng−1

Ng−1

∑
ng−1=1

Xnh,nh−1,...,ng−1,.,...,., Xnh,nh−1,...,n1,n0 = Xnh,nh−1,...,n1,n0

and

V̂ar(Xnh,nh−1,...,ng,.,...,.) =
1

Ng−1

Ng

∑
ng=1

(Xnh,nh−1,...,ng,.,...,.−Xnh,nh−1,...,ng+1,.,...,.)2

for 0≤ g < h.
For the multi-level formulas of the Bühlmann-Straub model, consider Xnh,nh−1,...,n1,n0 the

claim amount for individual n1during period n0 in the h-level common-effect model where
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n j = 1,2, ...,N j and j = 0,1,2, ...,h. Furthermore, let mnh,nh−1,...,n1,n0 denote the known
weights. The unbiased nonparametric estimators of the structural parameters are given by

(1) σ̂2
0 =

1
h
∏
j=1

N j

Nh

∑
nh=1

Nh−1

∑
nh−1=1

...
N1

∑
n1=1

v̂nh,nh−1,...,n1 ,

(2) σ̂2
1 =

1
h
∏
j=1

N j

Nh

∑
nh=1

Nh−1

∑
nh−1=1

...
N2

∑
n2=1

{(
mnh,nh−1,...,n2,.,.−m−1

nh,nh−1,...,n2,.,.

N1

∑
n1=1

m2
nh,nh−1,...,n1,.

)−1

×

[ N1
∑

n1=1
mnh,nh−1,...,n1,.(Xnh,nh−1,...,n1,.−Xnh,nh−1,...,n2,.,.)2

−v̂nh,nh−1,...,n2(N1−1)

]}
,

(3) σ̂2
2 =

1
h
∏
j=2

N j

Nh

∑
nh=1

Nh−1

∑
nh−1=1

...
N3

∑
n3=1

[
V̂ar(Xnh,nh−1,...,n2,.,.)−

v̂nh,nh−1,...,n3

N1

]
,

(4) σ̂2
g =

1
h
∏

j=g+1
N j

Nh

∑
nh=1

Nh−1

∑
nh−1=1

...
Ng+1

∑
ng+1=1

V̂ar(Xnh,nh−1,...,ng,.,...,.)−
σ̂2

g−1

Ng−1
, for 3≤ g≺ h, and

(5) σ̂2
h = V̂ar(Xh,.,...,.)−

σ̂2
h−1

Nh−1
,

where, for 2≤ g < h,

mnh,nh−1,...,n1,. =
N0

∑
n0=1

mnh,nh−1,...,n1,n0 , mnh,nh−1,...,n2,.,. =
N1

∑
n1=1

mnh,nh−1,...,n1,.,

Xnh,nh−1,...,n1,. =
1

mnh,nh−1,...,n1,.

N0

∑
n0=1

mnh,nh−1,...,n1,n0Xnh,nh−1,...,n1,n0 ,

Xnh,nh−1,...,ng,.,...,. =
1

Ng−1

Ng−1

∑
ng−1=1

Xnh,nh−1,...,ng−1,.,...,.,

v̂nh,nh−1,...,n1,. =
1

N0−1

N0

∑
n0=1

mnh,nh−1,...,n1,n0(Xnh,nh−1,...,n1,n0 −Xnh,nh−1,...,n1,.)2

v̂nh,nh−1,...,ng,.,...,. =
1

Ng−1

Ng−1

∑
ng−1=1

v̂nh,nh−1,...,ng−1 ,

V̂ar(Xnh,nh−1,...,ng,.,...,.) =
1

Ng−1

Ng

∑
ng=1

(Xnh,nh−1,...,ng,.,...,.−Xnh,nh−1,...,ng+1,.,...,.)2.
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Table 1. Comparison of the estimators using the data in Table 3.1 of [2]

True value Ohlsson’s estimators Our estimators
σ2

θ
1.000 1.209 (1.093) 1.256 (1.093)

σ2
λ

25.000 25.300 (25.259) 25.302 (25.318)

5. Numerical examples

5.1. Numerical example with the two-level common-effect models

For the two-level common-effect model, we can see that the differences between the Ohls-
son’s unbiased estimators and our unbiased estimators are usually rather small. For confi-
dentiality reasons, we use the artificial population in section 3.3 of [2] and the results from
Table 4.1 in [3]. We take the stated value σ̂2

x = 15.89 as given and only estimate σ2
θ

and
σ2

λ
. The results are given in Table 1. In parenthesis we give the values when all the weights

mrit are set equal to one. The difference between the estimators is negligible for σ2
λ

and less
than 4 for σ2

θ
. In this case, we know the true values because the population was artificially

generated. The present estimators have the advantage due to the simplicity in extension and
application for hierarchical case.

5.2. Numerical example with the three-level common-effect model

To illustrate numerically the three-level common-effect model, we generate claims data
and use simulation to examine what effect there might be from assuming some level of
dependence between portfolios, between individuals and across time. These simulations
use the three-level common-effect framework introduced in section 2.2, and we compare its
estimators with those of the two-level model and the ordinary Bayesian normal model. The
Bayesian normal model assumes dependence only across individuals; this assumption is for
simplicity and mathematical tractability and always made without regard as to whether it
is violated or not. First, we simulate observations satisfying the assumptions of the three-
level common-effect model and then compare the results to those three different models:
the two and three-level common-effect models described in this paper, assuming normal
distributions for the common effects, and the conventional Bayesian normal model, which
allows for only one level of common effect. We are interested in the numerical comparisons
of the resulting unbiased estimators of the structural parameters under each model.

The specifications, descriptions, and parameter values used in the simulation are given in
Table 2. To allow for meaningful comparison between these three models, we have chosen
the parameters in the three models to be consistent with each other. More precisely, for
example, we set µ = µθ + µλ + µγ and σ2 = σ2

θ
+ σ2

λ
+ σ2

γ . The variances are additive in
the Bayesian normal model because it is assumed that θki, λk and γ are independent of each
other. We generated R = 10 different sets of insurance contracts consisting of 10-year paths
of claims for 10 different individuals for 10 different portfolios assuming that the three-level
common-effect model is the true model for each of the portfolios. Hence, we are assuming
that in reality, there are three common effects as described in this paper that are inducing the
claims. Recall that we assumed that for each portfolio and individual, the claims amount for
each time period conditional on θki, λk and γ , i.e., Xkit |θki,λk,γ , is normally distributed with
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Table 2. Summary of model assumptions and the parameters used in the simulation

Specification Description
Model III :Three level normal common-effect model For k = 1,2, . . . ,K, i = 1,2, . . . , I and

t = 1,2, . . . ,T
Conditional density Xkit |θ ki,λ k,γ ∼ N(θ ki+λ k+γ,σ2

x)
’Individual’ common effect θki∼ N(µ

θ
,σ2

θ
)

’Portfolio’ common effect λk∼ N(µ
λ
,σ2

λ
)

’Overall’ common effect γ ∼ N(µ
γ
,σ2

γ)
Assumption K = 10, I = 10, T = 10
Parameter values σ2

x = 22000
µθ = 100,σ2

θ
= 1000

µλ = 200,σ2
λ
= 4000

µγ= 300,σ2
γ= 16000

Model II :Two level normal common-effect model For i = 1,2, . . . , I and t = 1,2, . . . ,T
Conditional density Xit |θ i,λ ∼ N(θ i+λ ,σ2

x)
’Individual’ common effect θi∼ N(µ

θ
,σ2

θ
)

’Overall’ common effect λ ∼ N(µ
λ
,σ2

λ
)

Assumption I = 100 individuals, T = 10 years

Parameter values σ2
x = 22000

µθ = 100,σ2
θ
= 1000

µλ = 500,σ2
λ
= 20000

Model I :Bayesian normal model For i = 1,2, . . . , I and t = 1,2, . . . ,T
Conditional density Xit |θ ∼ N(θ ,σ2

x)
Single common effect θ ∼ N(µ

θ
,σ2

θ
)

Assumption I = 100 individuals, T = 10 years

Parameter values σ2
x = 22000

µθ = 600,σ2
θ = 21000

mean θki + λk + γ and variance σ2
x . Parameters θki, λk and γ are also normally distributed

with means µθ , µλ and µγ and variances σ2
θ

, σ2
λ

and σ2
γ , respectively.

We refer to the three-level normal common-effect model as Model III, the two-level
normal common-effect model as Model II and the Bayesian normal model as Model I.
For each sample set, we compute the estimators of the structural parameters for the three
models. We repeat the above simulation n = 1000 times and then compute the average
of 1000 estimator values for each of the structural parameters of the three models. The
differences between the true values and our unbiased estimators are generally rather small.
The results are given in Table 3. For Model I, the differences between the averages of our
estimators and the true values is negligible for σ2

x and less than 6% for σ2
θ

. For Model
II, the difference is less than 4% for σ2

λ
. Finally, for Model III, the difference is less than

5% for σ2
λ

and less than 4% for σ2
γ . These results appear reasonable because we estimate

the structural parameters in each level and use them in the next level to estimate the other
structural parameters. Thus, the sources of errors increase with higher-level models.
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Table 3. Comparison of the estimators of the three models in Table 2

Model Parameter True value Average of our estimation
III σ2

x 22000.00 22010.57
σ2

θ
1000.00 995.52

σ2
λ

4000.00 4199.34
σ2

γ 16000.00 16531.52

II σ2
x 22000.00 22010.57

σ2
θ

1000.00 995.52
σ2

λ
20000.00 19219.12

I σ2
x 22000.00 22010.57

σ2
θ

21000.00 19823.37

6. Conclusion

One of the primary challenges in using credibility models in practice is the estimation of
structural parameters. Several methods found in published literature provide estimators
that are not necessarily unbiased or simple. In this paper, we introduced a new method to
estimate structural parameters of credibility models with dependence induced by common
effects. We find that the difference between the true values and our unbiased estimators is
generally rather small. The new estimators have the advantage of being easy to use.

Acknowledgement. The authors would like to express their sincere thanks to the referees
for their very constructive comments and suggestions.

References
[1] S. A. Klugman, H. H. Panjer and G. E. Willmot, Loss Models, second edition, Wiley Series in Probability

and Statistics, Wiley-Interscience, Hoboken, NJ, 2004.
[2] D. R. Dannenburg, R. Kaas and M. J. Goovaerts, Practical actuarial credibility models, IAE, Amsterdam,

1996.
[3] E. Ohlsson, Simplified estimation of structure parameters in hierarchical credibility, Presented at the Zurich

ASTIN Colloquium, 2005.
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