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Abstract. This paper presents a boundary integral equation method for the numerical con-
formal mapping of bounded multiply connected region onto an annulus with circular slits.
The method is based on some uniquely solvable linear integral equations with classical, ad-
joint and generalized Neumann kernels. These boundary integral equations are constructed
from a boundary relationship that relates the mapping function f on a multiply connected
region with f ′, θ ′, and | f |, where θ is the boundary correspondence function. Some numer-
ical examples are presented to illustrate the efficiency of the presented method.
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1. Introduction

Conformal mapping is a useful and important tool in science and engineering. On the other
hand, exact mapping functions are unknown except for some special regions. By that fact,
the practical use of conformal maps has always been limited. In general conformal maps
cannot be obtained in closed form. Thus we have to resort to numerical approximations of
such maps. Nowadays, much research has been done to discuss an algorithm for the con-
structions of conformal maps. Conformal mapping uses single valued functions of complex
variables to transform a complicated boundary to a simpler, more manageable configuration.
Nehari [19, p. 334] described five types of slit regions as important canonical regions for
which a multiply connected region can be mapped onto. They are the annulus with circular
slits, the disk with circular slits, the circular slit region, the radial slit region, and the parallel
slit region. Various numerical approximation methods have been proposed for computing
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the conformal map between the multiply connected regions and the five canonical regions;
see [1, 3, 5, 6, 8–10, 12–16, 20, 21, 24]. Murid and Mohamed [12] and Mohamed [11, pp.
51–88] have discussed a numerical conformal mapping of doubly connected regions onto
an annulus via the Kerzman-Stein and Neumann kernels. Later, Murid and Hu [14] extend
these works to multiply connected regions, which however, involves solving a nonlinear
system of equation using optimization method. To overcome this nonlinear problem, San-
gawi et al. [23] have developed linear integral equations for conformal mapping of bounded
multiply connected regions onto a disk with circular slits. Recently, reformulations of con-
formal mappings from the bounded and unbounded multiply connected regions onto the five
canonical slit regions as Riemann-Hilbert (RH) problems are discussed in Nasser [15–17].
An integral equation with the generalized Neumann kernel is then used to solve the RH
problem as developed in [25]. The right-hand side of the integral equation however involves
a singular integral which is computed by Wittich’s method.

In this paper we describe an integral equation method for computing the conformal map-
ping function f of multiply connected regions onto an annulus with circular slits. The
approach presented improves significantly the results of [11–14]. We first derive a bound-
ary relationship that relates the mapping function f on a multiply connected region with f ′,
θ ′(t), and | f |, where θ is the boundary correspondence function. We then construct three
linear integral equations for f ′, θ ′(t), and | f |. This reduces the nonlinearity problem faced
in [8, 14] to linear problem.

The plan of the paper is as follows: Section 2 presents some auxiliary materials and
derivations of two integral equations related to f ′. We derive in Section 3 a boundary in-
tegral equation satisfied by θ ′. Section 4 presents a method to calculate the modulus of f .
Section 5 gives a numerical implementation for computing f based on the computations of
θ ′, modulus of f and f ′(z). In Section 6, we give some examples to illustrate our boundary
integral equation method. Finally, Section 7 presents a short conclusion.

2. Notations and auxiliary material

Let Ω be a bounded multiply connected region of connectivity M + 1. The boundary Γ

consists of M + 1 smooth Jordan curves Γ0,Γ1, . . . ,ΓM such that Γ1, . . . ,ΓM lies in the
interior of Γ0 , where the outer curve Γ0 has counterclockwise orientation and the in-
ner curves Γ1, . . . ,ΓM have clockwise orientation. The positive direction of the contour
Γ = Γ0∪Γ1∪ ·· ·∪ΓM is usually that for which Ω is on the left as one traces the boundary
(see Figure 1). The curve Γk is parametrized by 2π-periodic twice continuously differen-
tiable complex function zk(t) with non-vanishing first derivative, i.e.,

z′k(t) =
dzk(t)

dt
6= 0, t ∈ Jk = [0,2π] , k = 0,1, . . . ,M.

The total parameter domain J is the disjoint union of M +1 intervals J0, . . . ,JM . We define
a parametrization z of the whole boundary Γ on J by

z(t) =


z0(t), t ∈ J0 = [0,2π] ,

...
zM(t), t ∈ JM = [0,2π] .

(2.1)
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Let H∗ be the space of all real Hölder continuous 2π-periodic functions ω(t) of the
parameter t on Jk for k = 0,1, . . . ,M, i.e.

ω(t) =


ω0(t), t ∈ J0,

...
ωM(t), t ∈ JM.

Let θ(t) (the boundary corresponding function) be given for t ∈ J by

θ(t) =


θ0(t), t ∈ J0,

...
θM(t), t ∈ JM.

Let µ (a picewise constant real function) be given for t ∈ J by

µ(t) = (µ0, . . . ,µM) =


µ0, t ∈ J0,
...

µM, t ∈ JM.

The classical Neumann kernel is defined by

N(t,s) =
1
π

Im
(

z′(s)
z(s)− z(t)

)
,

and the adjoint kernel N∗(s, t) of the classical Neumann kernel is given by

N∗(t,s) = N(s, t) =
1
π

Im
(

z′(t)
z(t)− z(s)

)
.

We define the Fredholm integral operators N and N∗ by

Nυ(t) =
∫

J
N(t,s)υ(s)ds, t ∈ J,

N∗υ(t) =
∫

J
N∗(t,s)υ(s)ds, t ∈ J.

It is known that λ = 1 is an eigenvalue of the kernel N with multiplicity 1 and λ =
−1 is an eigenvalue of the kernel N with multiplicity M [25]. The eigenfunctions of N
corresponding to the eigenvalue λ =−1 are

{
χ [1],χ [2], . . . ,χ [M]

}
, where

χ
[ j](ξ ) =

{
1, ξ ∈ Γ j,
0, otherwise, j = 1,2, . . . ,M.

Lastly, we define an integral operator J by

(2.2) Jυ =
∫

J

1
2π

M

∑
j=1

χ
[ j](s)χ

[ j](t)υ(s)ds,

which is required for uniqueness of solution in a later section.
The unit tangent to Γ at z(t) is denoted by T (z(t)) = z′(t)/

∣∣z′(t)∣∣. Suppose that c(z)
and Q(z) are complex-valued functions defined on Γ such that Q(z) 6= 0. Then the interior
relationship is defined as follows:
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Figure 1. Mapping of the bounded multiply connected region Ω of connectivity M+1 onto
an annulus with circular slits.

Let P(z) be an analytic function in Ω and satisfies the boundary relationship

P(z) = c(z)
T (z)Q(z)

G(z)
P(z), z ∈ Γ,(2.3)

where G(z) analytic in Ω, Hölder continuous on Γ, and G(z) 6= 0 on Γ. The boundary
relationship (2.3) also has the following equivalent form:

G(z) = c(z)T (z)Q(z)
P(z)2

|P(z)|2
, z ∈ Γ.(2.4)

The following theorem from [8] gives an integral equation for an analytic function satisfying
the boundary relationship (2.3) or (2.4).

Theorem 2.1. Let U and V be any complex-valued functions that are defined on Γ. If the
function P(z) satisfies the interior non-homogeneous boundary relationship (2.3) or (2.4),
then

1
2

[
V (z)+

U(z)
T (z)Q(z)

]
P(z)+PV

∫
Γ

K(z,w)P(w)|dw|

(2.5) +c(z)U(z)

[
∑

a j insideΓ

Res
w=a j

P(w)
(w− z)G(w)

]conj

= 0, z ∈ Γ,

where

(2.6) K(z,w) =
1

2πi

[
c(z)U(z)

c(w)(w− z)Q(w)
− V (z)T (w)

w− z

]
.

The symbol “conj” in the superscript denotes complex conjugate. The sum in (2.5) is over
all those zeros a1,a2, . . . ,aM of G that lie inside Ω. If G has no zeros in Ω, then the term
containing the residue in (2.5) will not appear.

Let w = f (z) be the analytic function which maps Ω conformally onto an annulus with
circular slits. We assume that a ∈ Ω. The function is made uniquely determined by pre-
scribing that f (a) > 0 (see [19, p. 336]). The boundary value of f can be represented in the
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form

f (zp(t)) = µpeiθp(t), Γp : z = zp(t), 0≤ t ≤ βp, p = 0,1, . . . ,M,(2.7)

where θp is the boundary correspondence function of Γp. Thus it can be shown that [8]

(2.8) f (zp(t)) =
µp

i
T (zp(t))

θ
′
p(t)∣∣θ ′p(t)∣∣ f ′(zp(t))∣∣ f ′(zp(t))

∣∣ , zp ∈ Γp, p = 0,1,2, . . . ,M.

Note that θ
′
0 > 0, θ

′
M < 0, but for p = 1,2, . . . ,M−1, θ

′
p may be positive or negative since

each circular slit f (Γp) is traversed twice (see Figure 1). Thus θ
′
p(t)/

∣∣∣θ ′p(t)∣∣∣= sign(θ
′
p(t)).

Hence the boundary relationships (2.8) can be written as

(2.9) f (z) = sign(θ
′
p(t))

| f (z)|
i

T (z)
f ′(z)
| f ′(z)|

, z ∈ Γ.

Comparison of (2.4) and (2.9) leads to a choice of G(z) = f (z), P(z) =
√

f ′(z), c(z) =
i sign(θ

′
p(t)) | f (z)|, Q(z) = 1. Note that since f ′(z) 6= 0 in Ω, a single valued and analytic

branch of
√

f ′(z) can be defined. Setting U(z) = T (z)Q(z) and V (z) = 1, Theorem 2.1
yields

(2.10)
√

f ′(z)+PV
∫

Γ

K(z,w)
√

f ′(w) |dw|=−c(z)T (z)

×

[
∑

a j insideΓ

Res
w=a j

√
f ′(w)

(w− z) f (w)

]conj

, z ∈ Γ,

where

K(z,w) =
1

2πi

[
c(z)T (z)

c(w)(w− z)
− T (w)

w− z

]
,

c(z) = i sign(θ
′
p(t)) | f (z)| , z = z(t),

c(w) = i sign(θ
′
p(s)) | f (w)| , w = z(s).

Note that f (z) does not have any zeros in Ω. Thus the right-hand side of (2.10) vanishes
and the integral equation (2.10) becomes√

f ′(z)+PV
∫

Γ

K(z,w)
√

f ′(w) |dw|= 0, z ∈ Γ.(2.11)

Our approach here generalizes the results of Murid and Mohamed [12] and Hu [8]. In fact if
Ω is doubly connected then the kernel K(z,w) reduces to the following Kerzman-Stein-type
kernel

A∗(z,w) =
1

2πi

[
| f (z)|T (z)
| f (w)|(w− z)

− T (w)
w− z

]
.

Relationship (2.9) is useful for computing the boundary values of the mapping function
f (z) provided θ

′
p(t), | f (z)|, and f ′(z) are all known. Note that | f (z0)|= 1, while

∣∣ f (zq)
∣∣=

µq, q = 1,2, . . . ,M−1 are the radii of the circular slits and | f (zM)|= µM where µ1, . . . ,µM
are undetermined real constants. Another integral equation method for calculating f ′(z) has
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been given in Hu [8] and Murid and Hu [14]. They first eliminate the sign(θ
′
p(t)) in (2.9)

by squaring both sides to get

(2.12) f (z)2 =−| f (z)|2T (z)2 f ′(z)2

| f ′(z)|2
, z ∈ Γ.

By means of Theorem 2.1 and (2.12), Murid and Hu [14] formulated the following
boundary integral equation satisfied by f ′(z):

g1(z,a)+
∫

Γ

N+(z,w)g1(w,a)|dw|= 0, z ∈ Γ,(2.13)

where

g1(z,a) = T (z) f ′(z),

N+(z,w) =
1

2πi

[
T (z)
z−w

− | f (z)|2T (z)
| f (w)|2(z−w)

]
.

The integral equation (2.13) is similar to the integral equation for finding f ′ in [23] but with
different right-hand side. By using single-valuedness of the mapping function f leads to the
following condition ∫

−Γq

g1(w,a)|dw|= 0, q = 1,2, . . . ,M.(2.14)

Note that the integral equation (2.13) with the condition (2.14) still are homogeneous. To
overcome this problem we need to find another condition to change the above homogeneous
integral equation to the non-homogeneous integral equation. To achieve this, we divide both
sides of integral equation (2.13) and condition (2.14) by f ′(a), and we obtain

g(z,a)+
∫

Γ

N+(z,w)g(w,a)|dw|= 0, z ∈ Γ,(2.15a)

∫
−Γq

g(w,a)|dw|= 0, q = 1,2, . . . ,M,(2.15b)

where

g(z,a) =
T (z) f ′(z)

f ′(a)
.

By means of Cauchy’s integral formula we can get the following condition∫
Γ

1
2π

g(w,a)
w−a

|dw|= i.(2.15c)

Thus the integral equation (2.15a) with the conditions (2.15b) and (2.15c) should give
a unique solution provided the parameters

∣∣ f (zq)
∣∣ = µq, q = 1,2, . . . ,M that appear in

N+(z,w) are known.
Integral equation methods for computing θ

′
p and

∣∣ f (zq)
∣∣ = µq are discussed in the next

two sections.
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3. Integral equation method for computing θ
′
p(t)

This section gives another application of Theorem 2.1 for computing f ′/ f . Let f (z) be the
mapping function as described before. The function f can also be written as

f (z) = (z− z0)eg(z),(3.1)

where a∈Ω, z0 ∈ interior of ΓM, g is an analytic in Ω and α is real constant. It is clear from
(2.7) that f ′(zp(t))z′p(t)/ f (zp(t)) = iθ

′
p(t). An integral equation method for calculating

f ′(z)/ f (z), z ∈ Γ, is given next. Then the function D(z) defined by

D(z) =
f ′(z)
f (z)

= g′(z)+
1

z− z0
,(3.2)

is analytic in Ω.
Combining (2.12) and (3.2), we obtain the following boundary relationship

D(z) =−T (z)
2

D(z), z ∈ Γ.(3.3)

Comparison of (2.3) and (3.3) leads to a choice of P(z) = D(z), Q(z) = T (z), c(z) =
−1,G(z) = 1. Setting U(z) = T (z)Q(z) and V (z) = 1, Theorem 2.1 yields

f ′(z)
f (z)

T (z)+PV
1

2πi

∫
Γ

[
T (z)
z−w

− T (z)
z−w

]
f ′(w)
f (w)

T (w) |dw|= 0, z ∈ Γ.(3.4)

In the above integral equation let z = z(t) and w = z(s). Then by multiplying both sides of
(3.4) by |z′(t)| and using the fact that

f ′(z(t))
f (z(t))

z′(t) = iθ ′(t),

the above integral equation can also be written as

θ
′(t)+

∫
J

N(s, t)θ ′(s)ds = 0.

This integral equation is similar to the integral equation for finding θ ′(t) in [23] but with
different right-hand side. Since N(s, t) = N∗(t,s), the integral equation can be written as an
integral equation in operator form

(I+N∗)θ ′ = 0,(3.5)

where λ =−1 is an eigenvalue of N∗ with multiplicity M by Theorem 12 in [25]. By using
the fundamental theorem [22, p.164] and using the fact that T (w) |dw|= dw, gives∫

−Γp

1
2π

T (w)
f ′(w)
f (w)

|dw|=
{

i, p = M,
0, p = 1,2, . . . ,M−1,

(3.6)

which implies that

Jθ
′ = (0, . . . ,0,−1).(3.7)

By adding (3.7) to (3.6), we obtain the equation

(I+N∗+J)θ ′ = φ̂(t),(3.8)

where

φ̂(t) = (0, . . . ,0,−1).(3.9)

The integral equation (3.8) is uniquely solvable (see [23]).
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4. Integral equation for computing | f (z)|

The boundary values of f satisfy on the boundary Γ,

f (z(t)) = µ(t)eiθ(t),(4.1)

where µ(t) = (1,µ1, . . . ,µM).
By taking the logarithm on both sides of (3.1), we get

log f (z) = log(z− z0)+g(z).(4.2)

Then

g(z(t)) = lnµ(t)− ln |z(t)− z0|− iarg(z(t)− z0)+ iθ(t)

= γ(t)+h(t)+ iυ ,(4.3)

where γ(t) = −ln |z(t)− z0| and h(t) = lnµ(t) = (0, lnµ1, lnµ2, . . . , lnµM). This choice of
γ(t) is different from the one chosen in [23] which is related to disk with circular slits.

The following theorem gives a method for calculating h(t) and hence µ(t). This theorem
can be proved by using the approach used in proving Theorem 5 in [18].

Theorem 4.1. The function h is given by h = (0,h1,h2, . . . ,hM), where

(4.4) h j = (γ,φ [ j]) =
1

2π

∫
J
γ(t)φ [ j](t)dt ,

and where φ [ j] is the unique solution of the following integral equation

(4.5) (I+N∗+J)φ [ j] =−χ
[ j] , j = 1,2, . . . ,M.

By obtaining h1,h2, . . . ,hM , we obtain

(4.6) µ j = eh j , j = 1,2, . . . ,M.

In summary, by solving the integral equation (3.4) with the condition (3.6) we get θ
′
p(t).

And solving the integral equation (4.5) we get φ [r], r = 1,2, . . . ,M, which gives hr through
(4.4) which in turn gives µr through (4.6). By solving integral equation (2.15a) with the con-
ditions (2.15b) and (2.15c) with the known values of µr we get g(z,a). From the definition
of g(z,a), we get

(4.7) f ′(z) =
g(z,a) f ′(a)

T (z)
.

Note that, from the solution of (3.4) and (3.6) it is possible to compute

(4.8)
f ′(a)
f (a)

=
1

2πi

∫
Γ

f ′(w)
f (w)(w−a)

dw.

Finally from (2.8), (4.7) and (4.8), the boundary value of f (z) is given by

(4.9) f (z) = sign(θ ′(t))
| f (z)|

i
g(z,a) f ′(a)/ f (a)
|g(z,a) f ′(a)/ f (a)|

, z ∈ Γ.

The interior value of the function f (z) is calculated by the Cauchy integral formula

(4.10) f (z) =
1

2πi

∫
Γ

f (w)
w− z

dw, z ∈Ω.
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For points z which are not close to the boundary, the integral in (4.10) is approximated
by the trapezoidal rule. However for the points z closed to the boundary Γ, the numerical
integration in (4.10) is nearly singular. This difficulty is overcome by using the fact that
(2πi)−1 ∫

Γ
dw/(w− z) = 1, and rewrite f (z) as

(4.11) f (z) =

∫
Γ

f (w)
w−z dw∫

Γ

1
w−z dw

, z ∈Ω.

This idea has the advantage that the denomenator in this formula compensates for the error
in the numerator (see [7]). The integrals in (4.11) are approximated by the trapezoidal rule.

5. Numerical examples

Since the function zp(t) is 2π-periodic, a reliable procedure for solving the integral equa-
tions (2.15), (3.8) and (4.5) numerically is by using the Nyström’s method with the trape-
zoidal rule [2]. The trapezoidal rule is the most accurate method for integrating periodic
functions numerically [4, pp. 134–142]. Thus solving the integral equations numerically
reduces to solving linear systems of the form

AX = B.(5.1)

The above linear system (5.1) is uniquely solvable for sufficiently large number of colloca-
tion points on each boundary component, since the integral equations (2.15), (3.8) and (4.5)
are uniquely solvable [2]. The computational details are similar to [15, 23].

For numerical experiments, we have used some test regions of connectivity two, three,
four and five based on the examples given in [1, 5, 9, 15, 16, 21, 22]. All the computations
were done using MATHEMATICA 7.1 (16 digit machine precision). The number of points
used in the discretization of each boundary component Γ j is n. The test regions and their
corresponding images are shown in Figures 2-6.

5.1. Regions of connectivity two

In this section we have used one test region of connectivity two whose exact mapping func-
tion is known. The test region is the circular frame. The results for sub norm error between
the exact values of f , µ1 and approximate values fn, µ1n are shown in Table 1.

Example 5.1. Circular Frame :
Consider a pair of circles

Γ0 : {z(t) = eit},
Γ1 : {z(t) = c+ρe−it}, t : 0≤ t ≤ 2π, z0 = 0.3,

such that the domain bounded by Γ0 and Γ1 is the domain between a unit circle and a circle
centered at c with radius ρ [22]. The exact mapping function is given by

(5.2) f (z) =
z−λ

λ z−1
,

with

λ =
2c

1+(c2−ρ2)+
√

(1− (c−ρ)2)(1− (c+ρ)2)
,
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which maps Γ0 onto the unit circle and Γ1 onto a circle of radius

µ1 =
2ρ

1− (c2−ρ2)+
√

(1− (c−ρ)2)(1− (c+ρ)2)
.

Figure 2 shows the region and its image based on our method. See Table 1 for results.

Out[157]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 2. Conformal mapping of a circular frame onto an annulus.

Table 1. Error Norm (Circular Frame).

n ‖µ1−µ1n‖∞ ‖ f − fn(t)‖∞

4 2.2(−03) 6.5(−02)
8 2.2(−05) 1.4(−03)

16 1.9(−09) 2.2(−07)
32 8.3(−17) 1.2(−15)

5.2. Regions connectivity three

In this section we have used two test regions of connectivity three whose exact mapping
functions are unknown. The first test region is bounded by an ellipse and two circles and the
second test region is bounded by two ellipses and a circle. The results for sub norm error
between the our numerical values of µ1, µ2 and the computed values of µ1, µ2 obtained
from [5, 9, 15, 16, 21] are shown in Tables 2 and 3.

Example 5.2. Ellipse with Two Circles:
Let Ω be the region bounded by

Γ0 : {z(t) = 2cos t + i sin t},
Γ1 : {z(t) = 0.5(cos t− i sin t)},
Γ2 : {z(t) = 1.2+0.3(cos t− i sin t)}, 0≤ t ≤ 2π.
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This example is also discussed in Nasser [16] which allows for comparison of the radii µ1,
µ2, where µ1 = 2.3741142722, µ2 = 1.2497448086. Since our condition of the problem
is different from him so we should multiply our radii by 2.5 to compare with the result of
Nasser [16]. We choose the symbols µ1R and µ2R for the radii in Nasser [16]. Figure 3
shows the region and its image based on our method. See Tables 2 for comparison of our
computed values of µ1 and µ2 with those computed values of Nasser [16].
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Figure 3. Mapping a region Ω bounded by an ellipse and two circles onto an annulus with
a circular slit.

Table 2. Radii comparison for Example 5.2 with [16].

n ‖µ1×2.5−µ1R‖∞ ‖µ2×2.5−µ2R‖∞

32 5.0(−05) 8.9(−04)
64 3.8(−07) 8.7(−07)

128 8.6(−13) 1.8(−11)

Example 5.3. Two Ellipses with One Circle:
Let Ω be the region bounded by

Γ0 : {z(t) = 2cos t + i sin t},
Γ1 : {z(t) = −0.7+0.25(cos t− i sin t)},
Γ2 : {z(t) = 1+0.5cos t−0.25isin t}, 0≤ t ≤ 2π, z0 = 1.

Figure 4 shows the region and its image based on our method. See Table 3 for comparison
between our computed values of µ1 and µ2 with those computed values of Nasser [15].
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Figure 4. Mapping a region Ω bounded by two ellipses and one circle onto an annulus with
a circular slit.

Table 3. Error Norm for Example 5.3.

n ‖µ1−µ1N‖ ‖µ2−µ2N‖
16 1.0(−04) 6.1(−05)
48 1.4(−12) 3.4(−13)
64 1.4(−15) 1.1(−15)

5.3. Regions of connectivity four and five

In this section we have used two test regions for multiply connected regions whose exact
mapping functions are unknown. The first test region is as shown in Figure 5 and the second
test region is bounded by an ellipse and four circles [15]. The computed values of µ1, µ2,
µ3, µ4 are shown in Tables 4 and 5.

Example 5.4. Let Ω be the region bounded by

Γ0 : {z(t) = (10+3cos3t)eit},

Γ1 : {z(t) = −3.5+6i+0.5e
−iπ

4 (eit +4e−it)},

Γ2 : {z(t) = 5+0.5e
iπ
4 (eit +4e−it)},

Γ3 : {z(t) = −3.5−6i+0.5e
iπ
4 (eit +4e−it)}, 0≤ t ≤ 2π, z0 =−4−6i.

This example is also discussed in Nasser [15]. See Figure 5 shows the region and its image
based on our method. See Table 4 for results.

Example 5.5. Ellipse with Four Circles:
Let Ω be the region bounded by

Γ0 : {z(t) = 8cos t +6isin t},
Γ1 : {z(t) = 3+2i+ cos t− i sin t},
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Figure 5. Mapping a region Ω onto an annulus with two circular slits.

Table 4. The numerical values of µ1, µ2 and µ3.

n µ1 µ2 µ3
32 0.9400798851906385 0.8899301609674942 0.3155456958536308
64 0.9400786116038745 0.8899315928064306 0.3155455847860195

128 0.940078611605828 0.8899315927710835 0.3155455847853972

Γ2 : {z(t) = −3+2i+ cos t− i sin t},
Γ3 : {z(t) = −3−2i+ cos t− i sin t},
Γ4 : {z(t) = 3−2i+ cos t− i sin t}, 0≤ t ≤ 2π, z0 =−3−2i.

This example is also discussed in Nasser [15]. Figure 6 shows the region and its image
based on our method. See Table 5 for results.

Table 5. The numerical values of µ1, µ2, µ3 and µ4.

n µ1 µ2 µ3 µ4
32 0.84922711665091 0.63729798437032 0.210432179308122 0.80742128277745
64 0.84922717271639 0.6372980012645 0.210432177445509 0.80742132924948

128 0.84922717271638 0.63729800126452 0.210432177445504 0.80742132924948
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Figure 6. Mapping a region Ω bounded by an ellipse and four circles onto an annulus with
three circular slits.

6. Conclusion

In this paper, we have constructed new boundary integral equation method for conformal
mapping of multiply connected regions onto an annulus with circular slits. We have also
constructed a new method to find the values of circular radii that reduces the nonlinearity
problem encountered in Murid and Hu [8] to linear problem. By solving the integral equa-
tions, we obtains the values of θ ′, | f | and f ′ which in turn gives the approximate boundary
value of the mapping function. These integral equations are similar to the integral equations
in [23] for disk with circular slits but with different right-hand sides. Furthermore the right-
hand sides of the integral equations do not involve any singularity. The interior mapping
function are calculated by the means of the Cauchy integral formula. Several mappings of
the test regions of connectivity two, three, four and five were computed numerically using
the proposed method. The numerical examples presented have illustrated that our boundary
integral equation method has high accuracy.
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