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Abstract. Let H(B) denote the space of all holomorphic functions on the unit ball B⊂Cn.
Let ϕ = (ϕ1, . . . ,ϕn) be a holomorphic self-map of B. The composition operator Cϕ on H(B)
is defined as follows (Cϕ f )(z) = ( f ◦ϕ)(z). In this paper we investigate the boundedness
and compactness of the composition operator Cϕ from Zygmund spaces to Bloch spaces in
the unit ball.
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1. Introduction

Let H(B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn, A(B) the
ball algebra consisting of all functions in H(B) that are continuous up to the boundary of B.
Let z = (z1, . . . ,zn) and w = (w1, . . . ,wn) be points in Cn, we write

〈z,w〉= z1w1 + · · ·+ znwn, |z|=
√
|z1|2 + · · ·+ |zn|2.

For f ∈ H(B), let ∇ f denote the complex gradient of f , i.e.

∇ f (z) =
(

∂ f
∂ z1

(z), . . . ,
∂ f
∂ zn

(z)
)

.

The Bloch space B = B(B) is the space of all f ∈ H(B) such that

b( f ) = sup
z∈B

(1−|z|2) |∇ f (z)|< ∞.(1.1)

It is clear that B is a Banach space under the norm ‖ f‖B = | f (0)|+ b( f ). Let B0 denote
the subspace of B consisting of those f ∈B for which

(1−|z|2)|∇ f (z)| → 0,(1.2)

as |z| → 1. This space is called the little Bloch space.
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For f ∈ H(B), let ℜ f (z) = ∑
n
j=1 z j

∂ f
∂ z j

(z) stand for the radial derivative of f ∈ H(B).
From [22], we see that f ∈B if and only if

sup
z∈B

(1−|z|2) |ℜ f (z)|< ∞.(1.3)

f ∈B0 if and only if lim|z|→1(1− |z|2)|ℜ f (z)| = 0. Moreover, the following asymptotic
relation holds (see [3])

‖ f‖B � | f (0)|+(1−|z|2) |ℜ f (z)| .

Let Z = Z (B) denote the class of all f ∈ H(B) such that

sup
z∈B

(1−|z|2)|ℜ2 f (z)|< ∞.(1.4)

It is known that f ∈Z if and only if f ∈ A(B) and there exists a constant C > 0 such that

| f (ζ +h)+ f (ζ −h)−2 f (ζ )|< Ch,

for all ζ ∈ ∂B and ζ ± h ∈ ∂B (see, for example, [22, p. 261]). For n = 1 this result was
proved by Zygmund. Hence Z is called the Zygmund class. Zygmund class with the norm

‖ f‖Z = | f (0)|+ sup
z∈B

(1−|z|2)|ℜ2 f (z)|

will be called the Zygmund space. It is easy to see that Z is a Banach space with this norm.
Let ϕ = (ϕ1, . . . ,ϕn) be a holomorphic self-map of B. Define a linear operator Cϕ on

H(B), called the composition operator, by

(Cϕ f )(z) = ( f ◦ϕ)(z),

where f ∈ H(B). It is interesting to provide a function theoretic characterization when
ϕ induce a bounded or compact weighted composition operator on various spaces. The
book [4] contains much information on this topic.

In the setting of the unit disk, composition operators and Volterra operators on Zygmund
spaces were studied respectively in [2,5], composition operators on Bloch spaces was stud-
ied in [13, 14], weighted composition operators from Zygmund spaces to Bloch spaces was
studied in [6]. In the setting of the unit ball, composition operator on Bloch spaces was
studied in [3, 15] and an integral type operator on Bloch-type spaces was studied in [21].
See also [7–12, 16–20] for various operators on Zygmund spaces in the unit disk and the
unit ball.

Motivated by [2, 5–12, 16–20], in this paper we study the boundedness and compactness
of composition operators Cϕ from Zygmund spaces to Bloch spaces and little Bloch spaces.

Throughout the paper, constants are denoted by C, they are positive and may differ from
one occurrence to the other. The notation a � b means that there is a positive constant C
such that a≤Cb. If both a� b and b� a hold, then one says that a� b.

2. Main results and proofs

In this section we state and prove our main results. First we need several auxiliary results
which we will use in the proofs of main results.

Lemma 2.1. [9, 17] Suppose that f ∈Z . Then the following statements are true.
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(a) There is a positive constant C independent of f such that

|ℜ f (z)| ≤C‖ f‖Z ln
e

1−|z|
(2.1)

and

|∇ f (z)| ≤C‖ f‖Z ln
e

1−|z|
.(2.2)

(b) There is a positive constant C independent of f such that

‖ f‖∞ = sup
|z|<1
| f (z)| ≤C‖ f‖Z .(2.3)

Lemma 2.2. Let ϕ = (ϕ1, . . . ,ϕn) be a holomorphic self-map of B. Then Cϕ : Z →B is
compact if and only if Cϕ : Z →B is bounded and for any bounded sequence ( fk)k∈N in Z
which converges to zero uniformly on compact subset of B as k→∞, we have ‖Cϕ fk‖B→ 0
as k→ ∞.

Lemma 2.3. [15] A closed set K in B0 is compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

(1−|z|2)|∇ f (z)|= 0.

To formulate our main result, let us introduce some notations. Let ϕ = (ϕ1, . . . ,ϕn) be a
holomorphic self-map of B, denote

Dϕ(z) =


∂ϕ1(z)

∂ z1
· · · ∂ϕ1(z)

∂ zn
· · · · · · · · ·

∂ϕn(z)
∂ z1

· · · ∂ϕn(z)
∂ zn


and Dϕ(z)T , the transpose of the matrix Dϕ(z). Set

|Dϕ(z)|=

(
n

∑
k,l=1

∣∣∣∂ϕl

∂ zk
(z)
∣∣∣2)1/2

.(2.4)

Now, we formulate and prove the main results of this section.

Theorem 2.1. Let ϕ = (ϕ1, . . . ,ϕn) be a holomorphic self-map of B.
(i) If

K1 := sup
z∈B

(1−|z|2)|Dϕ(z)| ln e
1−|ϕ(z)|2

< ∞,(2.5)

then Cϕ : Z →B is bounded.
(ii) If Cϕ : Z →B is bounded, then

K2 := sup
z∈B

(1−|z|2)|Dϕ(z)T
ϕ(z)T | ln 1

1−|ϕ(z)|2
< ∞.(2.6)

Proof. (i). Suppose that (2.5) holds. Then for arbitrary z ∈ B and f ∈Z , by Lemma 2.1 we
have

(1−|z|2)|∇(Cϕ f )(z)|= (1−|z|2)|∇( f ◦ϕ)(z)|

= (1−|z|2)
( n

∑
k=1

∣∣∣ n

∑
l=1

∂ f
∂ζl

(ϕ(z))
∂ϕl

∂ zk
(z)
∣∣∣2)1/2
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≤ (1−|z|2)
( n

∑
k=1

n

∑
l=1

∣∣∣∂ϕl

∂ zk
(z)
∣∣∣2)1/2( n

∑
l=1

∣∣∣ ∂ f
∂ζl

(ϕ(z))
∣∣∣2)1/2

≤ (1−|z|2)|Dϕ(z)| |(∇ f )(ϕ(z))|

≤C‖ f‖Z (1−|z|2)|Dϕ(z)| ln e
1−|ϕ(z)|2

.(2.7)

From this, and since |Cϕ f (0)| ≤ ‖ f‖∞ ≤ ‖ f‖Z , it follows that Cϕ : Z →B is bounded.
(ii). Assume that Cϕ : Z →B is bounded. It is easy to see that for every m = 1, · · ·,n,

the functions fm(z) = zm belong to Z . Therefore ϕm = fm ◦ϕ ∈B, i.e.

sup
z∈B

(1−|z|2)

√
n

∑
i=1

∣∣∣∂ϕm

∂ zi
(z)
∣∣∣2 = sup

z∈B
(1−|z|2)|∇ϕm(z)|< ∞, m = 1, · · ·,n.(2.8)

By (2.8) and the following elementary inequality( n

∑
i=1

ai

)p
≤
{

∑
n
i=1 ap

i , p ∈ (0,1]
np−1

∑
n
i=1 ap

i , p≥ 1 , ai ≥ 0, i = 1, · · · ,n,

we obtain that

sup
z∈B

(1−|z|2)|Dϕ(z)|= sup
z∈B

(1−|z|2)
( n

∑
m=1

n

∑
k=1

∣∣∣∂ϕm

∂ zk
(z)
∣∣∣2)1/2

≤ sup
z∈B

(1−|z|2)
n

∑
m=1

( n

∑
k=1

∣∣∣∂ϕm

∂ zk
(z)
∣∣∣2)1/2

< ∞.(2.9)

Set (see e.g. [9])

h(z) = (z−1)

[(
1+ ln

1
1− z

)2

+1

]
and

ha(z) =
h(〈z,a〉)
|a|2

(
ln

1
1−|a|2

)−1

for a ∈ B such that |a|>
√

1−1/e. Then,

ℜha(z) =
〈z,a〉
|a|2

(
ln

1
1−〈z,a〉

)2(
ln

1
1−|a|2

)−1

and

ℜ
2ha(z) = ℜha(z)+

2〈z,a〉2

|a|2(1−〈z,a〉)

(
ln

1
1−〈z,a〉

)(
ln

1
1−|a|2

)−1

.

Thus for
√

1−1/e < |a|< 1, we obtain that

M1 = sup√
1−1/e<|a|<1

‖ha‖Z < ∞.

Therefore we have

M1‖Cϕ‖Z→B ≥ ‖Cϕ hϕ(λ )‖B ≥ sup
z∈B

(1−|z|2)|∇(hϕ(λ ) ◦ϕ)(z)|

≥ (1−|λ |2)
∣∣∣∇(hϕ(λ ) ◦ϕ)(λ )

∣∣∣
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= (1−|λ |2)
( n

∑
k=1

∣∣∣ n

∑
l=1

∂hϕ(λ )

∂ζl
(ϕ(λ ))

∂ϕl

∂ zk
(λ )
∣∣∣2)1/2

= (1−|λ |2)
( n

∑
k=1

∣∣∣ n

∑
l=1

ϕl(λ )
|ϕ(λ )|2

ln
1

1−|ϕ(λ )|2
∂ϕl

∂ zk
(λ )
∣∣∣2)1/2

= (1−|λ |2) 1
|ϕ(λ )|2

ln
1

1−|ϕ(λ )|2
|Dϕ(λ )T

ϕ(λ )T |

≥ (1−|λ |2) ln
1

1−|ϕ(λ )|2
|Dϕ(λ )T

ϕ(λ )T |(2.10)

for λ ∈ B such that
√

1−1/e < |ϕ(λ )|< 1. By (2.9) we obtain that

(1−|λ |2) ln
1

1−|ϕ(λ )|2
|Dϕ(λ )T

ϕ(λ )T |

≤ (1−|λ |2)

√
n

∑
k=1

∣∣∣ n

∑
l=1

∂ϕl

∂ zk
(λ )ϕl(λ )

∣∣∣2
≤C(1−|λ |2)

√
n

∑
k=1

n

∑
l=1

∣∣∣∂ϕl

∂ zk
(λ )
∣∣∣2 = C(1−|λ |2)|Dϕ(λ )|< ∞(2.11)

for λ ∈ B such that |ϕ(λ )| ≤
√

1−1/e. (2.10) together with (2.11) implies (2.6). This
completes the proof of Theorem 2.1.

Theorem 2.2. Let ϕ = (ϕ1, . . . ,ϕn) be a holomorphic self-map of B.
(i) Suppose that Cϕ : Z →B is bounded. If

lim
|ϕ(z)|→1

(1−|z|2)|Dϕ(z)| ln e
1−|ϕ(z)|2

= 0,(2.12)

then Cϕ : Z →B is compact.
(ii) If Cϕ : Z →B is compact, then

lim
|ϕ(z)|→1

(1−|z|2)|Dϕ(z)T
ϕ(z)T | ln 1

1−|ϕ(z)|2
= 0.(2.13)

Proof. (i). We assume that Cϕ : Z →B is bounded and (2.12) holds. From the proof of
Theorem 2.1, we see that

L := sup
z∈D
|Dϕ(z)|(1−|z|2) < ∞.

Let ( fk)k∈N be a sequence in Z with supk∈N ‖ fk‖Z ≤M and fk→ 0 uniformly on compact
subsets of B as k→ ∞. By (2.12) we have that for any ε > 0, there is a constant δ ∈ (0,1),
such that δ < |ϕ(z)|< 1 implies

(2.14) (1−|z|2)|Dϕ(z)| ln e
1−|ϕ(z)|2

< ε/M.

Let K = {w ∈ B : |w| ≤ δ}. By (2.14), we have

‖Cϕ fk‖B ≤ sup
z∈B

(1−|z|2)|∇ fk(ϕ(z))Dϕ(z)|+ | fk(ϕ(0))|

= sup
{z∈B: |ϕ(z)|≤δ}

(1−|z|2)|Dϕ(z)||∇ fk(ϕ(z))|
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+ sup
{z∈B :δ<|ϕ(z)|<1}

(1−|z|2)|Dϕ(z)||∇ fk(ϕ(z))|+ | fk(ϕ(0))|

= L sup
w∈K
|∇ fk(w)|+C‖ fk‖Z sup

{z∈B :δ<|ϕ(z)|<1}
(1−|z|2)|Dϕ(z)| ln e

1−|ϕ(z)|2

+ | fk(ϕ(0))|
≤ L sup

w∈K
|∇ fk(w)|+Cε + | fk(ϕ(0))|.(2.15)

By Cauchy’s estimate, if fk is a sequence which converges on compact subsets of B to
zero, then the sequence ∇ fk also converges to zero on compact subsets of B as k → ∞.
In particular, since K and {ϕ(0)} are compact it follows that limk→∞ supw∈K |∇ fk(w)| = 0
and limk→∞ | fk(ϕ(0))| = 0. Using these facts and letting k→ ∞ in (2.15), we obtain that
limsupk→∞ ‖Cϕ fk‖B ≤ Cε. Since ε is an arbitrary positive number it follows that the last
limit is equal to zero. Employing Lemma 2.2, the implication follows.

(ii). Suppose that Cϕ : Z →B is compact. Let (zk)k∈N be a sequence in B such that
|ϕ(zk)| → 1 as k→ ∞. We choose test functions ( fk)k∈N defined by

fk(z) =
〈z,ϕ(zk)〉−1
|ϕ(zk)|2

[(
1+ ln

1
1−〈z,ϕ(zk)〉

)2

+1
](

ln
1

1−|ϕ(zk)|2

)−1

.(2.16)

From the proof of Theorem 2.1 we see that supk∈N ‖ fk‖Z ≤ C. Moreover, fk converges
to zero uniformly on compact subsects of B. Hence, in view of Lemma 2.2 it follows that
‖Cϕ fk‖B → 0, as k→ ∞. Similarly to the proof of Theorem 2.1 we have

‖Cϕ fk‖B ≥ sup
z∈B

(1−|z|2)|∇(Cϕ fk)(z)|

≥ (1−|zk|2)|Dϕ(zk)T
ϕ(zk)T | ln 1

1−|ϕ(zk)|2
,

i.e.

lim
k→∞

(1−|zk|2)|Dϕ(zk)T
ϕ(zk)T | ln 1

1−|ϕ(zk)|2
= 0.

The result follows.

Theorem 2.3. Let ϕ = (ϕ1, . . . ,ϕn) be a holomorphic self-map of B. If

lim
|z|→1

(1−|z|2)|Dϕ(z)| ln e
1−|ϕ(z)|2

= 0,(2.17)

then Cϕ : Z →B0 is compact.

Proof. From Lemma 2.3, we know that Cϕ : Z →B0 is compact if and only if

lim
|z|→1

sup
‖ f‖Z ≤1

(1−|z|2)|∇(Cϕ f )(z)|= 0.(2.18)

By (2.7) we have

(1−|z|2)|∇(Cϕ f )(z)| ≤C‖ f‖Z (1−|z|2)|Dϕ(z)| ln e
1−|ϕ(z)|2

.(2.19)

Taking the supremum in (2.19) over the unit ball of the space Z , then letting |z| → 1, we
obtain that (2.18) holds, from which the compactness of Cϕ : Z →B0 follows.
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Theorem 2.4. Let ϕ = (ϕ1, . . . ,ϕn) be a holomorphic self-map of B. If Cϕ : Z →B0 is
bounded, then

lim
|ϕ(z)|→1

(1−|z|2)|Dϕ(z)T
ϕ(z)T | ln 1

1−|ϕ(z)|2
= 0.(2.20)

Proof. Suppose that Cϕ : Z →B0 is bounded. Now assume that the condition (2.20) does
not hold. If it were, then it would exist ε0 > 0 and a sequence (zm)m∈N ∈ B, such that
ϕ(zm)→ ∂B and

(1−|zm|2)|Dϕ(zm)T
ϕ(zm)T | ln 1

1−|ϕ(zm)|2
≥ ε0 > 0

for sufficiently large m.
We may assume that limm→∞ zm = (1,0, . . . ,0), and also

1−|ϕ(zm−1)1|
2

> 1−|ϕ(zm)1|, m ∈ N.

Then, for every non-negative integer s there is at most one ϕ(zm)1 such that

1− 1
2s ≤ |ϕ(zm)1|< 1− 1

2(s+1) .

Hence, there is M ∈ N such that for any Carleson window

Q = {reiθ |0 < 1− r < l(Q), |θ −θ0|< l(Q)}

and s ∈ N, there is at most M elements in

{ϕ(zm)1 ∈ Q | 2−(s+1)l(Q) < 1−|ϕ(zm)1|< 2−sl(Q)}.

Therefore, (ϕ(zm)1) is an interpolating sequence for B(U), the Bloch space of the unit disk,
in sense of [1].

By [1] we have some u(z1) ∈B(U) such that

u(ϕ(zm)1) = ln
1

1−|ϕ(zm)1|2
, m ∈ N.

Now define f (z1,z2, . . . ,zn) = u(z1) ∈ H(B). It is easy to see that f ∈B(B).
Let F be the antiderivative of f , from the relationship between Bloch and Zygmund

functions, we see that F ∈Z such that ∇F = f . We have

(1−|zm|2)|∇(Cϕ F)(zm)≥ (1−|zm|2)|Dϕ(zm)T
ϕ(zm)T ||∇F(ϕ(zn))|

= (1−|zm|2)|Dϕ(zm)T
ϕ(zm)T || f (ϕ(zm))|

= (1−|zm|2)|Dϕ(zm)T
ϕ(zm)T | ln 1

1−|ϕ(zm)1|2

≥ (1−|zm|2)|Dϕ(zm)T
ϕ(zm)T | ln 1

1−|ϕ(zm)|2
≥ ε0 > 0

for sufficiently large m. Since ϕ(zm)→ ∂B implies that zm→ ∂B, from the above inequality
we obtain that Cϕ F /∈B0, which is a contradiction.
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Remark 2.1. We have not been able to obtain the sufficient and necessary conditions for
the boundedness and compactness of composition operators from Zygmund spaces to Bloch
spaces in the unit ball. We hope interested readers can continue this project. The interested
readers can also study the operator norm and essential norm of composition operators from
Zygmund spaces to Bloch spaces and the corresponding problems for weighted composition
operators.

Acknowledgement. The author thanks the referees for their useful comments.
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[3] D. D. Clahane and S. Stević, Norm equivalence and composition operators between Bloch/Lipschitz spaces

of the ball, J. Inequal. Appl. 2006, Art. ID 61018, 11 pp.
[4] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Ad-

vanced Mathematics, CRC, Boca Raton, FL, 1995.
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