On the Ordering of Trees by the Two Indices

${ }^{1}$ Chengfu Ye and ${ }^{2}$ Zhiquan Hu
${ }^{1}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, P. R. China
${ }^{1,2}$ College of Mathematics and Statistics, Huazhong Normal University, Wuhan Hubei, P. R. China
${ }^{1}$ yechf@qhnu.edu.cn, ${ }^{2}$ huzhiq@yahoo.com.cn

Abstract

The Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph and the Hosoya index of a graph is defined as the total number of the matchings of the graph. In this paper, among all the trees with n vertices and k pendent vertices, we determine the trees with the first $[n-k+1 / 2]$ largest Merrifield-Simmons index and the trees with the first $[n-k+1 / 2]$ smallest Hosoya index .

2010 Mathematics Subject Classification: 11B39, 05C05
Keywords and phrases: Tree, pendent vertices, index.

1. Introduction

The Merrifield-Simmons index was introduced in 1982 by Prodinger and Tichy in [3]. The Merrifield-Simmons index is one of the most popular topological indices in chemistry, which was extensively studied in a monograph [12]. Now there have been many papers studying the Merrifield-Simmons index (see [1,8,9,11-16]). The Hosoya index of a graph was introduced by Hosoya in 1971 [4] and was applied to correlations with boiling points, entropies, calculated bond orders, as well as for coding of chemical structures [15]. Since then, many authors have investigated the Hosoya index (e.g., see [3-8,12,11,15]). For trees with n-vertex, it has been shown that the path P_{n} has the minimal Merrifield-Simmons index and maximal Hosoya index, and the star S_{n} has the maximal Merrifield-Simmons index and minimal Hosoya index (see [8,14]).

Let G be a graph. If $u v=e$ is an edge of G, by the definition of $m(G, k)$, then $m(G, k)=$ $m(G-e, k)+m(G-u-v, k-1)$. Let n, k be two integers. Denote $\mathscr{T}_{n, k}$ by trees with n vertices and k pendent vertices. Let $P_{n, k}$ denote the graph obtained by identifying one endvertex of P_{n-k+1} with the center of S_{k}. Let $H_{l}(l \leq n-l-k+1)$ denote the graph obtained by identifying v_{l+1} of $P_{n-k+2}=v_{1} v_{2} \cdots v_{n-k+2}$ with the center of $S_{k-1} . F_{m}$ is obtained by identifying one end-vertex of P_{n-k} with the center of S_{m+1} and the other with the center of S_{k-m+1}.

[^0]\[

k-1\left\{$$
\begin{array}{c}
\frac{v_{n-k+1}}{\vdots} \cdots v_{1} \\
P_{n, k}
\end{array}
$$\right.
\]

Figure 1. Graphs $P_{n, k}, H_{l}$ and F_{l}.

2. Preliminaries

For $3 \leq k \leq n-2$, we define the following families of graphs

$$
\mathscr{H}_{n, k}=\left\{H_{l} \mid 2 \leq l \leq[(n-k+1) / 2]-1\right\}, \quad \mathscr{F}_{n, k}=\left\{F_{l} \mid 2 \leq l \leq[k / 2]\right\}
$$

Yu and $\operatorname{Lv}[5]$ proved that $P_{n, k}$ is the tree in $\mathscr{T}_{n, k}$ with maximum Merrifield-Simmons index and minimum Hosoya index. Lv, Yan, Yu and Zhang [7] ordered two kinds trees in $\mathscr{T}_{n, k}$ by Merrifield-Simmons index and Hosoya index. In this paper, we will characterize trees such that $\sigma\left(H_{2}\right) \leq \sigma(T) \leq \sigma\left(P_{n, k}\right), z\left(P_{n, k}\right) \leq z(T) \leq z\left(H_{2}\right)$ and $E\left(P_{n, k}\right) \leq E(T) \leq E\left(H_{4}\right)$ in $\mathscr{T}_{n, k}$. Thus the results in this paper extend those of [5,7].

In order to state our results, we introduce some notation and terminology. Other undefined notation we refer to [1]. If $W \subseteq V(G)$, we denote by $G-W$ the subgraph of G obtained by deleting the vertices of W and the edges incident with them. Similarly, if $E^{\prime} \subseteq E(G)$, we denote by $G-E^{\prime}$ the subgraph of G obtained by deleting the edges of E^{\prime}. If $W=v$ and $E^{\prime}=x y$, we write $G-v$ and $G-x y$ instead of $G-W$ and $G-E^{\prime}$, respectively. In the paper, we always denote by P_{n} the path on n vertices and by $[x]$ the largest integer no more than x, denote by $N_{G}(v)$ the set of vertices adjacent with v.
Lemma 2.1. $[7,8]$ Let G be a graph, $v \in V(G)$. Then
(1) $\sigma(G)=\sigma(G-v)+\sigma\left(G-N_{G}(v)\right)$.
(2) $z(G)=z(G-v)+\sum_{u} z(G-\{u, v\})$, where Σ goes over adjacency vertex of u.

Lemma 2.2. $[7,8]$ Let G be a graph, $u v=e \in E(G)$. Then
(1) $\sigma(G)=\sigma(G-e)-\sigma\left(G-\left\{N_{G}(u) \cup N_{G}(v)\right\}\right)$.
(2) $z(G)=z(G-e)+z(G-\{u, v\})$.

Especially, if v is a pendent vertex G and u is the unique adjacency vertex of v, then

$$
\sigma(G)=\sigma(G-v)-\sigma(G-\{u, v\}), z(G)=z(G-v)-z(G-\{u, v\}) .
$$

Lemma 2.3. [8] Let $G_{1}, G_{2}, \cdots, G_{k}$ be k components of G. Then
(1) $\sigma(G)=\prod_{i=1}^{k} \sigma\left(G_{i}\right)$,
(2) $z(G)=\prod_{i=1}^{k} z\left(G_{i}\right)$.

Lemma 2.4. $[7,13]$ Let $A_{l}=\sigma\left(P_{1}\right) \sigma\left(P_{n-l}\right), z\left(B_{l}\right)=z\left(P_{l}\right) z\left(P_{n-l}\right)$, where $1 \leq l \leq[n / 2]$. Then
(1) $A_{1}>A_{3}>\cdots>A_{\left[\frac{n}{2}\right]}>\cdots>A_{4}>A_{2}$,
(2) $B_{2}>B_{4}>\cdots>B_{\left[\frac{n}{2}\right]}>\cdots>B_{3}>B_{1}$.

In [5], Yu and Lv defined two kinds of operations to $T \in \mathscr{T}_{n, k}$ and compared their Merrifield-Simmons indices and Hosoya indices .

Let $P=v_{0} v_{1} \cdots v_{k}(k \geq 1)$ be a path in T. Denote $s(T)$ by the number of vertices with $d(v)>2$ of T, by $p(T)$ we denote the number of path with the length greater than 1 of T.
Lemma 2.5. [5] Let $T, T^{\prime} \in \mathscr{T}_{n, k}$. If T^{\prime} is obtained from T by Operation I, then

$$
\sigma\left(T^{\prime}\right)>\sigma(T), z\left(T^{\prime}\right)<z(T)
$$

Figure 2. Operation I.

Figure 3. Operation II.
Lemma 2.6. [5] Let $T, T^{\prime} \in \mathscr{T}_{n, k}$. If $T^{\prime}, T^{\prime \prime}$ are obtained from T by Operation II, then
(1) either $\sigma\left(T^{\prime}\right)>\sigma(T)$ or $\sigma\left(T^{\prime \prime}\right)>\sigma(T)$.
(2) either $z\left(T^{\prime}\right)<z(T)$ or $z\left(T^{\prime \prime}\right)<z(T)$.

Lemma 2.7. [5] Let $G \neq P_{1}$ be a connected graph with $v \in V(G) . P(n, k, G, v)$ means the graph that v_{k} of $P=v_{1} v_{2} \cdots v_{n}$ is identified with v. If $n=4 m+i, i \in\{1,2,3,4\}, m \geq 0$, then
(1) $\sigma(P(n, 2, G, v))>\sigma(P(n, 4, G, v))>\cdots>\sigma(P(n, 2 m+2 l, G, v))>\sigma(P(n, 2 m+$ $1, G, v))>\cdots>\sigma(P(n, 3, G, v))>\sigma(P(n, 1, G, v))$.
(2) $z(P(n, 2, G, v))<z(P(n, 4, G, v))<\cdots<z(P(n, 2 m+2 l, G, v))<z(P(n, 2 m+1, G, v))$ $<\cdots<z(P(n, 3, G, v))<z(P(n, 1, G, v))$, where $l=\lfloor(i-1) / 2\rfloor$.
Lemma 2.8. [7]
(1) If $k \geq 4, n-k \geq 5$, then

$$
\begin{aligned}
& \sigma\left(H_{3}\right)>\sigma\left(H_{5}\right)>\cdots>\sigma\left(H_{\left[\frac{n-k+1}{2}\right]}\right)>\cdots>\sigma\left(H_{6}\right) \\
& >\sigma\left(H_{4}\right)>\sigma\left(H_{2}\right) \geq \sigma\left(F_{2}\right)>\sigma\left(F_{3}\right)>\cdots>\sigma\left(F_{\left[\frac{k}{2}\right]}\right) .
\end{aligned}
$$

(2) If $k \geq 5, n-k \geq 5$, then

$$
\begin{aligned}
& z\left(H_{3}\right)<z\left(H_{5}\right)<\cdots<z\left(H_{\left[\frac{n-k+1}{2}\right]}\right)<\cdots<z\left(H_{6}\right) \\
& <z\left(H_{4}\right)<z\left(H_{2}\right) \leq z\left(F_{2}\right)<z\left(F_{3}\right)<\cdots<z\left(F_{\left[\frac{k}{2}\right]}\right) .
\end{aligned}
$$

(3) If $k=4, n-k \geq 7$, then

$$
z\left(H_{3}\right)<z\left(H_{5}\right)<\cdots<z\left(H_{\left[\frac{n-k+1}{2}\right]}\right)<\cdots<z\left(H_{6}\right)<z\left(H_{4}\right) \leq z\left(F_{2}\right)<z\left(H_{2}\right) .
$$

Lemma 2.9. [5] Let $T \in \mathscr{T}_{n, k}$. Then
(1) $\sigma(T) \leq 2^{k-1} f_{n-k+1}+f_{n-k}$ with equality if and only if $T \cong P_{n, k}$.
(2) $z(T) \geq k f_{n-k}+f_{n-k-1}$ with equality if and only if $T \cong P_{n, k}$.

3. Main results and proofs

Lemma 3.1. (1) If $k \geq 4, n-k \geq 5$, then $\sigma\left(H_{2}\right)=\sigma\left(F_{2}\right)$ if and only if $k=4$ and $n-k=5$.
(2) If $k \geq 5, n-k \geq 5$, then $z\left(H_{2}\right)=z\left(F_{2}\right)$ if and only if $k=5$ and $n-k=5$.

Proof. By calculation, we have

$$
\begin{gathered}
\sigma\left(H_{2}\right)-\sigma\left(F_{2}\right)=\left(2^{k-2}-3\right) \sigma\left(P_{n-k-5}\right)-\sigma\left(P_{n-k-6}\right) \\
\quad z\left(F_{2}\right)-z\left(H_{2}\right)=(k-4) z\left(P_{n-k-4}\right)-z\left(P_{n-k-5}\right)
\end{gathered}
$$

Then, the result follows from Lemma 2.6.
Lemma 3.2. Let $T \in \mathscr{T}_{n, k}$, If $s(T) \geq 2$, then,

$$
\sigma(T) \leq \sigma\left(F_{2}\right), z(T) \geq z\left(F_{2}\right)
$$

Proof. Applying Operation I and $I I$ to T repeatly we get the graph T^{\prime} such that $s\left(T^{\prime}\right)=2$. Then repeatly using Operation I to T^{\prime} we get the graph $T^{\prime \prime}$ such that $T^{\prime \prime} \cong F_{l}$. From lemmas 2.5,2.6,2.8 follows.

The graphs $E_{n, k}$ and $E_{n, k}^{1}$ shown in Figure 4 will be used in the following paper.

Figure 4. Graphs $E_{n, k}$ and $E_{n, k}^{1}$.
Lemma 3.3. Let $T \in \mathscr{T}_{n, k}$, If $s(T)=1, T \notin\left\{P_{n, k}\right\} \cup \mathscr{H}_{n, k} \cup \mathscr{F}_{n, k}$, then
(1) $\sigma(T) \leq \sigma\left(E_{n, k}^{1}\right)$ and $z(T) \geq z\left(E_{n, k}^{1}\right)$ for $n=k+5$.
(2) $\sigma(T) \leq \sigma\left(E_{n, k}\right)$ and $z(T) \geq z\left(E_{n, k}\right)$ for $n>k+5$.

Proof. From the condition of the lemma we have $p(T) \geq 3$. Repeatly applying Operation I to T^{\prime} we get that $s\left(T^{\prime}\right)=1$ and $p\left(T^{\prime}\right)=3$. Thus the lemma follows from Lemmas 2.5, 2.6 and 2.7.

Lemma 3.4. Let $k \geq 4$.
(1) If $n=k+5$, then $\sigma\left(E_{n, k}^{1}\right) \leq \sigma\left(H_{2}\right)$ and $z\left(H_{2}\right) \leq z\left(E_{n, k}^{1}\right)$.
(2) If $n>k+5$, then $\sigma\left(E_{n, k}\right) \leq \sigma\left(H_{2}\right)$ and $z\left(H_{2}\right) \leq z\left(E_{n, k}\right)$.

Proof. Here we only prove (2). By Lemmas 2.1,2.2, we get

$$
\begin{aligned}
\sigma\left(E_{n, k}\right) & =25 \cdot 2^{k-3} \sigma\left(P_{n-k-4}\right)+9 \sigma\left(P_{n-k-5}\right), \\
\sigma\left(H_{2}\right) & =\left(18 \cdot 2^{k-3}+4\right) \sigma\left(P_{n-k-4}\right)+\left(12 \cdot 2^{k-3}+2\right) \sigma\left(P_{n-k-5}\right) . \\
\sigma\left(H_{2}\right)-\sigma\left(E_{n, k}\right) & =\left(5 \cdot 2^{k-3}-3\right) \sigma\left(P_{n-k-5}\right)+\left(-7 \cdot 2^{k-3}+4\right) \sigma\left(P_{n-k-6}\right) .
\end{aligned}
$$

So, when $n>k+5, \sigma\left(H_{2}\right)-\sigma\left(E_{n, k}\right)>0$. Similarly,

$$
\begin{aligned}
z\left(E_{n, k}\right) & =(9 k-6) z\left(P_{n-k-4}\right)+9 z\left(P_{n-k-5}\right), \\
z\left(H_{2}\right) & =(6 k+1) z\left(P_{n-k-4}\right)+4 k z\left(P_{n-k-5}\right), \\
z\left(E_{n, k}\right)-z\left(H_{2}\right) & =(-k+2) z\left(P_{n-k-5}\right)+(3 k-7) z\left(P_{n-k-6}\right) .
\end{aligned}
$$

So, for $n>k+5, z\left(E_{n, k}\right)-z\left(H_{2}\right)>0$.
Theorem 3.1. Let $T \in \mathscr{T}_{n, k}$.
(1) If $k>4, n-k \geq 5$ or $k \geq 4, n-k>5$, then $\sigma\left(H_{2}\right) \leq \sigma(T) \leq \sigma\left(P_{n, k}\right)$ if and only if $T \in T \in\left\{H_{l}\right\} \cup\left\{P_{n, k}\right\}(l \geq 2)$.
(2) If $k \geq 5, n-k>5$ or $k>5, n-k \geq 5$, then $z\left(P_{n, k}\right) \leq z(T) \leq z\left(H_{2}\right)$ if and only if $T \in\left\{H_{l}\right\} \cup\left\{P_{n, k}\right\}(l \geq 2)$.
(3) If $k=4, n-k \geq 7$, then $z\left(P_{n, k}\right) \leq z(T) \leq z\left(F_{2}\right)$ if and only if $T \in\left\{H_{l}\right\} \cup\left\{P_{n, k}\right\} \cup$ $\left\{F_{2}\right\}(l \geq 3)$.

Proof. Here we only prove (1). From Lemma 2.8, it is easy to obtain the sufficiency. Next we show the necessity by contradiction. Let $T \in \mathscr{T}_{n, k}$. For $T \notin\left\{H_{l}\right\} \cup\left\{P_{n, k}\right\}, l \geq 2$, if $s(T) \geq 2$, by Lemmas 2.8,3.1,3.2,3.3 and Corollary 3.1, $\sigma(T) \leq \sigma\left(F_{2}\right)<\sigma\left(H_{2}\right)$. For $s(T)=1$, by Lemmas 3.1,3.3,3.4, $\sigma(T)<\sigma\left(H_{2}\right)$. So, the theorem holds.

Corollary 3.1.

(1) If $k \geq 4, n-k \geq 7$, then the trees in $\mathscr{T}_{n, k}$ with the first $[(n-k+1) / 2]$ largest Merrifield-Simmons index are

$$
P_{n, k}, H_{3}, H_{5}, \cdots, H_{[(n-k+1) / 2]}, \cdots, H_{6}, H_{4}, H_{2} .
$$

If $k=4, n-k=5$, then the trees in $\mathscr{T}_{n, k}$ with the first $[(n-k+1) / 2]$ largest Merrifield-Simmons index are

$$
P_{n, k}, H_{3}, H_{5}, \cdots, H_{[(n-k+1) / 2]}, \cdots, H_{6}, H_{4}, H_{2}=F_{2} .
$$

(2) If $k \geq 5, n-k>5$ or $k>5, n-k \geq 5$, then the trees in $\mathscr{T}_{n, k}$ with the first $[(n-k+$ 1)/2] smallest Hosoya index are

$$
P_{n, k}, H_{3}, H_{5}, \cdots, H_{[(n-k+1) / 2]}, \cdots, H_{6}, H_{4}, H_{2} .
$$

If $k=5, n-k=5$, then the trees in $\mathscr{T}_{n, k}$ with the first $[n-k+1 / 2]$ smallest Hosoya index are

$$
P_{n, k}, H_{3}, H_{5}, \cdots, H_{[(n-k+1) / 2]}, \cdots, H_{6}, H_{4}, H_{2}=F_{2} .
$$

(3) If $k=4, n-k \geq 7$, then the trees in $\mathscr{T}_{n, k}$ with the first $[n-k+1 / 2]$ smallest Hosoya index are

$$
P_{n, k}, H_{3}, H_{5}, \cdots, H_{[(n-k+1) / 2]}, \cdots, H_{6}, H_{4}, F_{2} .
$$

Acknowledgement. The research is supported by the National Science Foundation of China (No. 10761008).

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[2] A. F. Alameddine, Bounds on the Fibonacci number of a maximal outerplanar graph, Fibonacci Quart. 36 (1998), no. 3, 206-210.
[3] H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), no. 1, 16-21.
[4] H. Hosoya, Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Soc. Jpn. 44 (1971), 2332-2339.
[5] A. Yu and X. Lv, The Merrifield-Simmons indices and Hosoya indices of trees with k pendant vertices, J. Math. Chem. 41 (2007), no. 1, 33-43.
[6] O. Chan, I. Guyman, T. K. Lam and R. Merris, Algebraic connections between topological indices, J. Chem. Inform. Comput. Sci. 38 (1998), 62-65.
[7] X. Lv, Y. Yan, A. Yu and J. Zhang, Ordering trees with given pendent vertices with respect to MerrifieldSimmons indices and Hosoya indices, J. Math. Chem. 47 (2010), no. 1, 11-20.
[8] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[9] S. G. Wagner, Extremal trees with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 57 (2007), no. 1, 221-233.
[10] R. E. Merrifield and H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
[11] X. Li, H. Zhao and I. Gutman, On the Merrifield-Simmons index of trees, MATCH Commun. Math. Comput. Chem. 54 (2005), no. 2, 389-402.
[12] H. Zhao and X. Li, On the Fibonacci numbers of trees, Fibonacci Quart. 44 (2006), no. 1, 32-38.
[13] M. Wang, H. Hua and D. Wang, The first and second largest Merrifield-Simmons indices of trees with prescribed pendent vertices, J. Math. Chem. 43 (2008), no. 2, 727-736.
[14] W. Yan and L. Ye, On the maximal energy and the Hosoya index of a type of trees with many pendant vertices, MATCH Commun. Math. Comput. Chem. 53 (2005), no. 2, 449-459.
[15] I. Gutman and F. J. Zhang, On the ordering of graphs with respect to their matching numbers, Discrete Appl. Math. 15 (1986), no. 1, 25-33.

[^0]: Communicated by Xueliang Li.
 Received: November 26, 2010; Revised: February 19, 2011.

