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Abstract. The Merrifield-Simmons index of a graph is defined as the total number of the
independent sets of the graph and the Hosoya index of a graph is defined as the total number
of the matchings of the graph. In this paper, among all the trees with n vertices and k pendent
vertices, we determine the trees with the first [n− k +1/2] largest Merrifield-Simmons index
and the trees with the first [n− k +1/2] smallest Hosoya index .
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1. Introduction

The Merrifield-Simmons index was introduced in 1982 by Prodinger and Tichy in [3]. The
Merrifield-Simmons index is one of the most popular topological indices in chemistry,
which was extensively studied in a monograph [12]. Now there have been many papers
studying the Merrifield-Simmons index (see [1,8,9,11–16]). The Hosoya index of a graph
was introduced by Hosoya in 1971 [4] and was applied to correlations with boiling points,
entropies, calculated bond orders, as well as for coding of chemical structures [15]. Since
then, many authors have investigated the Hosoya index (e.g., see [3–8,12,11,15]). For trees
with n-vertex, it has been shown that the path Pn has the minimal Merrifield-Simmons index
and maximal Hosoya index, and the star Sn has the maximal Merrifield-Simmons index and
minimal Hosoya index (see [8,14]).

Let G be a graph. If uv = e is an edge of G, by the definition of m(G,k), then m(G,k) =
m(G− e,k) + m(G− u− v,k− 1). Let n,k be two integers. Denote Tn,k by trees with n
vertices and k pendent vertices. Let Pn,k denote the graph obtained by identifying one end-
vertex of Pn−k+1 with the center of Sk. Let Hl (l ≤ n− l− k +1) denote the graph obtained
by identifying vl+1 of Pn−k+2 = v1v2 · · ·vn−k+2 with the center of Sk−1. Fm is obtained by
identifying one end-vertex of Pn−k with the center of Sm+1 and the other with the center of
Sk−m+1.
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Figure 1. Graphs Pn,k , Hl and Fl .

2. Preliminaries

For 3≤ k ≤ n−2, we define the following families of graphs

Hn,k = {Hl |2≤ l ≤ [(n− k +1)/2]−1}, Fn,k = {Fl |2≤ l ≤ [k/2]}
Yu and Lv [5] proved that Pn,k is the tree in Tn,k with maximum Merrifield-Simmons index
and minimum Hosoya index. Lv,Yan,Yu and Zhang [7] ordered two kinds trees in Tn,k by
Merrifield-Simmons index and Hosoya index. In this paper, we will characterize trees such
that σ(H2)≤ σ(T )≤ σ(Pn,k),z(Pn,k)≤ z(T )≤ z(H2) and E(Pn,k)≤ E(T )≤ E(H4) in Tn,k.
Thus the results in this paper extend those of [5,7].

In order to state our results, we introduce some notation and terminology. Other unde-
fined notation we refer to [1]. If W ⊆V (G), we denote by G−W the subgraph of G obtained
by deleting the vertices of W and the edges incident with them. Similarly, if E

′ ⊆ E(G),
we denote by G−E

′
the subgraph of G obtained by deleting the edges of E

′
. If W = v and

E
′
= xy, we write G−v and G−xy instead of G−W and G−E

′
, respectively. In the paper,

we always denote by Pn the path on n vertices and by [x] the largest integer no more than x,
denote by NG(v) the set of vertices adjacent with v.

Lemma 2.1. [7,8] Let G be a graph, v ∈V (G). Then
(1) σ(G) = σ(G− v)+σ(G−NG(v)).
(2) z(G) = z(G− v)+∑u z(G−{u,v}), where Σ goes over adjacency vertex of u.

Lemma 2.2. [7,8] Let G be a graph, uv = e ∈ E(G). Then
(1) σ(G) = σ(G− e)−σ(G−{NG(u)∪NG(v)}).
(2) z(G) = z(G− e)+ z(G−{u,v}).

Especially, if v is a pendent vertex G and u is the unique adjacency vertex of v, then

σ(G) = σ(G− v)−σ(G−{u,v}),z(G) = z(G− v)− z(G−{u,v}).
Lemma 2.3. [8] Let G1,G2, · · · ,Gk be k components of G. Then

(1) σ(G) = ∏
k
i=1 σ(Gi),

(2) z(G) = ∏
k
i=1 z(Gi).

Lemma 2.4. [7,13] Let Al = σ(P1)σ(Pn−l),z(Bl) = z(Pl)z(Pn−l), where 1≤ l ≤ [n/2]. Then
(1) A1 > A3 > · · ·> A[ n

2 ] > · · ·> A4 > A2,
(2) B2 > B4 > · · ·> B[ n

2 ] > · · ·> B3 > B1.

In [5], Yu and Lv defined two kinds of operations to T ∈ Tn,k and compared their
Merrifield-Simmons indices and Hosoya indices .

Let P = v0v1 · · ·vk(k ≥ 1) be a path in T . Denote s(T ) by the number of vertices with
d(v) > 2 of T , by p(T ) we denote the number of path with the length greater than 1 of T .

Lemma 2.5. [5] Let T,T
′ ∈Tn,k. If T

′
is obtained from T by Operation I, then

σ(T
′
) > σ(T ),z(T

′
) < z(T ).
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Figure 3. Operation II.

Lemma 2.6. [5] Let T,T
′ ∈Tn,k. If T

′
, T
′′

are obtained from T by Operation II, then

(1) either σ(T
′
) > σ(T ) or σ(T

′′
) > σ(T ).

(2) either z(T
′
) < z(T ) or z(T

′′
) < z(T ).

Lemma 2.7. [5] Let G 6= P1 be a connected graph with v ∈ V (G). P(n,k,G,v) means the
graph that vk of P = v1v2 · · ·vn is identified with v. If n = 4m+ i, i ∈ {1,2,3,4}, m≥ 0, then

(1) σ(P(n,2,G,v)) > σ(P(n,4,G,v)) > · · · > σ(P(n,2m + 2l,G,v)) > σ(P(n,2m +
1,G,v)) > · · ·> σ(P(n,3,G,v)) > σ(P(n,1,G,v)).

(2) z(P(n,2,G,v))< z(P(n,4,G,v))< · · ·< z(P(n,2m+2l,G,v))< z(P(n,2m+1,G,v))
< · · ·< z(P(n,3,G,v)) < z(P(n,1,G,v)), where l = b(i−1)/2c.

Lemma 2.8. [7]
(1) If k ≥ 4, n− k ≥ 5, then

σ(H3) > σ(H5) > · · ·> σ(H[ n−k+1
2 ]) > · · ·> σ(H6)

> σ(H4) > σ(H2)≥ σ(F2) > σ(F3) > · · ·> σ(F[ k
2 ]).

(2) If k ≥ 5, n− k ≥ 5, then

z(H3) < z(H5) < · · ·< z(H[ n−k+1
2 ]) < · · ·< z(H6)

< z(H4) < z(H2)≤ z(F2) < z(F3) < · · ·< z(F[ k
2 ]).

(3) If k = 4, n− k ≥ 7, then

z(H3) < z(H5) < · · ·< z(H[ n−k+1
2 ]) < · · ·< z(H6) < z(H4)≤ z(F2) < z(H2).

Lemma 2.9. [5] Let T ∈Tn,k. Then
(1) σ(T )≤ 2k−1 fn−k+1 + fn−k with equality if and only if T ∼= Pn,k.
(2) z(T )≥ k fn−k + fn−k−1 with equality if and only if T ∼= Pn,k.
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3. Main results and proofs

Lemma 3.1. (1) If k ≥ 4, n− k ≥ 5, then σ(H2) = σ(F2) if and only if k = 4 and
n− k = 5.

(2) If k ≥ 5, n− k ≥ 5, then z(H2) = z(F2) if and only if k = 5 and n− k = 5.

Proof. By calculation, we have

σ(H2)−σ(F2) = (2k−2−3)σ(Pn−k−5)−σ(Pn−k−6)

z(F2)− z(H2) = (k−4)z(Pn−k−4)− z(Pn−k−5)
Then, the result follows from Lemma 2.6.

Lemma 3.2. Let T ∈Tn,k, If s(T )≥ 2, then ,

σ(T )≤ σ(F2),z(T )≥ z(F2).

Proof. Applying Operation I and II to T repeatly we get the graph T
′

such that s(T
′
) = 2.

Then repeatly using Operation I to T
′

we get the graph T
′′

such that T
′′ ∼= Fl . From lemmas

2.5,2.6,2.8 follows.
The graphs En,k and E1

n,k shown in Figure 4 will be used in the following paper.

q q qq q q q
qq
qq...
q
q

@@
��@@

��

... k−3v1

vn−k−3

En,k

q qq q q
qq
q
q
q

@@
��@@

��

... k−3

E1
n,k

Figure 4. Graphs En,k and E1
n,k .

Lemma 3.3. Let T ∈Tn,k, If s(T ) = 1, T /∈ {Pn,k}∪Hn,k ∪Fn,k, then
(1) σ(T )≤ σ(E1

n,k) and z(T )≥ z(E1
n,k) for n = k +5.

(2) σ(T )≤ σ(En,k) and z(T )≥ z(En,k) for n > k +5.

Proof. From the condition of the lemma we have p(T )≥ 3. Repeatly applying Operation I
to T

′
we get that s(T

′
) = 1 and p(T

′
) = 3. Thus the lemma follows from Lemmas 2.5, 2.6

and 2.7.

Lemma 3.4. Let k ≥ 4.
(1) If n = k +5, then σ(E1

n,k)≤ σ(H2) and z(H2)≤ z(E1
n,k).

(2) If n > k +5, then σ(En,k)≤ σ(H2) and z(H2)≤ z(En,k).

Proof. Here we only prove (2). By Lemmas 2.1,2.2, we get

σ(En,k) = 25 ·2k−3
σ(Pn−k−4)+9σ(Pn−k−5),

σ(H2) = (18 ·2k−3 +4)σ(Pn−k−4)+(12 ·2k−3 +2)σ(Pn−k−5).

σ(H2)−σ(En,k) = (5 ·2k−3−3)σ(Pn−k−5)+(−7 ·2k−3 +4)σ(Pn−k−6).
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So, when n > k +5, σ(H2)−σ(En,k) > 0. Similarly,

z(En,k) = (9k−6)z(Pn−k−4)+9z(Pn−k−5),

z(H2) = (6k +1)z(Pn−k−4)+4kz(Pn−k−5),

z(En,k)− z(H2) = (−k +2)z(Pn−k−5)+(3k−7)z(Pn−k−6).

So, for n > k +5, z(En,k)− z(H2) > 0.

Theorem 3.1. Let T ∈Tn,k.

(1) If k > 4, n− k ≥ 5 or k ≥ 4, n− k > 5, then σ(H2)≤ σ(T )≤ σ(Pn,k) if and only if
T ∈ T ∈ {Hl}∪{Pn,k}(l ≥ 2).

(2) If k ≥ 5, n− k > 5 or k > 5, n− k ≥ 5, then z(Pn,k) ≤ z(T ) ≤ z(H2) if and only if
T ∈ {Hl}∪{Pn,k}(l ≥ 2).

(3) If k = 4,n− k ≥ 7, then z(Pn,k) ≤ z(T ) ≤ z(F2) if and only if T ∈ {Hl}∪{Pn,k}∪
{F2}(l ≥ 3).

Proof. Here we only prove (1). From Lemma 2.8, it is easy to obtain the sufficiency. Next
we show the necessity by contradiction. Let T ∈ T n,k. For T 6∈ {Hl} ∪ {Pn,k}, l ≥ 2, if
s(T ) ≥ 2, by Lemmas 2.8,3.1,3.2,3.3 and Corollary 3.1, σ(T ) ≤ σ(F2) < σ(H2). For
s(T ) = 1, by Lemmas 3.1,3.3,3.4, σ(T ) < σ(H2). So, the theorem holds.

Corollary 3.1.
(1) If k ≥ 4,n− k ≥ 7, then the trees in T n,k with the first [(n− k + 1)/2] largest

Merrifield-Simmons index are

Pn,k,H3,H5, · · · ,H[(n−k+1)/2], · · · ,H6,H4,H2.

If k = 4,n− k = 5, then the trees in T n,k with the first [(n− k + 1)/2] largest
Merrifield-Simmons index are

Pn,k,H3,H5, · · · ,H[(n−k+1)/2], · · · ,H6,H4,H2 = F2.

(2) If k ≥ 5,n− k > 5 or k > 5,n− k ≥ 5, then the trees in T n,k with the first [(n− k +
1)/2] smallest Hosoya index are

Pn,k,H3,H5, · · · ,H[(n−k+1)/2], · · · ,H6,H4,H2.

If k = 5,n−k = 5, then the trees in Tn,k with the first [n−k+1/2] smallest Hosoya
index are

Pn,k,H3,H5, · · · ,H[(n−k+1)/2], · · · ,H6,H4,H2 = F2.

(3) If k = 4,n−k≥ 7, then the trees in T n,k with the first [n−k+1/2] smallest Hosoya
index are

Pn,k,H3,H5, · · · ,H[(n−k+1)/2], · · · ,H6,H4,F2.
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