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Abstract. In this paper, we mainly concentrate on the criteria for minimal Horseshoe Lemma
to be true in the category of quasi-δ -Koszul modules, denoted by Qδ (R). More precisely, for
a given short exact sequence ξ : 0 // K // M // N // 0 in Qδ (R),
we show that JK = K∩ JM if and only if minimal Horseshoe Lemma holds with respect to
ξ . Moreover, some applications of minimal Horseshoe Lemma are also given.
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1. Introduction

It is well-known that Horseshoe Lemma is a basic tool in the theory of homological algebra,
which provides a method to construct a projective resolution for the middle term via the
ones of the first and the third terms of a given short exact sequence. But what happens if
we replace the projective resolutions by the minimal projective resolutions? See some easy
examples first:

(1) Let A = k[x], a graded polynomial algebra, M = A/(x2), K = A/(x)[−1] and N = k,
a fixed field. Now under a routine computation, we can get the following corre-
sponding minimal projective resolutions:

0 // A[−2] // A[−1] // K // 0,

0 // A[−2] // A // M // 0

and
0 // A[−1] // A // N // 0.

Now it is clear that we have A[−2]� A[−2]⊕A[−1] and A� A⊕A[−1] as graded
A-modules, and the exact sequence

0 // K // M // N // 0,
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where [ ] denotes the shift functor given by (M[n])t = Mn+t for anyZ-graded module
M and n, t ∈ Z.

(2) Let R be a semiperfect Noetherian ring with identity (over which every finitely gen-
erated left module has a finitely generated projective cover), M a finitely generated
R-module and Rad(M) the radical of M. Set K = Rad(M) and N = M/Rad(M).
Obviously, we have the following short exact sequence

0 // K // M // N // 0.

Note that R is semiperfect, thus all the finitely generated R-modules possess pro-
jective covers.

Let P0 // K // 0, L0 // M // 0 and Q0 // N // 0
be the corresponding projective covers. Then L0 ∼= Q0 as R-modules since N =
M/Rad(M). Therefore, we have L0 � P0⊕Q0 as R-modules since P0 6= 0.

(3) Let A be a δ -Koszul algebra [6] and K δ (A) be the category of δ -Koszul modules.
Let

0 // K // M // N // 0

be an exact sequence in K δ (A), and P∗ // K // 0, L∗ // M // 0
and Q∗ // N // 0 be the corresponding minimal graded projective resolu-
tions. Then by [11, Theorem 2.6] (also see the figure below), we have the following
commutative diagram with exact rows and columns and Ln ∼= Pn⊕Qn as graded A-
modules for all n≥ 0.

0 // P∗

��

// L∗

��

// Q∗

��

// 0

0 // K

��

// M

��

// N

��

// 0

0 0 0

Figure 1. Minimal Horseshoe Lemma diagram.

From the above examples, we can see clearly that if we replace projective resolutions
by minimal projective resolutions in the Horseshoe Lemma, the conclusion is inconclusive.
For the convenience of narrating, we state the so-called “minimal Horseshoe Lemma” now.
Roughly speaking, minimal Horseshoe Lemma is the “minimal” version and a special case
of the classic Horseshoe Lemma, which can be stated as follows:

• Let R be any ring with identity and 0 // K // M // N // 0 be an
exact sequence of R-modules. Then for any given diagram with P∗ and Q∗ being
minimal projective resolutions of K and N, respectively. Then we can complete
Figure 2 into Figure 1 such that the rows and columns in Figure 1 are all exact and
L∗ // M // 0 is also a minimal projective resolution.

Therefore, it is interesting and meaningful to find conditions for the minimal Horseshoe
Lemma to be true. In 2008, Wang and Li studied the conditions for the minimal Horseshoe
Lemma to be true in the graded case and gave some sufficient conditions. Moreover, they
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P∗

��

Q∗

��
0 // K

��

// M // N

��

// 0

0 0

Figure 2. Pre-Minimal Horseshoe Lemma diagram.

said “Though we have found some sufficient conditions for the minimal Horseshoe Lemma
to be held, an interesting but difficult question is how to find some necessary conditions”.
In fact, [11, Theorem 2.6] has provided a necessary and sufficient condition for the minimal
Horseshoe Lemma to be true via δ -Koszul modules in the graded case:

(1) [11, Theorem 2.6, ] Let A be a standard graded algebra and

0 // K // M // N // 0

be an exact sequence with M, N being δ -Koszul modules. Then K is a δ -Koszul
module if and only if the minimal Horseshoe Lemma holds, here we refer to Section
2 (or [11] and [6]) for the notions of standard graded algebra and δ -Koszul module.

As direct corollaries, we can obtain necessary and sufficient conditions for the minimal
Horseshoe Lemma to be true via Koszul (see [16]), d-Koszul (see [3], [7] and [20]) and
piecewise-Koszul (see [12]) objects and so on since all of them are special δ -Koszul ob-
jects. Recently, Green and Martı́nez-Villa generalized Koszul objects to the nongraded case
and introduced quasi-Koszul objects (see [1]); He, Ye and Si generalized d-Koszul objects
to the nongraded case and introduced quasi-d-Koszul objects (see [8] and [17]) and the au-
thor of the present paper generalized piecewise-Koszul objects to the nongraded case and
introduced quasi-piecewise-Koszul objects (see [10] and [13]). Motivated by the above, now
one can ask a natural question: Can we give some conditions for the minimal Horseshoe
Lemma to be true via these “quasi-Koszul-type” objects?

The main purpose of this paper is to give an answer to the above question and we prove
the following result:

Theorem 1.1. Let R be an augmented Noetherian semiperfect algebra with Jacobson radi-
cal J and

ξ : 0 // K // M // N // 0

be a short exact sequence in the category of quasi-δ -Koszul modules. Then JK = K∩JM if
and only if the minimal Horseshoe Lemma holds with respect to ξ .

As an immediate corollary of Theorem 1.1, we obtain the following results:

Corollary 1.1. Let R be an augmented Noetherian semiperfect algebra with Jacobson rad-
ical J and

ξ : 0 // K // M // N // 0

be a short exact sequence in the category C . Then the following statements are true:
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(1) If C denotes the category of quasi-Koszul modules, then JK = K ∩ JM if and only
if the minimal Horseshoe Lemma holds with respect to ξ .

(2) If C denotes the category of quasi-d-Koszul modules, then JK = K∩JM if and only
if the minimal Horseshoe Lemma holds with respect to ξ .

(3) If C denotes the category of quasi-piecewise-Koszul modules, then JK = K∩JM if
and only if the minimal Horseshoe Lemma holds with respect to ξ .

Remark 1.1. In Corollary 1.1, (1) and (2) show that [18, Theorem 2.8] and [14, Theorem
3.1] are in fact necessary and sufficient conditions; and (3) has been appeared and proved
directly in [13].

With the help of minimal Horseshoe Lemma, one can obtain some surprising results
which may be wrong in general:

Theorem 1.2. Let R be an augmented Noetherian semiperfect algebra with Jacobson radi-
cal J and

ξ : 0 // K // M // N // 0
be a short exact sequence in the category of finitely generated R-modules. If the minimal
Horseshoe Lemma holds for ξ , then we have the following statements:

(1) M is projective if and only if K and N are both projective;
(2) pd(M) = max{pd(K),pd(N)}.

As mentioned above, the notion of quasi-Koszul module was introduced by Green and
Martı́nez-Villa in 1996 (see [1]). Moreover, they studied the extension closure of the cate-
gory of quasi-Koszul modules and got the following result:

• Let R be a Noetherian semiperfect algebra with Jacobson radical J and

0 // K // M // N // 0

be an exact sequence of finitely generated R-modules with JK = K∩ JM. If K and
N are quasi-Koszul modules, then so is M.

Motivated by the above, a naive but interesting question is: If M and N are quasi-Koszul,
then is K quasi-Koszul or if K and M are quasi-Koszul, then is N quasi-Koszul? Green and
Martı́nez-Villa did not discuss these in [1]. With the help of minimal Horseshoe Lemma,
we get the following assertions:

Theorem 1.3. Let R be an augmented Noetherian semiperfect algebra with Jacobson radi-
cal J and

ξ : 0 // K // M // N // 0
be a short exact sequence in the category of finitely generated R-modules with the minimal
Horseshoe Lemma holding for ξ . Then we have the following statements:

(1) If M is a quasi-Koszul module, then so is K;
(2) If we have J2Ωi(K) = Ωi(K)∩ J2Ωi(M) for all i ≥ 0, then N is a quasi-Koszul

module provided that K and M are quasi-Koszul modules.

In a word, the main purposes of this paper are to find some equivalent conditions and
applications for minimal Horseshoe Lemma. More precisely, in Section 2, as preknowledge,
we will give the definition of quasi-δ -Koszul modules. In Section 3, we will prove Theorem
1.1. Section 4 mainly focus on the applications of minimal Horseshoe Lemma and we will
prove Theorems 1.2 and 1.3.
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2. Quasi-δ -Koszul modules

In this section, A =
⊕

i≥0 Ai denotes a standard graded algebra, i.e., A satisfies (a) A0 =
k× ·· · × k, a finite product of the ground field k; (b) Ai ·A j = Ai+ j for all 0 ≤ i, j < ∞;
and (c) dimkAi < ∞ for all i≥ 0. Clearly, the graded Jacobson radical of a standard graded
algebra A is obvious

⊕
i≥1 Ai, which is usually denoted by J.

From [1], we know that standard graded algebras can be realized by finite quivers:

Proposition 2.1. Let A be a standard graded algebra. Then there exists a finite quiver Γ

and a graded ideal I in kΓ with I ⊂ ∑n≥2(kΓ)n such that A∼= kΓ/I as graded algebras.

Definition 2.1. Let A be a standard graded k-algebra and M =
⊕

i≥0 Mi a finitely generated
graded A-module. We call M a δ -Koszul module provided that M admits a minimal graded
projective resolution

· · · // Pn // Pn−1 // · · · // P1 // P0 // M // 0,

such that each Pn is generated in degree δ (n) for all n≥ 0, where δ :N→N is a set function
and N denotes the set of natural numbers.

In particular, the standard graded algebra A will be called a δ -Koszul algebra if the
trivial A-module A0 is a δ -Koszul module.

Remark 2.1.
(1) The set function δ is in fact strictly increasing.
(2) The notion of δ -Koszul algebra in this paper is different from its original definition

[6] and we don’t request its Yoneda algebra to be finitely generated.

Example 2.1.
(1) Koszul algebras/modules (see [16]) are δ -Koszul algebras/modules, where the set

function δ (i) = i for all i≥ 0;
(2) d-Koszul algebras/modules (see [3] and [7]) are δ -Koszul algebras/modules, where

the set function

δ (n) =
(n− r)d

2
+ r if n≡ r (mod2).

(3) Piecewise-Koszul algebras/modules (see [12]) are δ -Koszul algebras/modules, where
the set function

δ (n) =
(n− r)d

p
+ r if n≡ r (modp).

and d ≥ p≥ 2 are given integers.

The following theorem generalizes [7, Proposition 3.1].

Theorem 2.1. Let A = kΓ/I be a standard graded algebra and

· · · // Pn
dn // · · · // P1

d1 // P0
d0 // A0 // 0

a minimal graded projective resolution of the trivial A-module A0. Then the following state-
ments are equivalent:

(1) A is a δ -Koszul algebra;
(2) for all n≥ 0, kerdn ⊆ Jδ (n+1)−δ (n)Pn and J kerdn = kerdn∩ Jδ (n+1)−δ (n)+1Pn;
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(3) for any fixed n ≥ 1 and 1 ≤ i ≤ n, Pi =
⊕

l≥1 Aeil [−δ (i)], the component of di(eil )
in some Aei−1m is in Aδ (i)−δ (i−1), kerdn ⊆ Jδ (n+1)−δ (n)Pn and J kerdn = kerdn ∩
Jδ (n+1)−δ (n)+1Pn.

Proof. (1)⇒(2) Suppose that A is a δ -Koszul algebra. Then for all n≥ 0, Pn is generated in
degree δ (n). Note that dn+1(Pn+1) = kerdn, which implies that kerdn is generated in degree
δ (n + 1). But recall that Pn is generated in degree δ (n), hence the elements of degree
δ (n + 1) of Pn are in Jδ (n+1)−δ (n)Pn. Thus for all n ≥ 0, kerdn ⊆ Jδ (n+1)−δ (n)Pn. Now it
is clear that J kerdn ⊆ kerdn ∩ Jδ (n+1)−δ (n)+1Pn. Now let x ∈ kerdn ∩ Jδ (n+1)−δ (n)+1Pn be
a homogeneous element of degree i. It is easy to see that i ≥ δ (n + 1) + 1. If x is not
in J kerdn, then x is a generator of kerdn, which implies that kerdn is generated in degree
larger than δ (n+1)+1 since the degree of x is larger than δ (n+1)+1, which contradicts
to that kerdn is generated in degree δ (n+1). Therefore, x ∈ J kerdn and J kerdn ⊇ kerdn∩
Jδ (n+1)−δ (n)+1Pn. Thus we are done.

(2)⇒(1) First we claim that for all n≥ 0, (Pn) j = 0 for all j < δ (n). Do it by induction
on n. First we prove that (P0) j = 0 for j < δ (0) = 0. If not, since P0 is a finitely generated
graded module, there exists a smallest j0 < δ (0) such that (P0) j0 6= 0. Let x 6= 0 be a
homogeneous element of P0 of degree j0. Then d0(x) = 0 since d0(x) ∈ (A0) j0 and A0 =
(A0)0, which implies that x∈ kerd0 ⊂ JP0, which contradicts the choice of j0. Now suppose
that (Pn−1) j = 0 for all j < δ (n−1). Similarly, assume that there exists a smallest j′0 < δ (n)
such that (Pn) j′0

6= 0. Let x 6= 0 be a homogeneous element of Pn of degree j′0. Note that

dn(x) ∈ Imdn = kerdn−1 ⊆ Jδ (n)−δ (n−1)Pn−1, we have dn(x) = 0 since Jδ (n)−δ (n−1)Pn−1 is
supported in {i|i ≥ δ (n)}. Therefore, x ∈ kerdn ⊆ Jδ (n+1)−δ (n)Pn, which contradicts the
choice of j′0.

Now we claim that for any x ∈ (Pn)i with i > δ (n), then x ∈ JsPn for some s > 0. If
we prove this claim, then it is clear that for all n ≥ 0, Pn is generated in degree δ (n). In
fact, we also prove this by induction on n. Note that A0 is generated in degree 0, thus
d0(x) ∈ JA0 = J, which implies that x ∈ d−1

0 (J) = JP0 + kerd0 ⊆ JP0. Therefore, P0 is
generated in degree 0. Suppose that for any x ∈ (Pn−1)i with i > δ (n− 1), then we have
x ∈ JsPn−1 for some s > 0 and Pn−1 is generated in degree δ (n− 1). By the condition
J kerdn−1 = kerdn−1 ∩ Jδ (n)−δ (n−1)+1Pn−1, we have kerdn−1 is generated in degree δ (n),
which implies that Pn is generated in degree δ (n) for all n≥ 0. Of course, for any x ∈ (Pn)i
with i > δ (n), we have x ∈ JsPn for some s > 0.

(1), (2)⇒(3) Suppose that A is a δ -Koszul algebra. Then for all i≥ 0, Pi is generated in
degree δ (i). Thus all eil are of degree δ (i), which implies that di(eil ) ∈ (Pi−1)δ (i). But Pi−1
is generated in degree δ (i−1), hence (Pi−1)δ (i) ⊆ Aδ (i)−δ (i−1)(Pi−1)δ (i−1). Now (3) is clear
by (2).

(3)⇒(1) By an induction on n, it suffices to prove that P0 is generated in degree δ (0) and
kerd0 is generated in degree δ (1), which is similar to the proof of (2)⇒ (1) and we omit
the details.

Corollary 2.1. Let A be a standard graded algebra, M a finitely 0-generated graded A-
module and

· · · // Pn
dn // · · · // P1

d1 // P0
d0 // M // 0
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a minimal graded projective resolution of M. Then M is a δ -Koszul module if and only if
for all n≥ 0, kerdn ⊆ Jδ (n+1)−δ (n)Pn and J kerdn = kerdn∩ Jδ (n+1)−δ (n)+1Pn.

Motivated by Corollary 2.1, we get the following definition:

Definition 2.2. Let R be a Noetherian semiperfect algebra with Jacobson radical J and M
a finitely generated R-module. Let

· · · // Pn
dn // · · · // P1

d1 // P0
d0 // M // 0

be a minimal projective resolution of M. Then we call M a quasi-δ -Koszul module if for
all n ≥ 0, we have kerdn ⊆ Jδ (n+1)−δ (n)Pn and J kerdn = kerdn ∩ Jδ (n+1)−δ (n)+1Pn, where
δ : N→ N is a strictly increasing set function.

In particular, R is called a quasi-δ -Koszul algebra if R/J is a quasi-δ -Koszul module.
Let Qδ (R) denote the category of quasi-δ -Koszul modules.

Example 2.2. Quasi-Koszul algebras/modules (see [1]), quasi-d-Koszul algebras/modules
(see [8]) and quasi-piecewise-Koszul algebras/modules (see [11]) are all special quasi-δ -
Koszul algebras/modules.

3. Criteria for minimal Horseshoe Lemma

Throughout this section, R denotes an augmented Noetherian semiperfect algebra with Ja-
cobson radical J and we will mainly concentrate on the proof of Theorem 1.1.

Lemma 3.1. Let 0 // K // M // N // 0 be an exact sequence of finitely
generated R-modules. Then JK = K∩ JM if and only if we have the following commutative
diagram with exact rows and columns such that P0→K→ 0, L0→M→ 0 and Q0→N→ 0

0

��

0

��

0

��
0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // P0

��

// L0

��

// Q0

��

// 0

0 // K

��

// M

��

// N

��

// 0,

0 0 0

Figure 3. Commutative diagram with exact rows and columns.

are projective covers.
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Proof. (⇒) By hypothesis, JK = K∩ JM, which implies the exact sequence

0 // JK // JM // JN // 0.

Now consider the following diagram with exact rows and columns by the “Snake-Lemma”,

0

��

0

��

0

��
0 // JK

��

// JM

��

// JN

��

// 0

0 // K // M // N // 0,

Figure 4. Commutative diagram with exact rows and columns.

we obtain the following exact sequence

0 // K/JK // M/JM // N/JN // 0.

Note that for any finitely generated R-module X , R⊗R/J X/JX −→ X −→ 0 is a projective
cover and if a module has projective covers then all projective covers are unique up to
isomorphisms. Now set

P0 := R⊗R/J K/JK, L0 := R⊗R/J M/JM and Q0 := R⊗R/J N/JN,

we have the following exact sequence

0 // P0 // L0 // Q0 // 0

since R/J is a semisimple algebra. Therefore, we have the following commutative diagram
which implies the desired diagram (Figure 3) since the “3×3-Lemma”.

0

��

0

��

0

��
Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��
0 // P0

��

// L0

��

// Q0

��

// 0

0 // K

��

// M

��

// N

��

// 0,

0 0 0

Figure 5. Commutative diagram with exact rows and columns.
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(⇐) Suppose that we have Figure 3. We may assume that

P0 := R⊗R/J K/JK, L0 := R⊗R/J M/JM and Q0 := R⊗R/J N/JN

since the projective cover of a module is unique up to isomorphisms. From the middle row
of Figure 3, we have the following exact sequence

0 // R⊗R/J K/JK // R⊗R/J M/JM // R⊗R/J N/JN // 0.

Thus, we have the following short exact sequence as R/J-modules

0 // K/JK // M/JM // N/JN // 0

since R/J is semisimple. Now consider the following commutative diagram with exact rows
and columns

0 // K

��

// M

��

// N

��

// 0

0 // K/JK

��

// M/JM

��

// N/JN

��

// 0.

0 0 0

Figure 6. Commutative diagram with exact rows and columns.

By the “Snake-Lemma” again, we have the exact sequence

0 // JK // JM // JN // 0,

which is equivalent to JK = K∩ JM.

Lemma 3.2. Let 0 // K // M // N // 0 be a short exact sequence of finitely
generated R-modules. Then JΩi(K) = Ωi(K)∩ JΩi(M) for all i≥ 0 if and only if the mini-
mal Horseshoe Lemma holds.

Proof. (⇒) By Lemma 3.1, JΩi(K) = Ωi(K)∩ JΩi(M) for all i ≥ 0 if and only if for all
i ≥ 0, we have the following commutative diagram with exact rows and columns such that
Pi, Li and Qi are projective covers of Ωi(K), Ωi(M) and Ωi(N), respectively. Now putting
these commutative diagrams together, we obtain the commutative diagram (Figure 2), i.e.,
the minimal Horseshoe Lemma holds.

(⇐) Suppose that the minimal Horseshoe Lemma is true for the exact sequence

0 // K // M // N // 0,

i.e., we have the commutative diagram (Figure 2). Then Figure 2 can be divided into a
lot of commutative diagrams similar to Figure 7. Now by Lemma 3.1, we get the desired
equations.

Lemma 3.3. Let ξ : 0 // K // M // N // 0 be an exact sequence in Qδ (R).
Then the following statements are equivalent:
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0

��

0

��

0

��
0 // Ωi+1(K)

��

// Ωi+1(M)

��

// Ωi+1(N)

��

// 0

0 // Pi

��

// Li

��

// Qi

��

// 0

0 // Ωi(K)

��

// Ωi(M)

��

// Ωi(N)

��

// 0,

0 0 0

Figure 7. Commutative diagram with exact rows and columns.

(1) JK = K∩ JM;
(2) 0 // JK // JM // JN // 0 is exact;

(3) 0 // K/JK // M/JM // N/JN // 0 is exact;
(4) R/J⊗R K→ R/J⊗R M is a monomorphism;
(5) the minimal Horseshoe Lemma holds with respect to ξ .

Proof. (1)⇒(2) and (2)⇒(3) have been proved in the proof of Lemma 3.2.
(3)⇒(4) Consider the following commutative diagram: which implies that R/J⊗R K→

0 // K/JK

∼=
��

// M/JM

∼=
��

R/J⊗R K // R/J⊗R M,

Figure 8. Commutative diagram with exact rows and columns.

R/J⊗R M is a monomorphism.
(4)⇒(1) Consider the following commutative diagram with exact rows and columns:

which implies that JK = K ∩ JM since the “Five-Lemma” and the the following commuta-
tive diagram (1)⇒(5) By Lemma 3.1, we have Figure 3 since JK = K ∩ JM, thus we have
the following commutative diagram with exact rows since K, M and N are quasi-δ -Koszul
modules. Now applying the functor R/J⊗R− to Figure 11, we have the following com-
mutative diagram with exact rows where α1 and γ1 are monomorphisms since K, M are in
Qδ (R) and (1)⇔(4), which implies that β1 is also a monomorphism induced by the com-
mutativity of the left square. By (1)⇔(4), we have JΩ1(K) = Ω1(K)∩JΩ1(M). By Lemma
3.1 again, we have Figure 7 in the case of i = 1, which implies the following commuta-
tive diagram with exact rows and columns since K, M and N are quasi-δ -Koszul modules.
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0

��

0

��

0

��
0 // K

��

// M

��

// N

��

// 0

0 // K/JK

∼=
��

// M/JM

∼=
��

// N/JN

∼=
��

// 0

0 // R/J⊗R K

��

// R/J⊗R M

��

// R/J⊗R N

��

// 0,

0 0 0

Figure 9. Commutative diagram with exact rows and columns.

0 // JK

��

// JM

=
��

// JN

=
��

// 0

0 // K∩ JM // JM // JN // 0.

Figure 10. Commutative diagram with exact rows and columns.

0

��

0

��

0

��
0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // Jδ (1)−δ (0)P0
// Jδ (1)−δ (0)Q0

// Jδ (1)−δ (0)L0
// 0

Figure 11. Commutative diagram with exact rows and columns.

Similar to the above, we have the following commutative diagram with exact rows and
JΩ2(K) = Ω2(K)∩ JΩ2(M).

Now repeating the above procedures, we have JΩn(K) = Ωn(K)∩ JΩn(M) since the
following commutative diagram with exact rows for all n ≥ 3. Now by Lemma 3.2, we
finish the proof of (1)⇒(5).

(5)⇒(1) By Lemma 3.2, (5) is equivalent to JΩi(K) = Ωi(K)∩ JΩi(M) for all i≥ 0. In
particular, let i = 0, we have JK = K∩ JM.
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0

��

0

��

0

��
R/J⊗R Ω1(K)

α1

��

β1 // R/J⊗R Ω1(M)

γ1

��

// R/J⊗R Ω1(N)

��

// 0

0 // R/J⊗R Jδ (1)−δ (0)P0
// R/J⊗R Jδ (1)−δ (0)Q0

// R/J⊗R Jδ (1)−δ (0)L0
// 0,

Figure 12. Commutative diagram with exact rows and columns.

0

��

0

��

0

��
0 // Ω2(K)

��

// Ω2(M)

��

// Ω2(N)

��

// 0

0 // Jδ (2)−δ (1)P1
// Jδ (2)−δ (1)Q1

// Jδ (2)−δ (1)L1
// 0

Figure 13. Commutative diagram with exact rows and columns.

0

��

0

��

0

��
R/J⊗R Ω2(K)

α2

��

β2 // R/J⊗R Ω2(M)

γ2

��

// R/J⊗R Ω2(N)

��

// 0

0 // R/J⊗R Jδ (2)−δ (1)P1
// R/J⊗R Jδ (2)−δ (1)Q1

// R/J⊗R Jδ (2)−δ (1)L1
// 0

Figure 14. Commutative diagram with exact rows and columns.

Now by Lemma 3.3 and note that {Quasi-Koszul modules}⊆{Quasi-d-Koszul modules}
⊆{Quasi-piecewise-Koszul modules}⊆{Quasi-δ -Koszul modules}, Theorem 1.1 and Corol-
lary 1.1 are obvious.

4. Some applications of minimal Horseshoe Lemma

In this section, we will give some applications of minimal Horseshoe Lemma. More pre-
cisely, we will prove Theorems 1.2 and 1.3.

Lemma 4.1. Let R be an augmented Noetherian semiperfect algebra with Jacobson radical
J and 0 // K // M // N // 0 be a short exact sequence in the category of
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0

��

0

��

0

��
0 // R/J⊗R Ωn(K)

αn

��

βn // R/J⊗R Ωn(M)

γn

��

// R/J⊗R Ωn(N)

��

// 0

0 // R/J⊗R Jδ (n)−δ (n−1)Pn−1
// R/J⊗R Jδ (n)−δ (n−1)Qn−1

// R/J⊗R Jδ (n)−δ (n−1)Ln−1
// 0

Figure 15. Commutative diagram with exact rows and columns.

finitely generated R-modules with JK = K ∩ JM. Then M is projective if and only if K and
N are both projective.

Proof. (⇒) By Lemma 3.1, we have Figure 3, which implies the following exact sequence

0 // Ω1(K) // Ω1(M) // Ω1(N) // 0.

By hypothesis, M is a projective R-modules, thus the projective cover of M is itself. Hence
we have Ω1(M) = 0. Now combining the above exact sequence, we have Ω1(N) = 0, which
implies that Q0 ∼= N in Figure 3, thus N is a projective R-module.

(⇐) Assume that K and N are projective R-modules, repeating the same argument as
in the proof of the necessity, we have Ω1(K) = Ω1(N) = 0 since K and N are projective
R-modules, which implies that Ω1(M) = 0 and hence M is a projective R-module.

Lemma 4.2. Let R be a Noetherian semiperfect algebra with Jacobson radical J and M
a finitely generated R-module. Then the length of a minimal projective resolution of M,
denoted by l, equals to the projective dimension of M, pd(M).

Proof. By hypothesis, M has a minimal projective resolution of length l, we have pd(M)≤ l
since a minimal projective resolution is in particular a projective resolution. But if there
would be a minimal resolution of M of length strictly less than l, then we have ExtlR(M,R/J)∼=
TorR

l (R/J,M) = 0, which is a contradiction.

Lemma 4.3. Let R be an augmented Noetherian semiperfect algebra with Jacobson radical
J and 0 // K // M // N // 0 be a short exact sequence in the category of
finitely generated R-modules. If the minimal Horseshoe Lemma holds for ξ , then we have
pd(M) = max{pd(K),pd(N)}.

Proof. By hypothesis the minimal Horseshoe Lemma holds, i.e., we have Figure 2. More
precisely, we obtain that

· · · // P2 // P1 // P0 // K // 0,

· · · // L2 // L1 // L0 // M // 0
and

· · · // Q2 // Q1 // Q0 // N // 0
are minimal projective resolution of K, M and N, respectively, and Ln = Pn⊕Qn for all
n≥ 0.
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If pd(M) = ∞, by Lemma 4.2, there exists an infinite minimal graded projective resolu-
tion of M

· · · // Ln // · · · // L2 // L1 // L0 // M // 0.

Note that we have Ln = Pn⊕Qn for all n ≥ 0 and the minimal projective resolution of a
module is unique up to isomorphisms. Thus at least one of the lengths of

· · · // Pn // · · · // P2 // P1 // P0 // K // 0

and
· · · // Qn // · · · // Q2 // Q1 // Q0 // N // 0

is infinite, which implies that pd(M) = max{pd(K),pd(N)}.
If pd(M) = n < ∞, by Lemma 4.2, there exists a minimal projective resolution of M of

length n:

0 // Ln // · · · // L2 // L1 // L0 // M // 0,

which implies that K and N possess the following minimal projective resolutions

0 // Pn // · · · // P2 // P1 // P0 // K // 0,

0 // Qn // · · · // Q2 // Q1 // Q0 // N // 0
such that at least one of Pn and Ln isn’t zero, which implies that pd(M)= max{pd(K),pd(N)}
by Lemma 4.2.

Now it is easy to see that Theorem 1.2 is immediate from Lemmas 4.1 and 4.3.
With the help of Theorem 1.1 and Lemma 3.3, we can prove Theorem 1.3 directly.

Proof. (1) By Theorem 1.1, we have Figure 7 for all i ≥ 0, which implies the following
commutative diagram with exact rows and columns for all i≥ 0: Now applying the additive

0

��

0

��

0

��
0 // Ωi+1(K)

��

// Ωi+1(M)

��

// Ωi+1(N)

��

// 0

0 // JPi // JLi // JQi // 0.

Figure 16. Commutative diagram with exact rows and columns.

right functor R/J⊗R− to Figure 16, we get the following commutative diagram with exact
rows and columns for all i≥ 0: where δi+1 is a monomorphism for all i≥ 0 since the exact
sequence

0 // JPi // JLi // JQi // 0
is split, and γi+1 is a monomorphism for all i ≥ 0 since M is a quasi-Koszul module and
Lemma 3.3.

Now we claim that βi+1 is a monomorphism for all i ≥ 0. In fact, by the hypothesis,
the minimal Horseshoe Lemma holds for the given exact sequence ξ , by Lemma 3.2, we
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R/J⊗R Ωi+1(K)

βi+1

��

αi+1 // R/J⊗R Ωi+1(M)

γi+1

��

// R/J⊗R Ωi+1(N)

��

// 0

R/J⊗R JPi
δi+1 // R/J⊗R JLi // R/J⊗R JQi // 0,

Figure 17. Commutative diagram with exact rows and columns.

have JΩi(K) = Ωi(K)∩ JΩi(M) for all i≥ 0. By Lemma 3.3, αi+1 is a monomorphism for
all i ≥ 0, which implies βi+1 is a monomorphism for all i ≥ 0 since the left above square
is commutative. By Lemma 3.3, we have JΩi+1(K) = Ωi+1(K)∩ J2Pi for all i ≥ 0, which
imply that K is a quasi-Koszul module.

(2) Similarly, we have Figure 7 for all i≥ 0. Since the minimal Horseshoe Lemma is true
for ξ , then by Lemma 3.2, we have JΩi(K) = Ωi(K)∩JΩi(M) for all i≥ 0. By Lemma 3.3,
we have the following exact sequence

0 // JΩi(K) // JΩi(M) // JΩi(N) // 0

for all i≥ 0.
Now note that all the columns are projective covers, which imply the following commu-

tative diagram with exact rows and columns for all i≥ 0:

0

��

0

��

0

��
0 // Ωi+1(K)

��

// Ωi+1(M)

��

// Ωi+1(N)

��

// 0

0 // JPi

��

// JLi

��

// JQi

��

// 0

0 // JΩi(K)

��

// JΩi(M)

��

// JΩi(N)

��

// 0,

0 0 0

Figure 18. Commutative diagram with exact rows and columns.

Now applying the additive right functor R/J⊗R− to Figure 18, we get the following
commutative diagram with exact rows and columns for all i≥ 0:
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R/J⊗R Ωi+1(K)

εi+1

��

εi+1 // R/J⊗R Ωi+1(M)

ζi+1
��

// R/J⊗R Ωi+1(N)

ηi+1

��

// 0

R/J⊗R JPi

��

θi+1

// R/J⊗R JLi

��

// R/J⊗R JQi

��

// 0

R/J⊗R JΩi(K)

��

ϑi // R/J⊗R JΩi(M)

��

// R/J⊗R JΩi(N)

��

// 0.

0 0 0

Figure 19. Commutative diagram with exact rows and columns.

Similar to the analysis of (1), we have that εi+1, εi+1, ζi+1 and θi+1 are monomorphisms
for all i≥ 0. Note that

JΩ
i(K)∩ J(JΩ

i(M)) = JΩ
i(K)∩ J2

Ω
i(M) = JΩ

i(K)∩ J2
Ω

i(M)∩Ω
i(K)

= JΩ
i(K)∩ J2

Ω
i(K) = J2

Ω
i(K).

By Lemma 3.3, we have that ϑi is a monomorphism for each i≥ 0. Now by “3×3-Lemma”
to Figure 19, we have that ηi+1 is a monomorphism for each i≥ 0. By Lemma 3.3, we have
JΩi+1(N) = Ωi+1(N)∩ J2Qi for all i≥ 0, thus N is a quasi-Koszul module.
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