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1. Preliminaries and basic definition

The process of analyzing data under uncertainty is a main goal for many real life problems.
The present century is distinguished by the tendency of using the available data in the pro-
cess of decision making. The real data derived from actual experiments needs a special
treatment to get information more close to reality. Pawlak [16], introduced the rough set
theory, which is an excellent tool to handle a granularity of data. In rough set theory, given
an equivalence relation on a universe, we can define a pair of rough approximations which
provide a lower bound and an upper bound for each subset of the universe set. Biswas and
Nanda [3] defined the notion of rough subgroup. Kuroki [14], introduced the notion of a
rough ideal in a semigroup, studied approximations of a subset in a semigroup and discussed
the product structures of rough ideals. In [15], Kuroki and Wang provided some proposi-
tions in an investigation of the properties of lower and upper approximations with respect
to normal subgroups. Davvaz [8, 11], examined a relationship between rough sets and ring
theory and introduced the notions of rough ideal and rough subring with respect to an ideal
of aring. In [9], Davvaz and Mahdavipour considered a module over a ring as a universal
set and introduced the notion of rough submodule with respect to a submodule of the mod-
ule. In [13], Kazanci and Davvaz further introduced the notions of rough prime (primary)
ideal and rough fuzzy prime (primary) ideal in a ring and presented some properties of such
ideals.

Algebraic hyperstructures represent a natural extension of classical algebraic structures
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and they were introduced by the French mathematician F. Marty. Algebraic hyperstruc-
tures are a suitable generalization of classical algebraic structures. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic hyperstruc-
ture, the composition of two elements is a set. Since then, hundreds of papers and several
books have been written on this topic, see [4, 5, 10, 18]. A recent book on hyperstructures
[5] points out on their applications in fuzzy and rough set theory, cryptography, codes, au-
tomata, probability, geometry, lattices, binary relations, graphs and hypergraphs. Another
book [10] is devoted especially to the study of hyperring theory. Several kinds of hyperrings
are introduced and analyzed. The volume ends with an outline of applications in chem-
istry and physics, analyzing several special kinds of hyperstructures: e-hyperstructures and
transposition hypergroups, also see [7, 17, 19, 20]. The theory of suitable modified hyper-
structures can serve as a mathematical background in the field of quantum communication
systems.

Let H be a non-empty set and o : H x H — 27" (H) be a hyperoperation, where &*(H )
is the family of all non-empty subsets of H. The couple (H,o) is called a hypergroupoid.
For any two non-empty subsets A and B of H and x € H, we define Ao B = {J,ep pepacb,
Ao{x} =Aox and {x} oA = x0A. A hypergroupoid (H,o) is called a semihypergroup
if for all a,b,c in H we have (aob)oc = ao (boc). In addition, if for every a € H,
aoH =H =Hoa,then (H,o) is called a hypergroup. A non-empty subset K of a semihy-
pergroup (H,o) is called a sub-semihypergroup if it is a semihypergroup. In other words,
a non-empty subset K of a semihypergroup (H,o) is a sub-semihypergroup if K o K C K.
In [1, 2, 12], Davvaz et al. studied the notion of a I'-semihypergroup as a generalization of
a semihypergroup. Many classical notions of semigroups and semihypergroups have been
extended to I'-semihypergroups and a lot of results on I'-semihypergroups are obtained.

In [1] Davvaz et al. introduced the notion of roughness in a I'-semihypergroup and dis-
cuss rough sets with respect to an idempotent regular relation in a quotient I'-semihypergroup
and upper approximation with respect to Green equivalence relations. In this paper, first, we
consider the notion of a I'-semihyperring as a generalization of semiring, a generalization
of a semihyperring and a generalization of a I"-semiring. Then, we introduce the notion of a
rough sub I'-semihyperring (ideal) of a I'-semihyperring and give some properties of lower
and upper approximations in a ['-semihyperring. In addition, we introduce the concept of
rough sets in a quotient I'-semihyperring.

Let R be a commutative semihypergroup and I" be a commutative group. Then, R is
called a I'-semihyperring if there exists a map R x I' x R — &7*(R) (the image of (a, a,b)
is denoted by aceb for a,b € R and o € I') satisfying the following conditions:

() aa(b+c) =aab+aoc,
(ii) (a+b)ac=aoc+bac,
(iii) a(a+ B)c=aac+aPc,
(iv) aa(bBc) = (aab)Bc.
In the above definition if R is a semigroup, then R is called a multiplicative I'-semihyperring.
A TI'-semihyperring R is called commutative if xaty = youx for every x,y € Rand x € I'. We
say that R is a I'-semihyperring with zero, if there exists 0 € R such that a € a+ 0 and
0 €0aa, 0 € a0 for all a € R and oo € I'. Let A and B be two non-empty subsets of
I'-semihyperring R. We define

ATB={x|xcaabacA, beB, a €T}



I'-Semihyperrings: Approximations and Rough Ideals 1037

A non-empty subset R of I'-semihyperring R is called a sub I'-semihyperring if it is closed
with respect to the hyperaddition and hypermultiplication. In other words, a non-empty
subset R; of I'-semihyperring R is a sub I'-semihyperring if R +R; C R; and Ri{I'R; C R;.

Example 1.1. Let (R,+,0) be a semihyperring such that xoy =xoy+xoyand I be a
commutative group. We define xaoy = xoy for every x,y € R and o € I'. Then, R is a
I'-semihyperring.

Example 1.2. Let (R,+,0) be a semiring and (', +) be a subgroup of (R,+). We define
xoy =xoqoy forevery x,y € R and o € I'. Then, R is a I"-semihyperring.

Example 1.3. Let R =Z4 and I' = {0,2}. Then, R is a multiplicative ['-semihyperring with
the following hyperoperation:

xay = {635}7
where x,y € Rand a €T

Example 1.4. Let R be a ring, {A, },cr be a family of disjoint non-empty sets and (I",+)
be a subgroup of (R, +). Then, S = J,cgAy is a [-semihyperring with the following hyper-
operations:

XDy = Agtgys XOY = Agjag,
where x € A, and y € Ag,.
Definition 1.1. A non-empty subset I of I'-semihyperring R is a right (left) ideal of R if I is
a subhypergroup of (R,+) and ITR C I (RTUI C 1), and is an ideal of R if it is both a right
and a left ideal.

Let X be a non-empty subset of I'-semihyperring R. By the term left ideal (X); (re-
spectively, right ideal (X),) of R generated by X, we mean the intersection of all left ideals
(respectively, right ideals) of R contains X.

Proposition 1.1. Let R be a I'-semihyperring with zero and X be a non-empty subset of R.
Then,

i=1 j=1

n m
(D) (X); = {t |t e ZnixiJr Z riogxj,n,mn € Nyrj € R0 €I, x; EX},
2) <X>r:{

n m
tte Zn,xﬁ- ijocjrj ni,mn€eN,x; €X,r; €ER, EF},
=1 =1

ny nyp
3) <X> = {I |l€ Zm,-x,-—i— erajxj
=1

i=1
n3 ng
+ Zy,ﬁ,r,+ Z r104x Brs,mi € Nyxy € X,rj €R, 5.

r=1 t=1

Proof. The proof is straightforward.
1

Definition 1.2. Let R be a I'-semihyperring and P a proper ideal of R. Then, P is called
prime if for every x,y € R, xI'RT'y C P implies x € P ory € P.

Proposition 1.2. Let R be a I'-semihyperring with zero and P be an ideal of R. Then, the
following statement are equivalent:
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(1) P is prime,
(i) ITJ C P implies that I C P or J C P where I and J are two ideals of R.

Proof. 1t is straightforward. 1

Example 1.5. Let S be a I'-semihyperring in Example 1.4 and I" C R be a subgroup of
(R,+). If Pis a prime ideal of R such that '\ P = 0, then Sp = [J,cpA, is a prime ideal of
S.

Let A and B be two non-empty subsets of R and p a relation on R. We define (A,B) € p
if for every a € A there exists b € B such that (a,b) € p and for every ¢ € B there exists
d € A such that (d,c) € p and (A,B) € p if foreverya € A and b € B, (a,b) € p. Let R be
a I'-semihyperring. An equivalence relation p on R is called regular if for every x € R and
o €T, we have

(a,b) € p implies (a+x)p(b+x), (aax)p(bax) and (xaa)p(xab).

The relation p is called strongly regular if for every x € R and o € I', we have

(a,b) € p implies (a+x)p(b+x), (aax)p(bax) and (xaa)p(xab).
Let A be a non-empty subset of R. We define p(A) = {p(a) | a € A}. Relation p is called
semi-complete, if for every x,y € Rand a € I, p(xary) C p(x)ap(y) and p(x+y) C p(x)+
p():

Lemma 1.1. Let R be a I'-semihyperring and p be a regular relation on R. If a,b € R and
o €T, then p(a)ap(b) C p(aab) and p(a)+p(b) C p(a+b).

Proof. Letx € p(a)ap(b). There exist x; € p(a) and x, € p(b) such that x € xj ax;. Since
p is aregular relation, we have (x; ax;)p (aab). So, there exists y € aab such that (x,y) € p.
Therefore, x € p(aab). In the same way, p(a) +p(b) C p(a+b). |

Proposition 1.3. Let p be a regular relation on a I'-semihyperring R. If a,b € Rand o €T,
then

() pla+b)={p(c)|cepla)+p(b)},

(i) plach) = {p(c) | c € pa)ap(b)}.
Proof. Letc € p(a)+p(b). Then, there exist x; € p(a) and x € p(b) such that ¢ € x; +x».
Since p is a regular relation, there exists x € a + b such that (x,c) € p. Hence p(a+b) =
{p(c)[cepla)+p(b)}.
(i1) The proof is similar to (i). 1

Let I be a non-empty subset of a [-semihyperring R. We say that / is a 2-ideal of R if it

satisfy the following condition:

i) I+RCIandR+1C1,

(i) IcRCTand Rl CIforevery x €1
A 2-ideal I of R generates a regular relation as follows:

xpy<=x=yorx,ycl.

Let (R;,I'1) and (R2,I2) be two I'j- and I';-semihyperrings, respectively and f : T’y —
I'; be amap. Then, ¥ : R — R; is called a (I';, T2 )-homomorphism (shortly, a homomor-
phism) if forevery x,y € Rand a € T’

@) wx+y)={vw@) [t €x+y} Cy(x)+w(y),
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(i) y(xoy) = {y(r) |2 € xay} C yw(x)f (o) w(y),

(i) flx+y) =f()+ ().
In the above definition if y(x+y) = y(x) 4+ y(y) and y(xay) = y(x) f(o) y(y), then v is
called a strong homomorphism. The set kery = {(a,b) € R| X Ry | y(a) = y(b)} is called
the kernel of y.

Proposition 1.4. Let y be a strong homomorphism. Then, ker Y is a regular relation on R.

Proof. 1t is easy to see that kery is an equivalence relation on R. Let a,b,x € R, o € I" and
(a,b) € kery. Thus, y(a) = y(b). Now, we have
y(a+x) =yla) +yx) = y(b) +y(x) = y(b+x),
y(aox) = y(a)f(@)y(x) = y(b)f(@)y(x) = y(box).
Hence for every z; € a+ x there exist zp € b+ x such that (z;,22) € kery and for every
73 € aox there exists z4 € bowx such that (z3,z4) € kery. Hence (a + x)ker y(b +x) and

(aox)ker y(bax). In the same way, (xaa)kery(xab) which implies that kery is a regular
relation. 1

Example 1.6. Let S| = U A, and Sy = U B, be the Z-semihyperrings in Example 1.4
ne ne
and f : Z — Z be the identity map, where A,, = (n,n+ 1) and B, = (2n,2n+ 2) are open

intervals in R. Then, y : S| — S, defined by y/(x) = 2x is a strong homomorphism.

In the following example y is not a strong homomorphism but kery is a regular relation
on R.

Example 1.7. In Example 1.4, suppose that R = {A, | n € Z} where A, = [n,n+1). Then,
R is a Z-semihyperring. For every x € R there exists n € N such that x € A,. Now, consider
V¥ : R — R defined by y(x) = n where x € A, and f : Z — Z is the identity map. Then,
W is a homomorphism.

It is easy to see that in the above example kery is a strong regular relation.

2. Lower and upper approximations

Let R be a I'-semihyperring. Recall that an equivalence relation p on R is a reflexive,
symmetric, and transitive binary relation on R. If p is an equivalence relation on R then the
equivalence class of x € R is the set {y € R | (x,y) € p}. We write it as p(x). Let A be a
non-empty subset of R. Then, the sets

Apry(A) = {x[ p(x)NA # 0} and Apr_(4) = {x|p(x) CA},

are called, respectively, the lower and upper approximations of the set A with respect to p.
Aprp(A) = (Apr, (A),@p (A)) is called a rough set with respect to p. A non-empty sub-

set A of R is called an upper (lower) rough ideal (sub I'-semihyperring) of R if rmp (A)
(@p (A)) is an ideal (sub I'-semihyperring)

of R and is called a rough ideal (sub T-semihyperring) if Apr,(A) and @p (A) are ideals
(sub I'-semihyperring) of R .

Theorem 2.1. Let (¥, f) be a homomorphism of T-semihyperring Ry to a I'-semihyperring
Ry, p be an equivalence relation on Ry and A be a non-empty set of R|. Then,
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(1) If y is a strong homomorphism and p a regular (strongly regular) relation on R;,
then ® = {(a,b) € Ry xRy | (y(a),y(b)) € p} is a regular (strongly regular) re-
lation on R;.

(il) If y is an epimorphism, then (y, f)(Aprg(A)) = Apr, y(A).
(iii) If y is an epimorphism, then (W, f)(Aprg(A)) C mp y(A).

Proof. (i) Let (a,b) € p, x € Ry and o € . Then, (y(a),y(b)) € p. Then, (y(a)+
y(x), w(b)+y(x)) € pand (y(a)f(a)y(x), y(b)f(a)y(x)) € p which implies that (y/(a+
x),w(b+x)) €p and (y(aox), y(bax)) € p. Then, (a+x,b+x) € © and (aax,bax) € O.
In the same way one can see that if p is a strongly regular relation, then © is a strongly
regular relation.

(ii) Suppose that y is an element of (y, f)(Aprg(A)). Then, there exists x € Aprg(A)
such that (y, f)(x) = y(x) =y. So, ®(x) NA # 0 and there exists a € O(x) NA. Then,
y(a) € y(A) and (y(a),y(x)) € p. So, p(w(x))Ny(A) # 0 which implies that y = y(x) €
Apr, (y(A)). Therefore, we conclude that (v, f)(Aprg(A)) € Apr,y(A). Conversely, let
y € Apr,y(A). Then, there exists x € Ry such that y(x) = y. Hence p(y/(x)) N y(A) # 0.
So, there exists @ € A and y(a) € p(y(x)). Now, by definition of ® we have (a,x) € @.
Thus, ®(x) NA # 0. Hence y = y(x) € w(Aprg(A)). This completes the proof.

(iii) The proof is similar to (ii). 1

Proposition 2.1. Let Ry and Ry be two I'y and I';-semihyperring respectively and  be a
homomorphism from Ry to Ry. If A is a non-empty subset of Ry, then W(Apry,,., (A)) = y(A).

Proof. Since A C Apry,,,,(A), it follows that y(A) C w(Apry,,,(A)). Conversely, suppose
that y € W(Apry,,,(A)). Then, there exists x € Apr,,,,(A) such that y(x) =y, so there

exists an element a € A such that y(x) = y(a). Therefore, y = y(x) = y(a) € w(A). This
completes the proof. 1

Example 2.1. Let R be the I-semihyperring in Example 1.7. If A = {1,2}, then Apry,,., (A) =
[1,2)U[2,3) and Apr erW(A) =(. Hence w@)rkerw(A)) =y(A)={1,2} and y(Apr erW(A)
Cy(A). If B=10,1), then @km’l(B) = Apry,y (B) = [0,1).

Theorem 2.2. Let p be a regular relation on a I'-semihyperring R and A,B be two non-
empty subsets of R. Then,

(i) Apr,(A)TApr,(B) C Apr,(ATB).

(i) If p is semi-complete, then @p (A)l"@p (B) C @p (AT'B).

Proof. (i) Let x € Aiprp (A)FA7prP (B). Then, x € xj0xp with x| € rmp (A), xy € rmp (B)
and a € T'. Hence there exist a € A and b € B such that (a,x|) € p and (b,x,) € p. Since p is
aregular relation, it follows that aoh C p(x;)ap(x2) C p(x10x2). So, p(xj0tx2) NATB #£ 0
which implies that Apr, (A)TApr, (B) C Apr, (AT'B).

(ii) Let x € @p (A)F@p (B). Then, x € xj0xp with x; € @p (A) and x; € @p (B)
and a € T. Tt follows that p(x;) C A and p(x2) C B. Since p is a semi-complete relation,
we have

p(x) € p(xiaxz) € p(x1)ap(x2) € AIB,
which implies that x € @p (AT'B). This completes the proof. 1
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Example 2.2. Let R be the I'-semihyperring in Example 1.7. If A = {0} and B = [1,2] are
subsets of R, then ATB = Ag = [0,1). Also, @kerw(A) =0 and ﬂkm’/(B) =[0,1) = Ao
and so %erw (A)F%erw (B)=0I'Ag =0. Then, %erw (A)F@kww(B) C zﬂkm’l(AFB).
Proposition 2.2. Let p be a regular relation on a I'-semihyperring R and A, B be two non-
empty subsets of R. Then,

(i) Apr,(A)+Apr,(B) C Apr, (A +B).

(ii) If p is semi-complete relation, then ﬂp (A) +@p (B) C ﬂp (A+B).

Proof. (i) Let x € Aiprp (A) +A7prp (B). Then, x € x| +x with x| € AT)rp (A) and x; €
Apr, (B). Hence there exist a € A and b € B such that (x,a) € p and (x2,b) € p. Since p is
a regular relation, there exists y € a + b such that (x,y) € p. Since a+b C A+ B, it follows
that p(x) N (A + B) # 0. This implies that Apr, (A) + Apr, (B) C Apr, (A +B).

(ii) Let x € @p 4) +@p (B). Then, x € x; +x, with x; € @p (A) and x; € @p (B).
It follows that p(x;) C A and p(xz) C B. Since p is a semi-complete relation, we have
p(x) € p(x;+x2) Cp(x1)+p(x2) CA+B, and so x € @p(A—i—B). Hence EP(A) +
EP(B)QEP(AJFB)- |

Example 2.3. Let R be the [-semihyperring in Example 1.7, A = {0} and B = {1}. Then,
Aprkerl(/(A) + Aprkery/(B) = Aprkerl[/(A +B) = [172) and 0 = @kerl[/(A) +ﬂkerw(B) C

Apr, (A+B)=][1,2).

7kerl[l(
Proposition 2.3. Let R be a I'-semihyperring and p be a regular and semi-complete relation
on R. If A, B are non-empty subsets of R, then

(i) Apr,(A)+Apr,(B) = Apr, (A +B).

(ii) Apr,(A)I'Apr,(B) = Apr,(AI'B).

Proof. (i) Let x € Apr,(A + B). Then, p(x) N (A + B) # 0. Therefore, there exists y €
p(x)N(A+B), and so for some a € A and b € B, we have y € a+b. Now, we have x € p(y) C
pla+b) C p(a)+ p(b). Thus, there exist x; € p(a) and x, € p(b) such that x € x| + x7.
So, p(x1)NA # 0 and p(x2) NB # 0. Hence x; € rmp (A)and x; € Aiprp (B) which implies
that x € Apr,(A) + Apr,(B). Now, by Proposition 2.2, we have Apr,(A) + Apr,(B) =
Api,y(A+B)

(i1) The proof is similar to (i) 1
Theorem 2.3. Let p be a regular relation on a I'-semihyperring R. If Ry is a sub I'-
semihyperring of R, then

(1) Ry, is an upper rough sub I'-semihyperring.

(i) If p is semi-complete relation, then R is a lower rough sub I'-semihyperring.
Proof. (i) By Theorem 2.2 and Proposition 2.2, Aiprp (Ry) +rmp (Ry) C rmp (Ry) and
Apr, (R1)TApr, (R1) € Apr,(Ry). Hence Apr, (R;) is a sub I-semihyperring.

(ii) By Propositions 2.2 and 2.2 the proof is easy. 1
Proposition 2.4. Let p be a regular relation on a I'-semihyperring R. If I is an ideal of R,
then

(1) I is an upper rough ideal.
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(ii) If p is a semi-complete relation, then I is a lower rough ideal.
Proof. The proof is straightforward. 1

Example 2.4. Let R be the I'-semihyperring in Example 1.7 and / = U Ap. Then, I is an
ne2
ideal of R and Apry,,, (1), @kerw(l ) are ideals.

Proposition 2.4, shows that the notion of an upper rough ideal is an extended notion of a
usual ideal of a ring. It is not difficult to see that the converse of Proposition 2.4 does not
hold in general.

Example 2.5. Let R be the I™-semihyperring in Example 1.7 and A = {0}. Then, Apry,,, (A)
is an ideal of R but A = {0} is not an ideal of R.

Corollary 2.1. Let R be a I'-semihyperring, p be a regular relation and I be a 2-ideal of R.
Then, Apr, (1) is a 2-ideal of R and if p is a semi-complete regular relation, then @p (I)is
a 2-ideal.
Theorem 2.4. Let p be a regular relation on R. If I and J are two right and left ideals of R,
respectively, then
Apr, (IT7) € Api, (1) N Apr,y (/) and Apr, (ITJ) € Apr (1)1 Apr (J).
Proof. Let I and J are a right ideal and a left ideal of R, respectively. Then, ITJ CITR C [
and IT'J C RI'J CJ. Hence IT'J C INJ. Then, we have
Apr,, (ITJ) C Apr, (INJ) € Apr, (1) NApr, (J)
and
@p(ll"])g@p(l)ﬂ@p(]). i
Example 2.6. Let R be the I'-semihyperring in Example 1.7. We know that I = J,c,7 A, is
an ideal of R and Apry,,, (I) = I. But Apry,,,, (ITT) C Apry,,, (I).
In the following example we show that in Theorem 2.4, I and J must be ideals.
Example 2.7. Let R be the I'-semihyperring in Example 1.7, A = {0} and B = {1}. It
easy to see that A and B are not ideals of R. We know Apr erW(A) = gkerW(B) = and

Apr,, (ATB) = A.

Proposition 2.5. Let R be a commutative I'-semihyperring with zero, p a semi-complete
regular relation on R and P be a prime ideal of R. Then, @’)P is a prime ideal of R or the
empty set.

Proof. By Proposition 2.4, @p (P) is an ideal of R. Suppose that wp (P) is not a prime
ideal of R. There exist ideals A,B of R such that ATB C ﬂp (P)and A ¢ @p (P), and
B¢ ﬂp (P). Then, there exist a € A\ ﬂp (P) and b € B\ ﬂp (P). Hence there exist
x1 € p(a)\ P and x, € p(b) \ P. Since p is a regular relation,

xiIxy C p(a)Tp(b) C p(al'b) CP.

This implies that (x;)I"(x2) C P. Since P is a prime ideal of R, x; € Porx, € P. Itis a
contradiction. Then, @p (P) is a prime ideal of R. 1
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Example 2.8. Let R be the I'-semihyperring in Example 1.7. Then, P = Ay is a prime ideal
of R.

3. Approximation in multiplicative I'-semihyperring

In this section, we assume that R is a multiplicative I'-semihyperring with zero. Let I be an
ideal of R. One can see that the following relation is a regular relation:

(x,y) € pr < Fa,b € Isuchthat, x+a=y+b.
Anideal I of a I'-semihyperring R is called subtractive if a € I, a+b C I, implies that b € I.

Example 3.1. Let R be a ring and I, T two subgroups of (R,+) such that IT =TT = 0.
Then, R is a multiplicative I'-semihyperring with respect to the following hyperoperation:

x-a-y=xoy+1.

Example 3.2. Let R = Zg, I’ = {0,3} and I = {0,2,4}. Then, R is a multiplicative I'-
semihyperring with respect to the above hyperoperation.

Proposition 3.1. Let R be a multiplicative I'-semihyperring, J be a subtractive ideal of R
and 1 an ideal of R contained in J. Then, Apr,, (J) =J and if@pl (J) #0, then @m J) =
J.

Proof. Suppose that x € Apr, (/) then there exist y € J and x1,x2 € I such that y +x; =
x+xz. Since I C J and J is a subtractive ideal of R, x € J. Hence Apr,, (/) = J. In the same
way we can prove that ﬂpz J)=J. 1

Theorem 3.1. Let (R{,T'1) and (Ry,T2) be two multiplicative 'y and T';-semihyperrings
and (y, f) : (R1,T1) — (R2,T2) be a strong isomorphism. If I is an ideal of Ry and A is a
non-empty subset of Ry, then

(@) Aprp,, W(A) = w(Aprp, (4)),
i) Apr, W(A) = w(Apr, (4)).

Proof. (i) Suppose that y is an element of y(Apr,, (A)). Then, there exists x € Apr,, (A)
such that y(x) = y. Hence p;(x) NA # 0 and so there exists a € p;(x) NA. Then, y(a) €
Y (A) and there exist x1,x, € I such that a +x; = x+x;. Hence y(a) + ¢(x1) =y + y(x2).
Then, y € Aprpw) y(A).

Conversely, lety € rmpw " (A). Since y is onto, there exists x € R} such that y = y/(x).
Hence there exist x1,x> € I such that y(x) + y(x;) = y(x2) + y(a). Since y is one-one,
y(x+x1) = y(xz +a) implies that x4+ x; = x, +a. Since xj,x; € I and a € A, then x €
Apr,, (A). It means AprW(,) v(A) C y(Apr,, (A)).

(ii) Suppose that y is an element of w(@m (A)). Then, there exists x € @pz (A) such
that y = y(x). We have p;(x) C A. We show that y(p;(x)) = py ) ¥(x). Let z € y(pr(x)).
Then, there exists ¢ € py(x) such that z € y(x). As ¢ € py(x) there exist x1,xp € I such that
t+x1 =x+x and then z+ y(x1) = y(x) + w(x2) such that z = y(¢). Hence y(p;(x)) C
Py W(x). Let z1 € py ;) ¥(x). Then, there exist x;,x, € I and r € R such that

21 =y(r) and z1 + y(x1) = Y(x) + y(x2).



1044 S. O. Dehkordi and B. Davvaz

Since W is an isomorphism, r € p;(x). Therefore, W(p;(x)) = Py W¥(x). This implies
that Ill(Apr (A)) - Apr ()l//(A). Conversely, let y € Aprp <)III(A). Then, there exist
2P

x1,x €1 such that y + l//(xl) y(x) + y(x2). Since vy is onto, then y = y(¢) for some
t € R. Since y(t+x;) = y(x+xy), we have t + x; = x+x,. Hence r € p;(x). Then,
y = (1) € W(Apr, (4) and so Apr, W(A) C Y(Apr, (4)) '

Theorem 3.2. Let (R;,I') and (R>,T3) be two T'y and T»-semihyperrings respectively and
(@,f): (R1,T1) — (R, T2) be a (I'1,Iz)-isomorphism. If I is an ideal of Ry and A is a
non-empty subset of (Ry,I'y), then

(0" f ") (Apry, (9(A4)) = Apr, , (A).

Proof. The proof is straightforward. 1

o1

Corollary 3.1. Let (R|,T'1) and (Ry,T) be two Ty and T»-semihyperrings respectively and
(@, f) be an isomorphism from (R1,T1) to (Ry,T). If I is an ideal of (Ry,T2) and A is a
non-empty subset of Ry, then

(i) rmpal<1) (A) is an ideal of (Ry,T}) if and only #rmpl¢(A) is an ideal of (Ry, ).
(ii) Aiprp(;l(l) (A) is a prime ideal of (R1,T) if and only if Apt, @(A) is a prime ideal
of (R, I2).

4. Rough sets in a quotient I'-semihyperring

Let p be aregular relation on a I'-semihyperring R and A C R. Then, R/p = {p(a) |a € R} is
a [-semihyperring where ' = {& | e € T'}. Let p(a), p(b) € R/p. We define p(a) @ p (b) =
p(a+Db) and p(a)&p(b) = p(aab). One can see that R/p is a I'-semihyperring. Let A be a
non-empty subset of R. Then,

APrpA = {p(@)| p(@)NA # 2} and Apr A= {p(a) | pla) CA}.

Example 4.1. Let R be a I'-semihyperring in Example 1.7. If A = {0, 1} is a subset of R,
then Apry,,,(A) = [0,1)U[l,2) and Apr (A) =0. If A=[0,1] is a subset of R, then

APliery(A) = [0,1) U[1,2) and Apr  (A)=[0,1). If A =[2,3) is a subset of R, then
——kery

Aprker v (A) Aprker v (A) .

Proposition 4.1. Let p be a regular relation on I'-semihyperring R. Then, the following
statement are true.

(i) IfI is an ideal of R, then A:prp (D)is an ideal of R/ p,
(ii) Let p be a semi-complete regular relation and I be an ideal of R, then Apr (I) is
an ideal of R/p.

Proof. (i) Let p(x1), p(x2) € A:prp (I). Then, p(x1) NI # 0 and p(xz) NI # 0. This implies
that x1,x; € Apr,(I). Since Apr,(I) is an ideal of R, x; +xa C Apr, (/). Then, for every
t € x1+x, p(t) NI # 0. Hence p(x1) @ p(x2) C Apr,l. Let p(x) € Apr, (1), p(y) €R/p
and o € T. Then, p(x) N1 # 0. This implies that x € Apr, (). Since Apr,(I) is an ideal
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of R, xaty C Apr, (I). Then, p(xoy) NI # 0. Then, for every 1 € xaty, p(t) N1 # @ which

implies that p(x)&p(y) C Apr,/. Similarly, p(y)ép(x) C A:prpl. Then, A:prpl is an ideal
of R/p
(ii) Let p(x1), p(x2) € Apr I. Then, p(x;) C I and p(x2) C I. This implies that x;, x, €
==

Aprpl. Since Aprplis anideal of R, x; +x2 C Aprpl. We have p(x1) &p (x2) = p(x1+x2) C
I. Hence p(x1) @ p(x2) C Apr I. Letp(x) € Apr (I), p(y) € R/p and a € T. This implies
:p

that x € ﬂp( ). Since Apr ( ) is an ideal of R, xoty C wp (I). Then, p(xay) = {p(t) |
t € xoy} C @p([). We have p(x)ep(y) = p(xory) C 1. Then, p(x)ép(y) C ﬂp(l).
Similarly, p(y)&p(x) = p(yax) C Apr (I) C 1. Then, Apr (I) is an ideal of R/p. 1
Proposition 4.2. Let R be a commutative I'-semihyperring, p be a semi-complete regular
relation and P is a prime ideal of R. Then, Apr (P) is a prime ideal of R/p.
:p
Proof. By Proposition 4.1, Apr (P) is an ideal of R/p. Suppose that Apr (P) is not prime
ideal of R. Then, there exist A,B C R/p, such that A and B are ideals, ATB C Apr (P)
:p
and A ¢ Aprp (P)and B¢ Aprp (P). Then, there exist p(a) € A\ Apr (P) and p(b) € B\
— — :p

Apr (P). Since p(a)dp(b) CATB C Apr (P) and Apr (P) is a prime ideal, a € Aprp (P)

—p p —

orbe @p( ). It is contradiction, since p(a) € P and p(b) € P. Then, Apr (P) is a prime

ideal of R/p. 1

Theorem 4.1. Ler (R;,T'1) and (Ry,T2) be multiplicative T'y and T'y-semihyperring with
(

zero respectively, (¢,f) : (R1,I'1) — (Ry,I2) be a strong (I'1,T2)-epimorphism and A
be a sub T'y-semihyperring Ry. Then, (@, f) induces a (I'1,I'2)-homomorphism betweens

A7prp, (A) and AT’rpq,(,) (A).

Proof. One can see that @(A) is a sub I';-semihyperring of R,. We know that A:prp[ (A) is

a sub I'j-semihyperring of R, /p; and AT)rp(pU)(p(A) is a sub ['-semihyperring of R2/Pyr)

we define
7 ADL,y(A) — Apr, , 0(A),
p1(x) = Py @ (x)
and
[T —I
& — f(@)

We prove that @ is well-defined function. Suppose that p;(x) = p;(y), then there exist
x1,%x € I such that x+x; =y+y;. Since (@, f) is a strong homomorphism, @(x)+ @(x;) =
®(y) + @(y1). Therefore, py ) @ (x) = Po(ry@(y). Thus, @ is well-defined. Now we have

?(pr(x)@p1(y)) =0(pr(x+)) = Pou <p(x+y)
= Pon)(@(x) + 9(¥) = Po1) P (x) ® Py P(Y)
=o(p (x) ?(p1(y)),
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and
For)api(y) = Blprxow)) = Fpi(r) |1 € xauy}
={Ppy@ (1) |1 € xay} = poyplxay)
= Po(1) (<P(X)f( )0() = Po(r) (9(x)).f (@)Py) (9 ()
=B(p1(x) F ()P (P ())-
Hence (@, f) is a (T';,I'2)-homomorphism. 1

Corollary 4.1. Let (¢, f): (R1,I'1) — (R2,T2) be a strong isomorphism. Then, in Theo-
rem 4.3 induced homomorphism (@, f) is isomorphism.

Proof. Suppose that (@, f)(p;(x)) = (@, f)(p1(y)). Then, there exist xj,x, € I such that
@(x)+@(x1) = @(y) + @(x2). Since (@, f) is a strong isomorphism, @(x+x1) = @(y +x2).
Thus, x+ x; = y—+x, which implies that p;(x) = p;(y). Then, ( @, f) is isomorphism. 1

Proposition 4.3. Let R be a I'-semihyperring and equivalence relation & on R defined by
the rule that (a,b) € & if and only ifa=b ora € RUb, b€ Rla,a€c R+bandb € R+a.
Assume that p C & be a regular relation. Then, (a,b) € & if and only if (p(a),p (b)) € € in
R/p.

Proof. Let a,b € R such that (a,b) € £&. Then, a=b ora € RT'b, b € Rla, a € R+b
and a € R+ b. If a = b, then p(a) = p(b). Hence (p(a),p(b)) € . In the second case
there exists x;,x2,x3,x4 € R and o, € I such that a € x;ab, b € xBa, a € x3+ b and
b € x4+a. Then, p(a) € p(x10b), p(b) € p(x2Ba), p(a) € p(x3+Db) and p(b) € p(x4+a).
So, p(a) € p(x1)ap(b), p(b) € p(x2)Bp(a), p(a) € p(x3)©p(b) and p(a) € p(xs) D p(a).
Hence, (p(a),p(b)) € & inR/p.

Conversely, leta,b € Rand (p(a),p (b)) €. Then, p(a) =p(b) orp(a) € R/pfp(b), p(b) e

R/pTp(a), p(a) €R/p @ p(b) and p(a) € R/p & p(b). If p(a) = p(b), since p C &, then
(a,b) € &. In the second case, p(a) € p(RUb), p(b) € p(RTa), p(a) € p(R+b), p(b) €
p(R+a). Then, (a,b) € E. |

Corollary 4.2. Let p be a regular relation on I'-semihyperring R such that p C & and A be
a non-empty subset of R. Then, Aprg(A) = AprgR/‘o (p(A)) where (p(a),p(b)) € Egp if and
only if (p(a),p(b)) € & in R/p.

Proof. The proof is straightforward by using Proposition 4.3. 1
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