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Abstract. The notion of rough sets was introduced by Z. Pawlak in 1982. The concept
of Γ-semihyperring is a generalization of semihyperring, Γ-semiring and semiring. In this
paper, we study the notion of a rough (rough prime) ideal in a Γ-semihyperring. Also,
we discuss the relation between the upper and lower rough ideals and the upper and lower
approximation of their homomorphism images.
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1. Preliminaries and basic definition

The process of analyzing data under uncertainty is a main goal for many real life problems.
The present century is distinguished by the tendency of using the available data in the pro-
cess of decision making. The real data derived from actual experiments needs a special
treatment to get information more close to reality. Pawlak [16], introduced the rough set
theory, which is an excellent tool to handle a granularity of data. In rough set theory, given
an equivalence relation on a universe, we can define a pair of rough approximations which
provide a lower bound and an upper bound for each subset of the universe set. Biswas and
Nanda [3] defined the notion of rough subgroup. Kuroki [14], introduced the notion of a
rough ideal in a semigroup, studied approximations of a subset in a semigroup and discussed
the product structures of rough ideals. In [15], Kuroki and Wang provided some proposi-
tions in an investigation of the properties of lower and upper approximations with respect
to normal subgroups. Davvaz [8, 11], examined a relationship between rough sets and ring
theory and introduced the notions of rough ideal and rough subring with respect to an ideal
of a ring. In [9], Davvaz and Mahdavipour considered a module over a ring as a universal
set and introduced the notion of rough submodule with respect to a submodule of the mod-
ule. In [13], Kazanci and Davvaz further introduced the notions of rough prime (primary)
ideal and rough fuzzy prime (primary) ideal in a ring and presented some properties of such
ideals.

Algebraic hyperstructures represent a natural extension of classical algebraic structures
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and they were introduced by the French mathematician F. Marty. Algebraic hyperstruc-
tures are a suitable generalization of classical algebraic structures. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic hyperstruc-
ture, the composition of two elements is a set. Since then, hundreds of papers and several
books have been written on this topic, see [4, 5, 10, 18]. A recent book on hyperstructures
[5] points out on their applications in fuzzy and rough set theory, cryptography, codes, au-
tomata, probability, geometry, lattices, binary relations, graphs and hypergraphs. Another
book [10] is devoted especially to the study of hyperring theory. Several kinds of hyperrings
are introduced and analyzed. The volume ends with an outline of applications in chem-
istry and physics, analyzing several special kinds of hyperstructures: e-hyperstructures and
transposition hypergroups, also see [7, 17, 19, 20]. The theory of suitable modified hyper-
structures can serve as a mathematical background in the field of quantum communication
systems.

Let H be a non-empty set and ◦ : H×H −→P∗(H) be a hyperoperation, where P∗(H)
is the family of all non-empty subsets of H. The couple (H,◦) is called a hypergroupoid.
For any two non-empty subsets A and B of H and x ∈ H, we define A◦B =

⋃
a∈A,b∈B a◦b,

A ◦ {x} = A ◦ x and {x} ◦ A = x ◦ A. A hypergroupoid (H,◦) is called a semihypergroup
if for all a,b,c in H we have (a ◦ b) ◦ c = a ◦ (b ◦ c). In addition, if for every a ∈ H,
a◦H = H = H ◦a, then (H,◦) is called a hypergroup. A non-empty subset K of a semihy-
pergroup (H,◦) is called a sub-semihypergroup if it is a semihypergroup. In other words,
a non-empty subset K of a semihypergroup (H,◦) is a sub-semihypergroup if K ◦K ⊆ K.
In [1, 2, 12], Davvaz et al. studied the notion of a Γ-semihypergroup as a generalization of
a semihypergroup. Many classical notions of semigroups and semihypergroups have been
extended to Γ-semihypergroups and a lot of results on Γ-semihypergroups are obtained.

In [1] Davvaz et al. introduced the notion of roughness in a Γ-semihypergroup and dis-
cuss rough sets with respect to an idempotent regular relation in a quotient Γ-semihypergroup
and upper approximation with respect to Green equivalence relations. In this paper, first, we
consider the notion of a Γ-semihyperring as a generalization of semiring, a generalization
of a semihyperring and a generalization of a Γ-semiring. Then, we introduce the notion of a
rough sub Γ-semihyperring (ideal) of a Γ-semihyperring and give some properties of lower
and upper approximations in a Γ-semihyperring. In addition, we introduce the concept of
rough sets in a quotient Γ-semihyperring.

Let R be a commutative semihypergroup and Γ be a commutative group. Then, R is
called a Γ-semihyperring if there exists a map R×Γ×R−→P∗(R) (the image of (a,α,b)
is denoted by aαb for a,b ∈ R and α ∈ Γ) satisfying the following conditions:

(i) aα(b+ c) = aαb+aαc,
(ii) (a+b)αc = aαc+bαc,

(iii) a(α +β )c = aαc+aβc,
(iv) aα(bβc) = (aαb)βc.

In the above definition if R is a semigroup, then R is called a multiplicative Γ-semihyperring.
A Γ-semihyperring R is called commutative if xαy = yαx for every x,y ∈ R and α ∈ Γ. We
say that R is a Γ-semihyperring with zero, if there exists 0 ∈ R such that a ∈ a + 0 and
0 ∈ 0αa, 0 ∈ aα0 for all a ∈ R and α ∈ Γ. Let A and B be two non-empty subsets of
Γ-semihyperring R. We define

AΓB = {x | x ∈ aαb a ∈ A, b ∈ B, α ∈ Γ}.
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A non-empty subset R1 of Γ-semihyperring R is called a sub Γ-semihyperring if it is closed
with respect to the hyperaddition and hypermultiplication. In other words, a non-empty
subset R1 of Γ-semihyperring R is a sub Γ-semihyperring if R1 +R1 ⊆ R1 and R1ΓR1 ⊆ R1.

Example 1.1. Let (R,+,◦) be a semihyperring such that x ◦ y = x ◦ y + x ◦ y and Γ be a
commutative group. We define xαy = x ◦ y for every x,y ∈ R and α ∈ Γ. Then, R is a
Γ-semihyperring.

Example 1.2. Let (R,+,◦) be a semiring and (Γ,+) be a subgroup of (R,+). We define
xαy = x◦α ◦ y for every x,y ∈ R and α ∈ Γ. Then, R is a Γ-semihyperring.

Example 1.3. Let R = Z4 and Γ = {0,2}. Then, R is a multiplicative Γ-semihyperring with
the following hyperoperation:

xαy = {0,2},
where x,y ∈ R and α ∈ Γ.

Example 1.4. Let R be a ring, {Ag}g∈R be a family of disjoint non-empty sets and (Γ,+)
be a subgroup of (R,+). Then, S =

⋃
g∈R Ag is a Γ-semihyperring with the following hyper-

operations:
x⊕ y = Ag1+g2 , xαy = Ag1αg2 ,

where x ∈ Ag1 and y ∈ Ag2 .

Definition 1.1. A non-empty subset I of Γ-semihyperring R is a right (left) ideal of R if I is
a subhypergroup of (R,+) and IΓR ⊆ I (RΓI ⊆ I), and is an ideal of R if it is both a right
and a left ideal.

Let X be a non-empty subset of Γ-semihyperring R. By the term left ideal 〈X〉l (re-
spectively, right ideal 〈X〉r) of R generated by X , we mean the intersection of all left ideals
(respectively, right ideals) of R contains X .

Proposition 1.1. Let R be a Γ-semihyperring with zero and X be a non-empty subset of R.
Then,

(1) 〈X〉l =

{
t | t ∈

n

∑
i=1

nixi +
m

∑
j=1

r jα jx j ,ni,m,n ∈ N,r j ∈ R,α j ∈ Γ,x j ∈ X

}
,

(2) 〈X〉r =

{
t | t ∈

n

∑
i=1

nixi +
m

∑
j=1

x jα jr j ,ni,m,n ∈ N,x j ∈ X ,r j ∈ R,α j ∈ Γ

}
,

(3) 〈X〉=

{
t | t ∈

n1

∑
i=1

mixi +
n2

∑
j=1

r jα jx j

+
n3

∑
r=1

yrβrrr +
n4

∑
t=1

rtαtxtβtst ,ni ∈ N,xi ∈ X ,r j ∈ R,

}
.

Proof. The proof is straightforward.

Definition 1.2. Let R be a Γ-semihyperring and P a proper ideal of R. Then, P is called
prime if for every x,y ∈ R, xΓRΓy⊆ P implies x ∈ P or y ∈ P.

Proposition 1.2. Let R be a Γ-semihyperring with zero and P be an ideal of R. Then, the
following statement are equivalent:
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(i) P is prime,
(ii) IΓJ ⊆ P implies that I ⊆ P or J ⊆ P where I and J are two ideals of R.

Proof. It is straightforward.

Example 1.5. Let S be a Γ-semihyperring in Example 1.4 and Γ ⊆ R be a subgroup of
(R,+). If P is a prime ideal of R such that Γ∩P = /0, then SP =

⋃
g∈P Ag is a prime ideal of

S.

Let A and B be two non-empty subsets of R and ρ a relation on R. We define (A,B) ∈ ρ

if for every a ∈ A there exists b ∈ B such that (a,b) ∈ ρ and for every c ∈ B there exists
d ∈ A such that (d,c) ∈ ρ and (A,B) ∈ ρ if for every a ∈ A and b ∈ B, (a,b) ∈ ρ . Let R be
a Γ-semihyperring. An equivalence relation ρ on R is called regular if for every x ∈ R and
α ∈ Γ, we have

(a,b) ∈ ρ implies (a+ x)ρ(b+ x),(aαx)ρ(bαx) and (xαa)ρ(xαb).

The relation ρ is called strongly regular if for every x ∈ R and α ∈ Γ, we have

(a,b) ∈ ρ implies (a+ x)ρ(b+ x),(aαx)ρ(bαx) and (xαa)ρ(xαb).

Let A be a non-empty subset of R. We define ρ(A) = {ρ(a) | a ∈ A}. Relation ρ is called
semi-complete, if for every x,y ∈ R and α ∈ Γ, ρ(xαy)⊆ ρ(x)αρ(y) and ρ(x+y)⊆ ρ(x)+
ρ(y).

Lemma 1.1. Let R be a Γ-semihyperring and ρ be a regular relation on R. If a,b ∈ R and
α ∈ Γ, then ρ(a)αρ(b)⊆ ρ(aαb) and ρ(a)+ρ(b)⊆ ρ(a+b).

Proof. Let x ∈ ρ(a)αρ(b). There exist x1 ∈ ρ(a) and x2 ∈ ρ(b) such that x ∈ x1αx2. Since
ρ is a regular relation, we have (x1αx2)ρ(aαb). So, there exists y∈ aαb such that (x,y)∈ ρ .
Therefore, x ∈ ρ(aαb). In the same way, ρ(a)+ρ(b)⊆ ρ(a+b).

Proposition 1.3. Let ρ be a regular relation on a Γ-semihyperring R. If a,b ∈ R and α ∈ Γ,
then

(i) ρ(a+b) = {ρ(c) | c ∈ ρ(a)+ρ(b)},
(ii) ρ(aαb) = {ρ(c) | c ∈ ρ(a)αρ(b)}.

Proof. Let c ∈ ρ(a)+ρ(b). Then, there exist x1 ∈ ρ(a) and x2 ∈ ρ(b) such that c ∈ x1 +x2.
Since ρ is a regular relation, there exists x ∈ a + b such that (x,c) ∈ ρ . Hence ρ(a + b) =
{ρ(c) | c ∈ ρ(a)+ρ(b)}.
(ii) The proof is similar to (i).

Let I be a non-empty subset of a Γ-semihyperring R. We say that I is a 2-ideal of R if it
satisfy the following condition:

(i) I +R⊆ I and R+ I ⊆ I,
(ii) IαR⊆ I and RαI ⊆ I for every α ∈ Γ.

A 2-ideal I of R generates a regular relation as follows:

xρy⇐⇒ x = y or x,y ∈ I.

Let (R1,Γ1) and (R2,Γ2) be two Γ1- and Γ2-semihyperrings, respectively and f : Γ1 −→
Γ2 be a map. Then, ψ : R1 −→ R2 is called a (Γ1,Γ2)-homomorphism (shortly, a homomor-
phism) if for every x,y ∈ R and α ∈ Γ

(i) ψ(x+ y) = {ψ(t) | t ∈ x+ y} ⊆ ψ(x)+ψ(y),
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(ii) ψ(xαy) = {ψ(t) | t ∈ xαy} ⊆ ψ(x) f (α)ψ(y),
(iii) f (x+ y) = f (x)+ f (y).

In the above definition if ψ(x+ y) = ψ(x)+ψ(y) and ψ(xαy) = ψ(x) f (α)ψ(y), then ψ is
called a strong homomorphism. The set kerψ = {(a,b) ∈ R1×R2 | ψ(a) = ψ(b)} is called
the kernel of ψ .

Proposition 1.4. Let ψ be a strong homomorphism. Then, kerψ is a regular relation on R.

Proof. It is easy to see that kerψ is an equivalence relation on R. Let a,b,x ∈ R, α ∈ Γ and
(a,b) ∈ kerψ . Thus, ψ(a) = ψ(b). Now, we have

ψ(a+ x) = ψ(a)+ψ(x) = ψ(b)+ψ(x) = ψ(b+ x),

ψ(aαx) = ψ(a) f (α)ψ(x) = ψ(b) f (α)ψ(x) = ψ(bαx).
Hence for every z1 ∈ a + x there exist z2 ∈ b + x such that (z1,z2) ∈ kerψ and for every
z3 ∈ aαx there exists z4 ∈ bαx such that (z3,z4) ∈ kerψ . Hence (a + x)kerψ(b + x) and
(aαx)kerψ(bαx). In the same way, (xαa)kerψ(xαb) which implies that kerψ is a regular
relation.

Example 1.6. Let S1 =
⋃
n∈Z

An and S2 =
⋃
n∈Z

Bn be the Z-semihyperrings in Example 1.4

and f : Z −→ Z be the identity map, where An = (n,n + 1) and Bn = (2n,2n +2) are open
intervals in R. Then, ψ : S1 −→ S2 defined by ψ(x) = 2x is a strong homomorphism.

In the following example ψ is not a strong homomorphism but kerψ is a regular relation
on R.

Example 1.7. In Example 1.4, suppose that R = {An | n ∈ Z} where An = [n,n+1). Then,
R is a Z-semihyperring. For every x ∈ R there exists n ∈ N such that x ∈ An. Now, consider
ψ : R −→ R defined by ψ(x) = n where x ∈ An and f : Z −→ Z is the identity map. Then,
ψ is a homomorphism.

It is easy to see that in the above example kerψ is a strong regular relation.

2. Lower and upper approximations

Let R be a Γ-semihyperring. Recall that an equivalence relation ρ on R is a reflexive,
symmetric, and transitive binary relation on R. If ρ is an equivalence relation on R then the
equivalence class of x ∈ R is the set {y ∈ R | (x,y) ∈ ρ}. We write it as ρ(x). Let A be a
non-empty subset of R. Then, the sets

Aprρ(A) = {x | ρ(x)∩A 6= /0} and Apr
ρ
(A) = {x | ρ(x)⊆ A},

are called, respectively, the lower and upper approximations of the set A with respect to ρ .
Aprρ(A) = (Aprρ(A),Apr

ρ
(A)) is called a rough set with respect to ρ . A non-empty sub-

set A of R is called an upper (lower) rough ideal (sub Γ-semihyperring) of R if Aprρ(A)
(Apr

ρ
(A)) is an ideal (sub Γ-semihyperring)

of R and is called a rough ideal (sub Γ-semihyperring) if Aprρ(A) and Apr
ρ
(A) are ideals

(sub Γ-semihyperring) of R .

Theorem 2.1. Let (ψ, f ) be a homomorphism of Γ-semihyperring R1 to a Γ2-semihyperring
R2, ρ be an equivalence relation on R2 and A be a non-empty set of R1. Then,
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(i) If ψ is a strong homomorphism and ρ a regular (strongly regular) relation on R2,
then Θ = {(a,b) ∈ R1×R1 | (ψ(a),ψ(b)) ∈ ρ} is a regular (strongly regular) re-
lation on R1.

(ii) If ψ is an epimorphism, then (ψ, f )(AprΘ(A)) = Aprρ ψ(A).
(iii) If ψ is an epimorphism, then (ψ, f )(Apr

Θ
(A))⊆ Apr

ρ
ψ(A).

Proof. (i) Let (a,b) ∈ ρ , x ∈ R1 and α ∈ Γ. Then, (ψ(a),ψ(b)) ∈ ρ . Then, (ψ(a) +
ψ(x),ψ(b)+ψ(x))∈ ρ and (ψ(a) f (α)ψ(x),ψ(b) f (α)ψ(x))∈ ρ which implies that (ψ(a+
x),ψ(b+x)) ∈ ρ and (ψ(aαx),ψ(bαx)) ∈ ρ. Then, (a+x,b+x) ∈Θ and (aαx,bαx) ∈Θ.
In the same way one can see that if ρ is a strongly regular relation, then Θ is a strongly
regular relation.

(ii) Suppose that y is an element of (ψ, f )(AprΘ(A)). Then, there exists x ∈ AprΘ(A)
such that (ψ, f )(x) = ψ(x) = y. So, Θ(x)∩A 6= /0 and there exists a ∈ Θ(x)∩A. Then,
ψ(a)∈ψ(A) and (ψ(a),ψ(x))∈ ρ . So, ρ(ψ(x))∩ψ(A) 6= /0 which implies that y = ψ(x)∈
Aprρ(ψ(A)). Therefore, we conclude that (ψ, f )(AprΘ(A)) ⊆ Aprρ ψ(A). Conversely, let
y ∈ Aprρ ψ(A). Then, there exists x ∈ R1 such that ψ(x) = y. Hence ρ(ψ(x))∩ψ(A) 6= /0.
So, there exists a ∈ A and ψ(a) ∈ ρ(ψ(x)). Now, by definition of Θ we have (a,x) ∈ Θ.
Thus, Θ(x)∩A 6= /0. Hence y = ψ(x) ∈ ψ(AprΘ(A)). This completes the proof.

(iii) The proof is similar to (ii).

Proposition 2.1. Let R1 and R2 be two Γ1 and Γ2-semihyperring respectively and ψ be a
homomorphism from R1 to R2. If A is a non-empty subset of R1, then ψ(Aprkerψ(A))= ψ(A).

Proof. Since A⊆ Aprkerψ(A), it follows that ψ(A)⊆ ψ(Aprkerψ(A)). Conversely, suppose
that y ∈ ψ(Aprkerψ(A)). Then, there exists x ∈ Aprkerψ(A) such that ψ(x) = y, so there
exists an element a ∈ A such that ψ(x) = ψ(a). Therefore, y = ψ(x) = ψ(a) ∈ ψ(A). This
completes the proof.

Example 2.1. Let R be the Γ-semihyperring in Example 1.7. If A = {1,2}, then Aprkerψ(A)=
[1,2)∪[2,3) and Apr

kerψ
(A)= /0. Hence ψ(Aprkerψ(A))= ψ(A)= {1,2} and ψ(Apr

kerψ
(A))

⊆ ψ(A). If B = [0,1), then Apr
kerψ

(B) = Aprkerψ(B) = [0,1).

Theorem 2.2. Let ρ be a regular relation on a Γ-semihyperring R and A,B be two non-
empty subsets of R. Then,

(i) Aprρ(A)ΓAprρ(B)⊆ Aprρ(AΓB).
(ii) If ρ is semi-complete, then Apr

ρ
(A)ΓApr

ρ
(B)⊆ Apr

ρ
(AΓB).

Proof. (i) Let x ∈ Aprρ(A)ΓAprρ(B). Then, x ∈ x1αx2 with x1 ∈ Aprρ(A), x2 ∈ Aprρ(B)
and α ∈ Γ. Hence there exist a∈A and b∈B such that (a,x1)∈ ρ and (b,x2)∈ ρ . Since ρ is
a regular relation, it follows that aαb⊆ ρ(x1)αρ(x2)⊆ ρ(x1αx2). So, ρ(x1αx2)∩AΓB 6= /0
which implies that Aprρ(A)ΓAprρ(B)⊆ Aprρ(AΓB).

(ii) Let x ∈ Apr
ρ
(A)ΓApr

ρ
(B). Then, x ∈ x1αx2 with x1 ∈ Apr

ρ
(A) and x2 ∈ Apr

ρ
(B)

and α ∈ Γ. It follows that ρ(x1) ⊆ A and ρ(x2) ⊆ B. Since ρ is a semi-complete relation,
we have

ρ(x) ∈ ρ(x1αx2)⊆ ρ(x1)αρ(x2)⊆ AΓB,

which implies that x ∈ Apr
ρ
(AΓB). This completes the proof.
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Example 2.2. Let R be the Γ-semihyperring in Example 1.7. If A = {0} and B = [1,2] are
subsets of R, then AΓB = A0 = [0,1). Also, Apr

kerψ
(A) = /0 and Apr

kerψ
(B) = [0,1) = A0

and so Apr
kerψ

(A)ΓApr
kerψ

(B)= /0ΓA0 = /0. Then, Apr
kerψ

(A)ΓAprkerψ
(B)⊂Aprkerψ

(AΓB).

Proposition 2.2. Let ρ be a regular relation on a Γ-semihyperring R and A,B be two non-
empty subsets of R. Then,

(i) Aprρ(A)+Aprρ(B)⊆ Aprρ(A+B).
(ii) If ρ is semi-complete relation, then Apr

ρ
(A)+Apr

ρ
(B)⊆ Apr

ρ
(A+B).

Proof. (i) Let x ∈ Aprρ(A) + Aprρ(B). Then, x ∈ x1 + x2 with x1 ∈ Aprρ(A) and x2 ∈
Aprρ(B). Hence there exist a ∈ A and b ∈ B such that (x1,a) ∈ ρ and (x2,b) ∈ ρ . Since ρ is
a regular relation, there exists y ∈ a+b such that (x,y) ∈ ρ . Since a+b⊆ A+B, it follows
that ρ(x)∩ (A+B) 6= /0. This implies that Aprρ(A)+Aprρ(B)⊆ Aprρ(A+B).

(ii) Let x ∈Apr
ρ
(A)+Apr

ρ
(B). Then, x ∈ x1 +x2 with x1 ∈Apr

ρ
(A) and x2 ∈Apr

ρ
(B).

It follows that ρ(x1) ⊆ A and ρ(x2) ⊆ B. Since ρ is a semi-complete relation, we have
ρ(x) ∈ ρ(x1 + x2) ⊆ ρ(x1) + ρ(x2) ⊆ A + B, and so x ∈ Apr

ρ
(A + B). Hence Apr

ρ
(A) +

Apr
ρ
(B)⊆ Apr

ρ
(A+B).

Example 2.3. Let R be the Γ-semihyperring in Example 1.7, A = {0} and B = {1}. Then,
Aprkerψ(A) + Aprkerψ(B) = Aprkerψ(A + B) = [1,2) and /0 = Apr

kerψ
(A) + Apr

kerψ
(B) ⊂

Apr
kerψ

(A+B) = [1,2).

Proposition 2.3. Let R be a Γ-semihyperring and ρ be a regular and semi-complete relation
on R. If A,B are non-empty subsets of R, then

(i) Aprρ(A)+Aprρ(B) = Aprρ(A+B).
(ii) Aprρ(A)ΓAprρ(B) = Aprρ(AΓB).

Proof. (i) Let x ∈ Aprρ(A + B). Then, ρ(x)∩ (A + B) 6= /0. Therefore, there exists y ∈
ρ(x)∩(A+B), and so for some a∈A and b∈B, we have y∈ a+b. Now, we have x∈ ρ(y)⊆
ρ(a + b) ⊆ ρ(a)+ ρ(b). Thus, there exist x1 ∈ ρ(a) and x2 ∈ ρ(b) such that x ∈ x1 + x2.
So, ρ(x1)∩A 6= /0 and ρ(x2)∩B 6= /0. Hence x1 ∈Aprρ(A) and x2 ∈Aprρ(B) which implies
that x ∈ Aprρ(A) + Aprρ(B). Now, by Proposition 2.2, we have Aprρ(A) + Aprρ(B) =
Aprρ(A+B).

(ii) The proof is similar to (i)

Theorem 2.3. Let ρ be a regular relation on a Γ-semihyperring R. If R1 is a sub Γ-
semihyperring of R, then

(i) R1, is an upper rough sub Γ-semihyperring.
(ii) If ρ is semi-complete relation, then R is a lower rough sub Γ-semihyperring.

Proof. (i) By Theorem 2.2 and Proposition 2.2, Aprρ(R1) + Aprρ(R1) ⊆ Aprρ(R1) and
Aprρ(R1)ΓAprρ(R1)⊆ Aprρ(R1). Hence Aprρ(R1) is a sub Γ-semihyperring.

(ii) By Propositions 2.2 and 2.2 the proof is easy.

Proposition 2.4. Let ρ be a regular relation on a Γ-semihyperring R. If I is an ideal of R,
then

(i) I is an upper rough ideal.
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(ii) If ρ is a semi-complete relation, then I is a lower rough ideal.

Proof. The proof is straightforward.

Example 2.4. Let R be the Γ-semihyperring in Example 1.7 and I =
⋃

n∈2Z
An. Then, I is an

ideal of R and Aprkerψ(I), Apr
kerψ

(I) are ideals.

Proposition 2.4, shows that the notion of an upper rough ideal is an extended notion of a
usual ideal of a ring. It is not difficult to see that the converse of Proposition 2.4 does not
hold in general.

Example 2.5. Let R be the Γ-semihyperring in Example 1.7 and A = {0}. Then, Aprkerψ(A)
is an ideal of R but A = {0} is not an ideal of R.

Corollary 2.1. Let R be a Γ-semihyperring, ρ be a regular relation and I be a 2-ideal of R.
Then, Aprρ(I) is a 2-ideal of R and if ρ is a semi-complete regular relation, then Apr

ρ
(I) is

a 2-ideal.

Theorem 2.4. Let ρ be a regular relation on R. If I and J are two right and left ideals of R,
respectively, then

Aprρ(IΓJ)⊆ Aprρ(I)∩Aprρ(J) and Apr
ρ
(IΓJ)⊆ Apr

ρ
(I)∩Apr

ρ
(J).

Proof. Let I and J are a right ideal and a left ideal of R, respectively. Then, IΓJ ⊆ IΓR⊆ I
and IΓJ ⊆ RΓJ ⊆ J. Hence IΓJ ⊆ I∩ J. Then, we have

Aprρ(IΓJ)⊆ Aprρ(I∩ J)⊆ Aprρ(I)∩Aprρ(J)

and
Apr

ρ
(IΓJ)⊆ Apr

ρ
(I)∩Apr

ρ
(J).

Example 2.6. Let R be the Γ-semihyperring in Example 1.7. We know that I =
⋃

n∈2Z An is
an ideal of R and Aprkerψ(I) = I. But Aprkerψ(IΓI)⊂ Aprkerψ(I).

In the following example we show that in Theorem 2.4, I and J must be ideals.

Example 2.7. Let R be the Γ-semihyperring in Example 1.7, A = {0} and B = {1}. It
easy to see that A and B are not ideals of R. We know Apr

kerψ
(A) = Apr

kerψ
(B) = /0 and

Apr
kerψ

(AΓB) = A.

Proposition 2.5. Let R be a commutative Γ-semihyperring with zero, ρ a semi-complete
regular relation on R and P be a prime ideal of R. Then, Apr

ρ
P is a prime ideal of R or the

empty set.

Proof. By Proposition 2.4, Apr
ρ
(P) is an ideal of R. Suppose that Apr

ρ
(P) is not a prime

ideal of R. There exist ideals A,B of R such that AΓB ⊆ Apr
ρ
(P) and A * Apr

ρ
(P), and

B * Apr
ρ
(P). Then, there exist a ∈ A \Apr

ρ
(P) and b ∈ B \Apr

ρ
(P). Hence there exist

x1 ∈ ρ(a)\P and x2 ∈ ρ(b)\P. Since ρ is a regular relation,

x1Γx2 ⊆ ρ(a)Γρ(b)⊆ ρ(aΓb)⊆ P.

This implies that 〈x1〉Γ〈x2〉 ⊆ P. Since P is a prime ideal of R, x1 ∈ P or x2 ∈ P. It is a
contradiction. Then, Apr

ρ
(P) is a prime ideal of R.
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Example 2.8. Let R be the Γ-semihyperring in Example 1.7. Then, P = A0 is a prime ideal
of R.

3. Approximation in multiplicative Γ-semihyperring

In this section, we assume that R is a multiplicative Γ-semihyperring with zero. Let I be an
ideal of R. One can see that the following relation is a regular relation:

(x,y) ∈ ρI ⇐⇒∃ a,b ∈ I such that, x+a = y+b.

An ideal I of a Γ-semihyperring R is called subtractive if a∈ I, a+b⊆ I, implies that b∈ I.

Example 3.1. Let R be a ring and I, Γ two subgroups of (R,+) such that IΓ = ΓI = 0.
Then, R is a multiplicative Γ-semihyperring with respect to the following hyperoperation:

x ·α · y = xαy+ I.

Example 3.2. Let R = Z6, Γ = {0,3} and I = {0,2,4}. Then, R is a multiplicative Γ-
semihyperring with respect to the above hyperoperation.

Proposition 3.1. Let R be a multiplicative Γ-semihyperring, J be a subtractive ideal of R
and I an ideal of R contained in J. Then, AprρI

(J) = J and if Apr
ρI

(J) 6= /0, then Apr
ρI

(J) =
J.

Proof. Suppose that x ∈ AprρI
(J) then there exist y ∈ J and x1,x2 ∈ I such that y + x1 =

x+x2. Since I ⊆ J and J is a subtractive ideal of R, x ∈ J. Hence AprρI
(J) = J. In the same

way we can prove that Apr
ρI

(J) = J.

Theorem 3.1. Let (R1,Γ1) and (R2,Γ2) be two multiplicative Γ1 and Γ2-semihyperrings
and (ψ, f ) : (R1,Γ1)−→ (R2,Γ2) be a strong isomorphism. If I is an ideal of R1 and A is a
non-empty subset of R1, then

(i) Aprρψ(I)
ψ(A) = ψ(AprρI

(A)),
(ii) Apr

ρψ(I)
ψ(A) = ψ(Apr

ρI
(A)).

Proof. (i) Suppose that y is an element of ψ(AprρI
(A)). Then, there exists x ∈ AprρI

(A)
such that ψ(x) = y. Hence ρI(x)∩A 6= /0 and so there exists a ∈ ρI(x)∩A. Then, ψ(a) ∈
ψ(A) and there exist x1,x2 ∈ I such that a+ x1 = x+ x2. Hence ψ(a)+ϕ(x1) = y+ψ(x2).
Then, y ∈ Aprρψ(I)

ψ(A).

Conversely, let y∈Aprρψ(I)
ψ(A). Since ψ is onto, there exists x∈ R1 such that y = ψ(x).

Hence there exist x1,x2 ∈ I such that ψ(x)+ ψ(x1) = ψ(x2)+ ψ(a). Since ψ is one-one,
ψ(x + x1) = ψ(x2 + a) implies that x + x1 = x2 + a. Since x1,x2 ∈ I and a ∈ A, then x ∈
AprρI

(A). It means Aprρψ(I)
ψ(A)⊆ ψ(AprρI

(A)).
(ii) Suppose that y is an element of ψ(Apr

ρI
(A)). Then, there exists x ∈ Apr

ρI
(A) such

that y = ψ(x). We have ρI(x)⊆ A. We show that ψ(ρI(x)) = ρψ(I)ψ(x). Let z ∈ ψ(ρI(x)).
Then, there exists t ∈ ρI(x) such that z ∈ ψ(x). As t ∈ ρI(x) there exist x1,x2 ∈ I such that
t + x1 = x + x2 and then z + ψ(x1) = ψ(x)+ ψ(x2) such that z = ψ(t). Hence ψ(ρI(x)) ⊆
ρψ(I)ψ(x). Let z1 ∈ ρψ(I)ψ(x). Then, there exist x1,x2 ∈ I and r ∈ R such that

z1 = ψ(r) and z1 +ψ(x1) = ψ(x)+ψ(x2).
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Since ψ is an isomorphism, r ∈ ρI(x). Therefore, ψ(ρI(x)) = ρψ(I)ψ(x). This implies
that ψ(Apr

ρI
(A)) ⊆ Apr

ρψ(I)
ψ(A). Conversely, let y ∈ Apr

ρψ(I)
ψ(A). Then, there exist

x1,x2 ∈ I such that y + ψ(x1) = ψ(x) + ψ(x2). Since ψ is onto, then y = ψ(t) for some
t ∈ R. Since ψ(t + x1) = ψ(x + x2), we have t + x1 = x + x2. Hence t ∈ ρI(x). Then,
y = ϕ(t) ∈ ψ(Apr

ρI
(A)) and so Apr

ρψ(I)
ψ(A)⊆ ψ(Apr

ρI
(A)).

Theorem 3.2. Let (R1,Γ1) and (R2,Γ2) be two Γ1 and Γ2-semihyperrings respectively and
(ϕ, f ) : (R1,Γ1) −→ (R2,Γ2) be a (Γ1,Γ2)-isomorphism. If I is an ideal of R2 and A is a
non-empty subset of (R1,Γ1), then

(ϕ−1, f−1)(AprρI
(ϕ(A)) = Aprρ

ϕ−1(I)
(A).

Proof. The proof is straightforward.

Corollary 3.1. Let (R1,Γ1) and (R2,Γ2) be two Γ1 and Γ2-semihyperrings respectively and
(ϕ, f ) be an isomorphism from (R1,Γ1) to (R2,Γ2). If I is an ideal of (R2,Γ2) and A is a
non-empty subset of R1, then

(i) Apr
ρ
−1
ϕ (I)(A) is an ideal of (R1,Γ1) if and only if AprρI

ϕ(A) is an ideal of (R2,Γ2).

(ii) Apr
ρ
−1
ϕ (I)(A) is a prime ideal of (R1,Γ1) if and only if AprρI

ϕ(A) is a prime ideal

of (R2,Γ2).

4. Rough sets in a quotient Γ-semihyperring

Let ρ be a regular relation on a Γ-semihyperring R and A⊆R. Then, R/ρ = {ρ(a) | a∈R} is
a Γ̂-semihyperring where Γ̂ = {α̂ |α ∈ Γ}. Let ρ(a), ρ(b)∈R/ρ . We define ρ(a)⊕ρ(b) =
ρ(a+b) and ρ(a)α̂ρ(b) = ρ(aαb). One can see that R/ρ is a Γ-semihyperring. Let A be a
non-empty subset of R. Then,

Aprρ A = {ρ(a) | ρ(a)∩A 6= ∅} and Apr
ρ

A = {ρ(a) | ρ(a)⊆ A}.

Example 4.1. Let R be a Γ-semihyperring in Example 1.7. If A = {0,1} is a subset of R,
then Aprkerψ(A) = [0,1)∪ [1,2) and Apr

kerψ
(A) = /0. If A = [0,1] is a subset of R, then

Aprkerψ(A) = [0,1)∪ [1,2) and Apr
kerψ

(A) = [0,1). If A = [2,3) is a subset of R, then

Aprkerψ(A) = Apr
kerψ

(A).

Proposition 4.1. Let ρ be a regular relation on Γ-semihyperring R. Then, the following
statement are true.

(i) If I is an ideal of R, then Aprρ(I)is an ideal of R/ρ ,
(ii) Let ρ be a semi-complete regular relation and I be an ideal of R, then Apr

ρ
(I) is

an ideal of R/ρ .

Proof. (i) Let ρ(x1), ρ(x2) ∈ Aprρ(I). Then, ρ(x1)∩ I 6= /0 and ρ(x2)∩ I 6= /0. This implies
that x1,x2 ∈ Aprρ(I). Since Aprρ(I) is an ideal of R, x1 + x2 ⊆ Aprρ(I). Then, for every

t ∈ x1 + x2, ρ(t)∩ I 6= /0. Hence ρ(x1)⊕ρ(x2) ⊆ Aprρ I. Let ρ(x) ∈ Aprρ(I), ρ(y) ∈ R/ρ

and α ∈ Γ. Then, ρ(x)∩ I 6= /0. This implies that x ∈ Aprρ(I). Since Aprρ(I) is an ideal
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of R, xαy ⊆ Aprρ(I). Then, ρ(xαy)∩ I 6= /0. Then, for every t ∈ xαy, ρ(t)∩ I 6= /0 which

implies that ρ(x)α̂ρ(y) ⊆ Aprρ I. Similarly, ρ(y)α̂ρ(x) ⊆ Aprρ I. Then, Aprρ I is an ideal
of R/ρ

(ii) Let ρ(x1), ρ(x2) ∈ Apr
ρ

I. Then, ρ(x1)⊆ I and ρ(x2)⊆ I. This implies that x1, x2 ∈
Aprρ I. Since Aprρ I is an ideal of R, x1 +x2⊆Aprρ I. We have ρ(x1)⊕ρ(x2) = ρ(x1 +x2)⊆
I. Hence ρ(x1)⊕ρ(x2)⊆ Apr

ρ
I. Let ρ(x) ∈ Apr

ρ
(I), ρ(y) ∈ R/ρ and α ∈ Γ. This implies

that x ∈ Apr
ρ
(I). Since Apr

ρ
(I) is an ideal of R, xαy ⊆ Apr

ρ
(I). Then, ρ(xαy) = {ρ(t) |

t ∈ xαy} ⊆ Apr
ρ
(I). We have ρ(x)α̂ρ(y) = ρ(xαy) ⊆ I. Then, ρ(x)α̂ρ(y) ⊆ Apr

ρ
(I).

Similarly, ρ(y)α̂ρ(x) = ρ(yαx)⊆ Apr
ρ
(I)⊆ I. Then, Apr

ρ
(I) is an ideal of R/ρ .

Proposition 4.2. Let R be a commutative Γ-semihyperring, ρ be a semi-complete regular
relation and P is a prime ideal of R. Then, Apr

ρ
(P) is a prime ideal of R/ρ .

Proof. By Proposition 4.1, Apr
ρ
(P) is an ideal of R/ρ . Suppose that Apr

ρ
(P) is not prime

ideal of R. Then, there exist A,B ⊆ R/ρ , such that A and B are ideals, AΓ̂B ⊆ Apr
ρ
(P)

and A * Apr
ρ
(P) and B * Apr

ρ
(P). Then, there exist ρ(a) ∈ A \Apr

ρ
(P) and ρ(b) ∈ B \

Apr
ρ
(P). Since ρ(a)α̂ρ(b)⊆ AΓ̂B ⊆ Apr

ρ
(P) and Apr

ρ
(P) is a prime ideal, a ∈ Apr

ρ
(P)

or b ∈Apr
ρ
(P). It is contradiction, since ρ(a) * P and ρ(b) * P. Then, Apr

ρ
(P) is a prime

ideal of R/ρ .

Theorem 4.1. Let (R1,Γ1) and (R2,Γ2) be multiplicative Γ1 and Γ2-semihyperring with
zero respectively, (ϕ, f ) : (R1,Γ1) −→ (R2,Γ2) be a strong (Γ1,Γ2)-epimorphism and A
be a sub Γ1-semihyperring R1. Then, (ϕ, f ) induces a (Γ1,Γ2)-homomorphism betweens
AprρI

(A) and Aprρϕ(I)
(A).

Proof. One can see that ϕ(A) is a sub Γ2-semihyperring of R2. We know that AprρI
(A) is

a sub Γ̂1-semihyperring of R1/ρI and Aprρϕ(I)
ϕ(A) is a sub Γ̂2-semihyperring of R2/ρϕ(I).

we define

ϕ : Aprρ(A)−→ Aprρϕ(I)
ϕ(A),

ρI(x) 7−→ ρϕ(I)ϕ(x)

and
f : Γ1 −→ Γ2

α̂ −→ f̂ (α)

We prove that ϕ is well-defined function. Suppose that ρI(x) = ρI(y), then there exist
x1,x2 ∈ I such that x+x1 = y+y1. Since (ϕ, f ) is a strong homomorphism, ϕ(x)+ϕ(x1) =
ϕ(y)+ϕ(y1). Therefore, ρϕ(I)ϕ(x) = ρϕ(I)ϕ(y). Thus, ϕ is well-defined. Now we have

ϕ(ρI(x)⊕ρI(y)) = ϕ(ρI(x+ y)) = ρϕ(I)ϕ(x+ y)
= ρϕ(I)(ϕ(x)+ϕ(y)) = ρϕ(I)ϕ(x)⊕ρϕ(I)ϕ(y)
= ϕ(ρI(x))⊕ϕ(ρI(y)),
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and
ϕ(ρI(x)α̂ρI(y)) = ϕ(ρI(xαy)) = ϕ{ρI(t) | t ∈ xαy}

= {ρϕ(I)ϕ(t) | t ∈ xαy}= ρϕ(I)ϕ(xαy)
= ρϕ(I)(ϕ(x) f̂ (α)ϕ(y)) = ρϕ(I)(ϕ(x)) f̂ (α)ρϕ(I)(ϕ(y))
= ϕ(ρI(x)) f̂ (α)ϕ(ρI(y)).

Hence (ϕ, f ) is a (Γ̂1, Γ̂2)-homomorphism.

Corollary 4.1. Let (ϕ, f ) : (R1,Γ1) −→ (R2,Γ2) be a strong isomorphism. Then, in Theo-
rem 4.3 induced homomorphism (ϕ, f ) is isomorphism.

Proof. Suppose that (ϕ, f )(ρI(x)) = (ϕ, f )(ρI(y)). Then, there exist x1,x2 ∈ I such that
ϕ(x)+ϕ(x1) = ϕ(y)+ϕ(x2). Since (ϕ, f ) is a strong isomorphism, ϕ(x+x1) = ϕ(y+x2).
Thus, x+ x1 = y+ x2 which implies that ρI(x) = ρI(y). Then, ( ϕ, f ) is isomorphism.

Proposition 4.3. Let R be a Γ-semihyperring and equivalence relation ξ on R defined by
the rule that (a,b) ∈ ξ if and only if a = b or a ∈ RΓb, b ∈ RΓa, a ∈ R + b and b ∈ R + a.
Assume that ρ ⊆ ξ be a regular relation. Then, (a,b) ∈ ξ if and only if (ρ(a),ρ(b)) ∈ ξ in
R/ρ .

Proof. Let a,b ∈ R such that (a,b) ∈ ξ . Then, a = b or a ∈ RΓb, b ∈ RΓa, a ∈ R + b
and a ∈ R + b. If a = b, then ρ(a) = ρ(b). Hence (ρ(a),ρ(b)) ∈ ξ . In the second case
there exists x1,x2,x3,x4 ∈ R and α,β ∈ Γ such that a ∈ x1αb, b ∈ x2βa, a ∈ x3 + b and
b∈ x4 +a. Then, ρ(a)∈ ρ(x1αb), ρ(b)∈ ρ(x2βa), ρ(a)∈ ρ(x3 +b) and ρ(b)∈ ρ(x4 +a).
So, ρ(a)∈ ρ(x1)α̂ρ(b), ρ(b)∈ ρ(x2)β̂ρ(a), ρ(a)∈ ρ(x3)⊕ρ(b) and ρ(a)∈ ρ(x4)⊕ρ(a).
Hence, (ρ(a),ρ(b)) ∈ ξ in R/ρ .

Conversely, let a,b∈R and (ρ(a),ρ(b))∈ ξ . Then, ρ(a)= ρ(b) or ρ(a)∈R/ρΓ̂ρ(b), ρ(b)∈
R/ρΓ̂ρ(a), ρ(a) ∈ R/ρ⊕ρ(b) and ρ(a) ∈ R/ρ⊕ρ(b). If ρ(a) = ρ(b), since ρ ⊆ ξ , then
(a,b) ∈ ξ . In the second case, ρ(a) ∈ ρ(RΓb), ρ(b) ∈ ρ(RΓa), ρ(a) ∈ ρ(R + b), ρ(b) ∈
ρ(R+a). Then, (a,b) ∈ ξ .

Corollary 4.2. Let ρ be a regular relation on Γ-semihyperring R such that ρ ⊆ ξ and A be
a non-empty subset of R. Then, Aprξ (A) = AprξR/ρ

(ρ(A)) where (ρ(a),ρ(b)) ∈ ξR/ρ if and
only if (ρ(a),ρ(b)) ∈ ξ in R/ρ .

Proof. The proof is straightforward by using Proposition 4.3.
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