A New Iterative Method for Generalized Equilibrium and Fixed Point Problems of Nonexpansive Mappings

${ }^{1}$ A. RaZAni And ${ }^{2}$ M. YAZDI
${ }^{1,2}$ Department of Mathematics, Faculty of Science, Imam Khomeini International University, P.O. Box: 34149-16818, Qazvin, Iran
${ }^{1}$ School of Mathematics, Institute for Research in Fundamental Sciences, P. O. Box 19395-5746, Tehran, Iran
${ }^{1}$ razani@ikiu.ac.ir, ${ }^{2}$ msh_yazdi@ikiu.ac.ir

Abstract

In this paper, a new iterative method for finding a common element of the set of solutions of a generalized equilibrium problem and the set of common fixed points of infinitely many nonexpansive mappings in Hilbert spaces, is introduced. For this method, a strong convergence theorem is given. This improves and extends some recent results.

2010 Mathematics Subject Classification: 47H10, 47H09
Keywords and phrases: Equilibrium problem, fixed point, nonexpansive mapping, iterative method, variational inequality.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. A mapping S of C into itself is called nonexpansive, if $\|S x-S y\| \leq\|x-y\|$, for all $x, y \in C$. Also, a contraction on C is a self-mapping S of C such that $\|S(x)-S(y)\| \leq k\|x-y\|$, for all $x, y \in C$, where $k \in(0,1)$ is a constant. Moreover, $F(S)$ denotes the fixed points set of S. Let $\phi: C \times C \rightarrow \mathbb{R}$ be a bifunction of $C \times C$ into \mathbb{R}. We recall an equilibrium problem as follows: The equilibrium problem for $\phi: C \times C \rightarrow \mathbb{R}$ is to find $u \in C$ such that

$$
\begin{equation*}
\phi(u, v) \geq 0, \quad \text { for all } v \in C . \tag{1.1}
\end{equation*}
$$

The set of solutions of (1.1) is denoted by $E P(\phi)$. Set $\phi(u, v)=\langle T u, v-u\rangle$, for all $u, v \in C$, where $T: C \rightarrow H$. Then, $w \in E P(\phi)$ if and only if $\langle T w, v-w\rangle \geq 0$, for all $v \in C$, that is, w is a solution of the variational inequality.

Combettes and Hirstoaga [4] introduced an iterative scheme for finding the best approximation to the initial data when $E P(\phi)$ is nonempty and proved a strong convergence theorem. The equilibrium problem (1.1) includes, as special cases, numerous problems in physics, optimization and economics. Some authors (such as $[6,7,10,11,14,15]$) have proposed some useful methods for solving the equilibrium problem (1.1). We describe some of them as follows:

[^0]In 2007, Plubtieng and Punpaeng [11] introduced an iterative scheme for finding a common element of the set of the solutions (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space as follows:

$$
\begin{cases}\phi\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, & \text { for all } y \in H, \tag{1.2}\\ x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S u_{n}, & n \geq 1 .\end{cases}
$$

where $\phi: H \times H \rightarrow \mathbb{R}$ is a bifunction, A is a strongly positive bounded linear operator on H, S is a nonexpansive mapping of H into itself such that $F(S) \cap E P(\phi) \neq \emptyset, f$ is a contraction, $\gamma>0$ is some constant, $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$. Also, they proved the strong convergence of $\left\{x_{n}\right\}$, defined by (1.2) and showed $\lim _{n \rightarrow \infty} x_{n}$ is the unique solution of a certain variational inequality.

Jung [7] introduced the following composite iterative scheme by the viscosity approximation method for finding a common point of the set of solutions of (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space:

$$
\begin{cases}\phi\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, & \text { for all } y \in C, \tag{1.3}\\ y_{n}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S u_{n}, & \\ x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S y_{n}, & n \geq 1,\end{cases}
$$

where $\phi: C \times C \rightarrow \mathbb{R}$ is a bifunction, S is a nonexpansive mapping of C into itself such that $F(S) \cap E P(\phi) \neq \emptyset, f$ is a contraction, $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$. He proved the sequence $\left\{x_{n}\right\}$, generated by (1.3), converges strongly to a point in $F(S) \cap E P(\phi)$ provided $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
(C2) $0<\liminf _{n \rightarrow \infty} r_{n}$ and $\sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$;
(C3) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$.
Jung [6] studied the following composite iterative scheme:

$$
\begin{cases}\phi\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, & \text { for all } y \in H, \tag{1.4}\\ y_{n}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S u_{n}, & \\ x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S y_{n}, & n \geq 1,\end{cases}
$$

where $\phi: H \times H \rightarrow \mathbb{R}$ is a bifunction, A is a strongly positive bounded linear operator on H, S is a nonexpansive mapping of H into itself such that $F(S) \cap E P(\phi) \neq \emptyset, f$ is a contraction, $\gamma>0$ is some constant, $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$. He proved, the sequence $\left\{x_{n}\right\}$, generated by (1.4), converges strongly to a point in $F(S) \cap E P(\phi)$ under the conditions ($C 1$), (C2) and (C3).

Wang et al. [15] introduced the following composite iterative scheme:

$$
\begin{cases}\phi\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, & \text { for all } y \in H, \tag{1.5}\\ y_{n}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) S_{n} u_{n}, & \\ x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S_{n} y_{n}, & n \geq 1,\end{cases}
$$

where $\phi: H \times H \rightarrow \mathbb{R}$ is a bifunction, A is a strongly positive bounded linear operator on $H,\left\{S_{n}\right\}$ is a countable family of nonexpansive mappings of H into itself such that $\bigcap_{n=1}^{\infty} F\left(S_{n}\right) \bigcap E P(\phi) \neq \emptyset, f$ is a contraction, $\gamma>0$ is some constant, $x_{1} \in H,\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ $\subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$. They proved, under any of the following conditions:
$\left(H_{1}\right) \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
$\left(H_{2}\right) \alpha_{n} \in(0,1]$ for every $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \alpha_{n} / \alpha_{n+1}=1$;
$\left(H_{3}\right)\left|\alpha_{n+1}-\alpha_{n}\right|<o\left(\alpha_{n+1}\right)+\sigma_{n}$ and $\sum_{n=1}^{\infty} \sigma_{n}<\infty$,
on the sequence $\left\{\alpha_{n}\right\},\left\{x_{n}\right\}$ (generated by (1.5)) converges strongly to a point in $\bigcap_{n=1}^{\infty} F\left(S_{n}\right)$ $\cap E P(\phi) \neq \emptyset$. Recently, Razani and Yazdi [14] study the convergence of a new version of composite iterative scheme (1.5).

In this paper, we prove a strong convergence theorem, concerning a new iterative scheme, for finding a common element of the set of solutions of a generalized equilibrium problem and the set of common fixed points of a countable family of nonexpansive mappings in a Hilbert space. In order to do this, we recall some definitions as follows:
A generalized equilibrium problem is to find $z \in C$ such that

$$
\begin{equation*}
\phi(z, y)+\langle A z, y-z\rangle \geq 0, \quad \text { for all } y \in C \tag{1.6}
\end{equation*}
$$

where $\phi: C \times C \rightarrow \mathbb{R}$ is a bifunction and $A: C \rightarrow H$ is a monotone map. The set of such $z \in C$ is denoted by $E P$, i.e.,

$$
E P=\{z \in C: \phi(z, y)+\langle A z, y-z\rangle \geq 0, \text { for all } y \in C\}
$$

In the case of $A \equiv 0, E P$ is denoted by $E P(\phi)$. Numerous problems in physics, variational inequalities, optimization, minimax problems, the Nash equilibrium problem in noncooperative games and economics reduce to finding a solution of (1.6) (see [8], for instance).

A mapping $A: C \rightarrow H$ is called α-inverse-strongly monotone [3], if there exists a positive real number α such that

$$
\langle A x-A y, x-y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \text { for all } x, y \in C
$$

Remark 1.1. If $A: C \rightarrow H$ is α-inverse-strongly monotone map, then it is $1 / \alpha$-Lipschitzian mapping.

Let B be a bounded operator on $C . B$ is strongly positive; that is, there exists a constant $\bar{\gamma}>0$ such that $\langle B x, x\rangle \geq \bar{\gamma}\|x\|^{2}$, for all $x \in C$. A typical problem is that of minimizing a quadratic function over the set of the fixed points of nonexpansive mapping on a real Hilbert space:

$$
\min _{x \in F(S)} \frac{1}{2}\langle B x, x\rangle-\langle x, b\rangle
$$

where b is a given point in H.
Remark 1.2. Iterative method for nonexpansive mappings have been applied to solve convex minimization problems (see [12, 13]).

In this paper, a new iterative method (motivated by the above results) is introduced as follows:

$$
\begin{cases}\phi\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle+\left\langle A x_{n}, y-u_{n}\right\rangle \geq 0, & \text { for all } y \in C, \tag{1.7}\\ y_{n}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) S_{n} u_{n}, & n \geq 1,\end{cases}
$$

where $\phi: C \times C \rightarrow \mathbb{R}$ is a bifunction, A is an α-inverse-strongly monotone, B is a strongly positive bounded linear operator on C; $\left\{S_{n}\right\}$ is a countable family of nonexpansive mappings of C into itself such that $\bigcap_{n=1}^{\infty} F\left(S_{n}\right) \cap E P \neq \emptyset ; f$ is a contraction, $x_{1} \in C,\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset[a, b] \subset(0,2 \alpha)$. Then, under any of three conditions $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$ on the sequence $\left\{\alpha_{n}\right\}$, the sequence $\left\{x_{n}\right\}$, generated by (1.7), converges strongly to a point in $\bigcap_{n=1}^{\infty} F\left(S_{n}\right) \cap E P$.

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle.,$.$\rangle and the norm \|$.$\| . Weak and strong$ convergence are denoted by notation \rightharpoonup and \rightarrow, respectively. In a real Hilbert space H,

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2},
$$

for all $x, y \in H$ and $\lambda \in \mathbb{R}$. Let C be a nonempty closed convex subset of H. Then, for any $x \in H$, there exists a unique nearest point in C, denoted by $P_{C}(x)$, such that

$$
\left\|x-P_{C}(x)\right\| \leq\|x-y\|, \quad \text { for all } y \in C .
$$

P_{C} is called the metric projection of H onto C. It is known P_{C} is nonexpansive. Further, for $x \in H$ and $z \in C$,

$$
z=P_{C}(x) \Leftrightarrow\langle x-z, z-y\rangle \geq 0, \quad \text { for all } y \in C .
$$

Now, we collect some lemmas which will be used in the main result.
Lemma 2.1. Let H be a real Hilbert space. Then for all $x, y \in H$,
(I) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$;
(II) $\|x+y\|^{2} \geq\|x\|^{2}+2\langle y, x\rangle$.

Lemma 2.2. [5] Let H be a real Hilbert space, C a closed convex subset of H and $T: C \rightarrow C$ a nonexpansive mapping with $F(T) \neq \emptyset$. If $\left\{x_{n}\right\}$ is a sequence in C weakly converging to x and if $\left\{(I-T) x_{n}\right\}$ converges to y, then $(I-T) x=y$.

Lemma 2.3. [2] Let C be a nonempty closed convex subset of H and $\phi: C \times C \rightarrow \mathbb{R} a$ bifunction satisfying the following conditions:
$\left(A_{1}\right) \phi(x, x)=0$ for all $x \in C$;
$\left(A_{2}\right) \phi$ is monotone, i.e., $\phi(x, y)+\phi(y, x) \leq 0$ for all $x, y \in C$;
$\left(A_{3}\right)$ for each $x, y, z \in C$,

$$
\lim _{t \downarrow 0} \phi(t z+(1-t) x, y) \leq \phi(x, y) ;
$$

$\left(A_{4}\right)$ for each $x \in C, y \mapsto \phi(x, y)$ is convex and weakly lower semicontinuous.
Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
\phi(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \text { for all } y \in C .
$$

Lemma 2.4. [4] Assume $\phi: C \times C \rightarrow \mathbb{R}$ satisfies $\left(A_{1}\right)-\left(A_{4}\right)$. For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r} x=\left\{z \in C: \phi(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \text { for all } y \in C\right\}
$$

for all $x \in H$. Then, the following hold:
(I) T_{r} is single-valued;
(II) T_{r} is firmly nonexpansive, i.e., for any $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle ;
$$

(III) $F\left(T_{r}\right)=E P(\phi)$;
(IV) $E P(\phi)$ is closed and convex.

Lemma 2.5. [9] Assume B is a strongly positive bounded linear operator on a Hilbert space H with coefficient $\bar{\gamma}>0$ and $0<\rho \leq\|B\|^{-1}$. Then $\|I-\rho B\| \leq 1-\rho \bar{\gamma}$.

Lemma 2.6. [1] Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\gamma_{n} v_{n}+\mu_{n},
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $[0,1],\left\{\mu_{n}\right\}$ is a sequence of nonnegative real numbers and $\left\{v_{n}\right\}$ is a sequence in \mathbb{R} such that
(I) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(II) $\limsup { }_{n \rightarrow \infty} v_{n} \leq 0$;
(III) $\sum_{n=1}^{\infty} \mu_{n}<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.7. [1] Let C be a nonempty closed convex subset of H. Suppose

$$
\sum_{n=1}^{\infty} \sup \left\{\left\|T_{n+1} z-T_{n} z\right\|: z \in C\right\}<\infty .
$$

Then, for each $y \in C,\left\{T_{n} y\right\}$ converges strongly to some point of C. Moreover, let T be a mapping of C into itself defined by $T y=\lim _{n \rightarrow \infty} T_{n} y$, for all $y \in C$. Then $\lim _{n \rightarrow \infty} \sup \{\| T z-$ $\left.T_{n} z \|: z \in C\right\}=0$.

3. Main result

In this section, we prove a strong convergence theorem, concerning the iterative scheme (1.7), for finding a common element of the set of solutions of the generalized equilibrium problem (1.6) and the set of common fixed points of a countable family of nonexpansive mappings in a Hilbert space. Before this, three lemmas are proved as follows:

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Assume f is a contraction of C into itself with coefficient k, B is a strongly positive bounded linear operator on C with coefficient $\bar{\gamma}>0$ such that $0<\gamma<\frac{\bar{\gamma}}{k}$ and $\|B\| \leq 1$. Then $P_{C}(I-B+\gamma f)$ is a contraction.

Proof. Let $Q=P_{C}$. Then

$$
\begin{aligned}
\|Q(I-B+\gamma f)(x)-Q(I-B+\gamma f)(y)\| & \leq\|(I-B+\gamma f)(x)-(I-B+\gamma f)(y)\| \\
& \leq\|(I-B)(x)-(I-B)(y)\|+\gamma\|f(x)-f(y)\| \\
& \leq(1-\bar{\gamma})\|x-y\|+\gamma k\|x-y\| \\
& =(1-(\bar{\gamma}-\gamma k))\|x-y\|,
\end{aligned}
$$

for all $x, y \in C$. Therefore, $Q(I-B+\gamma f)$ is a contraction of C into itself.
Lemma 3.2. Suppose C is a nonempty closed convex subset of a real Hilbert space H, A is an α-inverse-strongly monotone on C and $0<r<2 \alpha$. Then $I-r A$ is nonexpansive.

Proof. For $x, y \in C$,

$$
\begin{aligned}
\|(I-r A) x-(I-r A) y\|^{2} & =\|x-y-r(A x-A y)\|^{2} \\
& =\|x-y\|^{2}-2 r\langle x-y, A x-A y\rangle+r^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \alpha r\|A x-A y\|^{2}+r^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+r(r-2 \alpha)\|A x-A y\|^{2} \leq\|x-y\|^{2} .
\end{aligned}
$$

Thus $I-r A$ is nonexpansive.

Lemma 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\phi: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying the conditions $\left(A_{1}\right)-\left(A_{4}\right)$ (of Lemma 2.3) and A be an α-inverse-strongly monotone map. Suppose $\left\{x_{n}\right\}$ is a bounded sequence in C and $\left\{r_{n}\right\} \subset[a, b] \subset(0,2 \alpha)$ is a real sequence. If $u_{n}=T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right)$, then

$$
\left\|u_{n+1}-u_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\left|r_{n}-r_{n+1}\right| M_{1},
$$

where $M_{1}=\sup \left\{\left\|A x_{n}\right\|+1 / a\left\|u_{n+1}-k_{n+1}\right\|: n \in \mathbb{N}\right\}$.
Proof. Let $p \in E P$. Then $\phi(p, y)+\langle A p, y-p\rangle \geq 0$, for all $y \in C$. So

$$
\phi(p, y)+\frac{1}{r_{n}}\left\langle p-\left(p-r_{n} A p\right), y-p\right\rangle \geq 0,
$$

for all $y \in C$. Therefore, by Lemma 3.2,

$$
\begin{equation*}
\left\|u_{n}-p\right\|=\left\|T_{r_{n}}\left(I-r_{n} A\right) x_{n}-T_{r_{n}}\left(I-r_{n} A\right) p\right\| \leq\left\|x_{n}-p\right\|, \quad n \geq 1 . \tag{3.1}
\end{equation*}
$$

Therefore, $\left\{u_{n}\right\}$ is a bounded sequence. Set $k_{n}=x_{n}-r_{n} A x_{n}$, we have $u_{n}=T_{r_{n}} k_{n}$ and $u_{n+1}=$ $T_{r_{n+1}} k_{n+1}$. So

$$
\begin{equation*}
\phi\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-k_{n}\right\rangle \geq 0, \quad \text { for all } y \in C, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi\left(u_{n+1}, y\right)+\frac{1}{r_{n+1}}\left\langle y-u_{n+1}, u_{n+1}-k_{n+1}\right\rangle \geq 0, \quad \text { for all } y \in C . \tag{3.3}
\end{equation*}
$$

Set $y=u_{n+1}$ in (3.2) and $y=u_{n}$ in (3.3), then by adding these two last inequalities and using condition $\left(A_{2}\right)$, we have

$$
\left\langle u_{n+1}-u_{n}, \frac{u_{n}-k_{n}}{r_{n}}-\frac{u_{n+1}-k_{n+1}}{r_{n+1}}\right\rangle \geq 0,
$$

and hence

$$
\left\langle u_{n+1}-u_{n}, u_{n}-u_{n+1}+u_{n+1}-k_{n}-\frac{r_{n}}{r_{n+1}}\left(u_{n+1}-k_{n+1}\right)\right\rangle \geq 0 .
$$

This implies

$$
\begin{aligned}
\left\|u_{n+1}-u_{n}\right\|^{2} & \leq\left\langle u_{n+1}-u_{n}, k_{n+1}-k_{n}+\left(1-\frac{r_{n}}{r_{n+1}}\right)\left(u_{n+1}-k_{n+1}\right)\right\rangle \\
& \leq\left\|u_{n+1}-u_{n}\right\|\left\{\left\|k_{n+1}-k_{n}\right\|+\frac{1}{a}\left|r_{n}-r_{n+1}\right|\left\|u_{n+1}-k_{n+1}\right\|\right\} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\|u_{n+1}-u_{n}\right\| \\
& \leq\left\|k_{n+1}-k_{n}\right\|+\frac{1}{a}\left|r_{n}-r_{n+1}\right|\left\|u_{n+1}-k_{n+1}\right\| \\
& =\left\|x_{n+1}-r_{n+1} A x_{n+1}-\left(x_{n}-r_{n} A x_{n}\right)\right\|+\frac{1}{a}\left|r_{n}-r_{n+1}\right|\left\|u_{n+1}-k_{n+1}\right\| \\
& \leq\left\|x_{n+1}-r_{n+1} A x_{n+1}-\left(x_{n}-r_{n+1} A x_{n}\right)\right\|+\left|r_{n}-r_{n+1}\right|\left\|A x_{n}\right\|+\frac{1}{a}\left|r_{n}-r_{n+1}\right|\left\|u_{n+1}-k_{n+1}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|r_{n}-r_{n+1}\right| M_{1},
\end{aligned}
$$

where $M_{1}=\sup \left\{\left\|A x_{n}\right\|+1 / a\left\|u_{n+1}-k_{n+1}\right\|: n \in \mathbb{N}\right\}$.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ϕ : $C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying the conditions $\left(A_{1}\right)-\left(A_{4}\right)$ (of Lemma 2.3) and $\left\{S_{n}\right\}_{n=1}^{\infty}$ be an infinite family of nonexpansive self-mappings on C satisfying $F:=\bigcap_{n=1}^{\infty} F\left(S_{n}\right) \bigcap E P \neq$ \emptyset. Let f be a contraction of C into itself with coefficient k, B be a strongly positive bounded linear operator on C with coefficient $\bar{\gamma}>0$ such that $\|B\| \leq 1$ and A be an α-inverse-strongly monotone on C. Assume $0<\gamma<\bar{\gamma} / k$. Suppose $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are two sequences in $[0,1]$ and $\left\{r_{n}\right\} \subset[a, b] \subset(0,2 \alpha)$ is a real sequence satisfying the following conditions:
(B_{1}) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(B_{2}) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$;
(B_{3}) $\sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$.
Suppose $\sum_{n=1}^{\infty} \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in K\right\}<\infty$ for any bounded subset K of C. Let S be a mapping of C into itself defined by $S z=\lim _{n \rightarrow \infty} S_{n} z$ for all $z \in C$ and $F(S)=\bigcap_{n=1}^{\infty} F\left(S_{n}\right)$. If any of three conditions $\left(H_{1}\right)-\left(H_{3}\right)$ satisfies, then the sequences $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ defined by (1.7) converge strongly to $q \in F$, where $q=P_{\cap_{n=1}^{\infty} F\left(S_{n}\right) \cap E P}(I-B+\gamma f)(q)$, which solves the following variational inequality:

$$
\langle(B-\gamma f) q, q-x\rangle \leq 0, \quad \text { for all } x \in F .
$$

Proof. Let $Q=P_{\cap_{n=1}^{\infty} F\left(S_{n}\right) \cap E P .} Q(I-B+\gamma f)$ is a contraction of C into itself by Lemma 3.1. So, there exists a unique element $q \in C$ such that $q=Q(I-B+\gamma f)(q)=P_{\bigcap_{n=1}^{\infty} F\left(S_{n}\right) \cap E P}(I-$ $B+\gamma f)(q)$. By using conditions $\left(B_{1}\right)$ and $\left(B_{2}\right)$, we may assume, without loss of generality, $\alpha_{n} \leq\left(1-\beta_{n}\right)\|B\|^{-1}$. Since B is strongly positive bounded linear operator on C,

$$
\|B\|=\sup \{|\langle B x, x\rangle|: x \in C,\|x\|=1\} .
$$

Observe

$$
\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} B\right) x, x\right\rangle=1-\beta_{n}-\alpha_{n}\langle B x, x\rangle \geq 1-\beta_{n}-\alpha_{n}\|B\| \geq 0
$$

Thus $\left(1-\beta_{n}\right) I-\alpha_{n} B$ is positive, and

$$
\begin{aligned}
\left\|\left(1-\beta_{n}\right) I-\alpha_{n} B\right\| & =\sup \left\{\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} B\right) x, x\right\rangle: x \in C,\|x\|=1\right\} \\
& =\sup \left\{1-\beta_{n}-\alpha_{n}\langle B x, x\rangle: x \in C,\|x\|=1\right\} \leq 1-\beta_{n}-\alpha_{n} \bar{\gamma} .
\end{aligned}
$$

We proceed with the following steps:
Step 1. First, we claim, $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded. Let $p \in F$. From the definition of T_{r}, $u_{n}=T_{r_{n}}\left(I-r_{n} A\right) x_{n}$. Then, from (1.7), (3.1) and Lemma 2.5,

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\left(1-\beta_{n}\right)\left(y_{n}-p\right)+\beta_{n}\left(S_{n} y_{n}-p\right)\right\| \\
& \leq\left\|y_{n}-p\right\|=\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B p\right)+\left(I-\alpha_{n} B\right)\left(S_{n} u_{n}-p\right)\right\| \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\left\|\alpha_{n} \gamma\left(f\left(x_{n}\right)-f(p)\right)\right\|+\alpha_{n}\|\gamma f(p)-B p\| \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\alpha_{n} \gamma k\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-B p\| \\
& \leq\left(1-\alpha_{n}(\bar{\gamma}-\gamma k)\right)\left\|x_{n}-p\right\|+\alpha_{n}(\bar{\gamma}-\gamma k) \frac{\|\gamma f(p)-B p\|}{\bar{\gamma}-\gamma k} \\
& \leq \max \left\{\left\|x_{n}-p\right\|, \frac{\|\gamma f(p)-B p\|}{\bar{\gamma}-\gamma k}\right\} .
\end{aligned}
$$

By induction,

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{1}-p\right\|, \frac{1}{\bar{\gamma}-\gamma k}\|\gamma f(p)-B p\|\right\}, \quad \text { for all } n \geq 1
$$

Hence, $\left\{x_{n}\right\}$ is bounded, so are $\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{f\left(x_{n}\right)\right\},\left\{B S_{n} u_{n}\right\}$ and $\left\{S_{n} y_{n}\right\}$. Without loss of generality, we may assume $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{f\left(x_{n}\right)\right\},\left\{B S_{n} u_{n}\right\},\left\{S_{n} y_{n}\right\} \subset K$, where K is a bounded subset of C.

Step 2. We claim, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. Since K is bounded, $\left\{S_{n} y_{n}-y_{n}\right\},\left\{f\left(x_{n}\right)\right\}$, $\left\{B S_{n} u_{n}\right\}$ are bounded. Set

$$
M=\sup \left\{\left\|S_{n} y_{n}-y_{n}\right\|,\left\|f\left(x_{n}\right)\right\|,\left\|B S_{n} u_{n}\right\|: n \in \mathbb{N}\right\}
$$

By the definition of $\left\{x_{n}\right\}$,

$$
\begin{aligned}
& \left\|x_{n+2}-x_{n+1}\right\| \\
& =\left\|\left(1-\beta_{n+1}\right) y_{n+1}+\beta_{n+1} S_{n+1} y_{n+1}-\left(1-\beta_{n}\right) y_{n}-\beta_{n} S_{n} y_{n}\right\| \\
& =\|\left(1-\beta_{n+1}\right) y_{n+1}+\beta_{n+1} S_{n+1} y_{n+1}-\left(1-\beta_{n+1}\right) y_{n}-\beta_{n} S_{n} y_{n}+\left(1-\beta_{n+1}\right) y_{n} \\
& \quad-\left(1-\beta_{n}\right) y_{n}-\beta_{n+1} S_{n} y_{n}+\beta_{n+1} S_{n} y_{n} \| \\
& =\left\|\left(1-\beta_{n+1}\right)\left(y_{n+1}-y_{n}\right)+\beta_{n+1}\left(S_{n+1} y_{n+1}-S_{n} y_{n}\right)+\left(\beta_{n+1}-\beta_{n}\right)\left(S_{n} y_{n}-y_{n}\right)\right\| \\
& \leq\left(1-\beta_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|+\beta_{n+1}\left\|S_{n+1} y_{n+1}-S_{n} y_{n}\right\|+\left|\beta_{n+1}-\beta_{n}\right| M \\
& \leq \\
& \quad\left(1-\beta_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|+\beta_{n+1}\left\|S_{n+1} y_{n+1}-S_{n} y_{n+1}\right\|+\beta_{n+1}\left\|y_{n+1}-y_{n}\right\| \\
& \quad+\left|\beta_{n+1}-\beta_{n}\right| M \\
& \leq\left\|y_{n+1}-y_{n}\right\|+\left\|S_{n+1} y_{n+1}-S_{n} y_{n+1}\right\|+\left|\beta_{n+1}-\beta_{n}\right| M,
\end{aligned}
$$

for all $n \in \mathbb{N}$. From (1.7),

$$
\begin{aligned}
& \left\|y_{n+1}-y_{n}\right\| \\
& =\left\|\alpha_{n+1} \gamma f\left(x_{n+1}\right)+\left(I-\alpha_{n+1} B\right) S_{n+1} u_{n+1}-\alpha_{n} \gamma f\left(x_{n}\right)-\left(I-\alpha_{n} B\right) S_{n} u_{n}\right\| \\
& =\|\left(I-\alpha_{n+1} B\right)\left(S_{n+1} u_{n+1}-S_{n} u_{n}\right)-\left(\alpha_{n+1}-\alpha_{n}\right) B S_{n} u_{n}+\alpha_{n+1} \gamma\left(f\left(x_{n+1}\right)-f\left(x_{n}\right)\right) \\
& \quad+\left(\alpha_{n+1}-\alpha_{n}\right) \gamma f\left(x_{n}\right) \| \\
& \leq\left(1-\alpha_{n+1} \bar{\gamma}\right)\left\|S_{n+1} u_{n+1}-S_{n} u_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|B S_{n} u_{n}\right\|+\alpha_{n+1} \gamma k\left\|x_{n+1}-x_{n}\right\| \\
& \quad+\left|\alpha_{n+1}-\alpha_{n}\right| \gamma\left\|f\left(x_{n}\right)\right\| \\
& \leq\left(1-\alpha_{n+1} \bar{\gamma}\right)\left(\left\|S_{n+1} u_{n+1}-S_{n+1} u_{n}\right\|+\left\|S_{n+1} u_{n}-S_{n} u_{n}\right\|\right)+\left|\alpha_{n+1}-\alpha_{n}\right| M \\
& \quad+\alpha_{n+1} \gamma k\left\|x_{n+1}-x_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right| \gamma M \\
& \leq\left(1-\alpha_{n+1} \bar{\gamma}\right)\left\|u_{n+1}-u_{n}\right\|+M(1+\gamma)\left|\alpha_{n+1}-\alpha_{n}\right|+\alpha_{n+1} \gamma k\left\|x_{n+1}-x_{n}\right\| \\
& \quad+\left\|S_{n+1} u_{n}-S_{n} u_{n}\right\|,
\end{aligned}
$$

for all $n \in N$. On the other hand, $u_{n}=T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right)$ (by Lemma 2.4). From Lemma 3.3,

$$
\begin{equation*}
\left\|u_{n+1}-u_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\left|r_{n}-r_{n+1}\right| M_{1}, \tag{3.6}
\end{equation*}
$$

where $M_{1}=\sup \left\{\left\|A x_{n}\right\|+1 / a\left\|u_{n+1}-k_{n+1}\right\|: n \in \mathbb{N}\right\}$. Substituting (3.6) in (3.5), we have

$$
\begin{aligned}
& \left\|y_{n+1}-y_{n}\right\| \\
& \leq\left(1-\alpha_{n+1} \bar{\gamma}\right)\left\{\left\|x_{n+1}-x_{n}\right\|+\left|r_{n}-r_{n+1}\right| M_{1}\right\}+M(1+\gamma)\left|\alpha_{n+1}-\alpha_{n}\right| \\
& \quad+\alpha_{n+1} \gamma k\left\|x_{n+1}-x_{n}\right\|+\left\|S_{n+1} u_{n}-S_{n} u_{n}\right\| \\
& \leq\left[1-\alpha_{n+1}(\bar{\gamma}-\gamma k)\right]\left\|x_{n+1}-x_{n}\right\|+\left|r_{n}-r_{n+1}\right| M_{1}+M(1+\gamma)\left|\alpha_{n+1}-\alpha_{n}\right| \\
& \quad+\left\|S_{n+1} u_{n}-S_{n} u_{n}\right\| \\
& \leq\left[1-\alpha_{n+1}(\bar{\gamma}-\gamma k)\right]\left\|x_{n+1}-x_{n}\right\|+M_{2}\left(\left|r_{n}-r_{n+1}\right|+\left|\alpha_{n+1}-\alpha_{n}\right|\right)
\end{aligned}
$$

$$
+\left\|S_{n+1} u_{n}-S_{n} u_{n}\right\|
$$

where $M_{2}=\max \left\{M_{1}, M(1+\gamma)\right\}$. Substituting (3.7) in (3.4), we have

$$
\begin{align*}
\left\|x_{n+2}-x_{n+1}\right\| \leq & {\left[1-\alpha_{n+1}(\bar{\gamma}-\gamma k)\right]\left\|x_{n+1}-x_{n}\right\|+M_{2}\left(\left|r_{n}-r_{n+1}\right|\right.} \\
& \left.+\left|\alpha_{n+1}-\alpha_{n}\right|+\left|\beta_{n+1}-\beta_{n}\right|\right)+2 \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in K\right\} . \tag{3.8}
\end{align*}
$$

Now, we show that under any of three conditions $\left(H_{1}\right)-\left(H_{3}\right), \lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$ as follows:
Let $\left(H_{1}\right)$ holds. Set $\mu_{n}=M_{2}\left(\left|r_{n}-r_{n+1}\right|+\left|\alpha_{n+1}-\alpha_{n}\right|+\left|\beta_{n+1}-\beta_{n}\right|\right)+2 \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|\right.$: $z \in K\}$, then

$$
\begin{aligned}
\sum_{n=1}^{\infty} \mu_{n} & =M_{2} \sum_{n=1}^{\infty}\left(\left|r_{n}-r_{n+1}\right|+\left|\alpha_{n+1}-\alpha_{n}\right|+\left|\beta_{n+1}-\beta_{n}\right|\right)+2 \sum_{n=1}^{\infty} \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in K\right\} \\
& <\infty .
\end{aligned}
$$

Therefore, by Lemma 2.6, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. If $\left(H_{2}\right)$ holds, then from (3.8),

$$
\begin{aligned}
\left\|x_{n+2}-x_{n+1}\right\| \leq & {\left[1-\alpha_{n+1}(\bar{\gamma}-\gamma k)\right]\left\|x_{n+1}-x_{n}\right\|+\alpha_{n+1} M_{2}\left|1-\frac{\alpha_{n}}{\alpha_{n+1}}\right| } \\
& +M_{2}\left(\left|r_{n+1}-r_{n}\right|+\left|\beta_{n+1}-\beta_{n}\right|\right)+2 \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in K\right\}
\end{aligned}
$$

Set $\mu_{n}=M_{2}\left(\left|r_{n+1}-r_{n}\right|+\left|\beta_{n+1}-\beta_{n}\right|\right)+2 \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in K\right\}$, then

$$
\sum_{n=1}^{\infty} \mu_{n}=M_{2} \sum_{n=1}^{\infty}\left(\left|r_{n+1}-r_{n}\right|+\left|\beta_{n+1}-\beta_{n}\right|\right)+2 \sum_{n=1}^{\infty} \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in K\right\}<\infty .
$$

Therefore, by Lemma 2.6, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.
If $\left(H_{3}\right)$ holds, then from (3.8),

$$
\begin{aligned}
\left\|x_{n+2}-x_{n+1}\right\| \leq & {\left[1-\alpha_{n+1}(\bar{\gamma}-\gamma k)\right]\left\|x_{n+1}-x_{n}\right\|+M_{2} o\left(\alpha_{n+1}\right) } \\
& +M_{2}\left(\sigma_{n}+\left|r_{n+1}-r_{n}\right|+\left|\beta_{n+1}-\beta_{n}\right|\right)+2 \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in K\right\} .
\end{aligned}
$$

Set $\mu_{n}=M_{2}\left(\sigma_{n}+\left|r_{n+1}-r_{n}\right|+\left|\beta_{n+1}-\beta_{n}\right|\right)+2 \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in K\right\}$, then

$$
\sum_{n=1}^{\infty} \mu_{n}=M_{2} \sum_{n=1}^{\infty}\left(\sigma_{n}+\left|r_{n+1}-r_{n}\right|+\left|\beta_{n+1}-\beta_{n}\right|\right)+2 \sum_{n=1}^{\infty} \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in K\right\}<\infty .
$$

Therefore, by Lemma 2.6, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.
Step 3. We claim, $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$. Indeed, from (B_{2}) and (1.7),

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=\lim _{n \rightarrow \infty} \beta_{n}\left\|y_{n}-S_{n} y_{n}\right\|=0
$$

So, from step 2 and $\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\left\|x_{n+1}-y_{n}\right\|$, we get

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0
$$

Step 4. We claim $\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|S u_{n}-u_{n}\right\|$ $=0$. To this end, let $p \in F$. Then

$$
\begin{aligned}
\left\|u_{n}-p\right\|^{2} & =\left\|T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right)-T_{r_{n}}\left(p-r_{n} A p\right)\right\|^{2} \leq\left\|x_{n}-r_{n} A x_{n}-p+r_{n} A p\right\|^{2} \\
& =\left\|x_{n}-p\right\|^{2}+r_{n}^{2}\left\|A x_{n}-A p\right\|^{2}-2 r_{n}\left\langle x_{n}-p, A x_{n}-A p\right\rangle \\
& \leq\left\|x_{n}-p\right\|^{2}+r_{n}\left(r_{n}-2 \alpha\right)\left\|A x_{n}-A p\right\|^{2} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2}\left\|\left(1-\beta_{n}\right)\left(y_{n}-p\right)+\beta_{n}\left(S_{n} y_{n}-p\right)\right\|^{2} \\
& \leq\left\|y_{n}-p\right\|^{2}=\left\|\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) S_{n} u_{n}-p\right\|^{2} \\
& =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right)+S_{n} u_{n}-p\right\|^{2} \\
& =\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|^{2}+\left\|S_{n} u_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B S_{n} u_{n}, S_{n} u_{n}-p\right\rangle \tag{3.9}\\
& \leq \alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|^{2}+\left\|u_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B S_{n} u_{n}, S_{n} u_{n}-p\right\rangle \\
& \leq \alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|^{2}+\left\|x_{n}-p\right\|^{2}+r_{n}\left(r_{n}-2 \alpha\right)\left\|A x_{n}-A p\right\|^{2} \\
& \quad+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|\left\|u_{n}-p\right\| .
\end{align*}
$$

This implies

$$
\begin{aligned}
& r_{n}\left(2 \alpha-r_{n}\right)\left\|A x_{n}-A p\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|^{2}+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|\left\|u_{n}-p\right\| \\
& \leq\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n+1}-x_{n}\right\|+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|^{2} \\
& \quad+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|\left\|u_{n}-p\right\| .
\end{aligned}
$$

From $\lim _{n \rightarrow \infty} \alpha_{n}=0, r_{n} \in[a, b] \subset(0,2 \alpha)$ and $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-A p\right\|=0 \tag{3.10}
\end{equation*}
$$

Also, from (II) in Lemma 2.4,

$$
\begin{aligned}
& \left\|u_{n}-p\right\|^{2} \\
& =\left\|T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right)-T_{r_{n}}\left(p-r_{n} A p\right)\right\|^{2} \leq\left\langle x_{n}-r_{n} A x_{n}-\left(p-r_{n} A p\right), u_{n}-p\right\rangle \\
& =\frac{1}{2}\left\{\left\|x_{n}-r_{n} A x_{n}-\left(p-r_{n} A p\right)\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|x_{n}-r_{n} A x_{n}-\left(p-r_{n} A p\right)-\left(u_{n}-p\right)\right\|^{2}\right\} \\
& \leq \frac{1}{2}\left\{\left\|x_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}-r_{n}\left(A x_{n}-A p\right)\right\|^{2}\right\} \\
& =\frac{1}{2}\left\{\left\|x_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle-r_{n}^{2}\left\|A x_{n}-A p\right\|^{2}\right\} .
\end{aligned}
$$

This implies

$$
\begin{aligned}
\left\|u_{n}-p\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle-r_{n}^{2}\left\|A x_{n}-A p\right\|^{2} . \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\|x_{n}-u_{n}\right\|\left\|A x_{n}-A p\right\| .
\end{aligned}
$$

By the same argument in (3.9),

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|^{2}+\left\|u_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B S_{n} u_{n}, S_{n} u_{n}-p\right\rangle \\
\leq & \alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\|x_{n}-u_{n}\right\|\left\|A x_{n}-A p\right\| \\
& +2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|\left\|u_{n}-p\right\| .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left\|x_{n}-u_{n}\right\|^{2} \leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|^{2} \\
& +2 r_{n}\left\|x_{n}-u_{n}\right\|\left\|A x_{n}-A p\right\|+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|\left\|u_{n}-p\right\|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n+1}-x_{n}\right\|+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|^{2} \\
& +2 r_{n}\left\|x_{n}-u_{n}\right\|\left\|A x_{n}-A p\right\|+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|\left\|u_{n}-p\right\| .
\end{aligned}
$$

Then $\lim _{n \rightarrow \infty} \alpha_{n}=0, \lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$ and (3.10) show

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0
$$

Moreover, from $\left\|y_{n}-u_{n}\right\| \leq\left\|y_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\|$ and step 3,

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=0
$$

Since

$$
\left\|S_{n} u_{n}-u_{n}\right\| \leq\left\|S_{n} u_{n}-y_{n}\right\|+\left\|y_{n}-u_{n}\right\| \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B S_{n} u_{n}\right\|+\left\|y_{n}-u_{n}\right\|,
$$

we have $\lim _{n \rightarrow \infty}\left\|S_{n} u_{n}-u_{n}\right\|=0$. Observe

$$
\left\|S u_{n}-u_{n}\right\| \leq\left\|S u_{n}-S_{n} u_{n}\right\|+\left\|S_{n} u_{n}-u_{n}\right\| \leq \sup \left\{\left\|S z-S_{n} z\right\|: z \in K\right\}+\left\|S_{n} u_{n}-u_{n}\right\| .
$$

From Lemma 2.7, $\lim _{n \rightarrow \infty}\left\|S u_{n}-u_{n}\right\|=0$.
Step 5. We claim, $\lim \sup _{n \rightarrow \infty}\left\langle\gamma f(q)-B q, y_{n}-q\right\rangle \leq 0$, where $q=P_{\cap_{n=1}^{\infty} F\left(S_{n}\right) \cap E P}(I-B+$ $\gamma f)(q)$.To show this, choose a subsequence $\left\{u_{n_{i}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle(B-\gamma f) q, q-u_{n}\right\rangle=\lim _{i \rightarrow \infty}\left\langle(B-\gamma f) q, q-u_{n_{i}}\right\rangle .
$$

Since $\left\{u_{n_{i}}\right\}$ is bounded in C, without loss of generality, we assume $u_{n_{i}} \rightharpoonup z \in C$. From $\lim _{n \rightarrow \infty}\left\|S u_{n}-u_{n}\right\|=0$ and Lemma 2.2, $z \in F(S)$. Now, we show $z \in E P$. By $u_{n}=T_{r_{n}}\left(x_{n}-\right.$ $r_{n} A x_{n}$), one can write

$$
\phi\left(u_{n}, y\right)+\left\langle A x_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \text { for all } y \in C .
$$

From $\left(A_{2}\right)$,

$$
\left\langle A x_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq \phi\left(y, u_{n}\right), \quad \text { for all } y \in C .
$$

Replacing n by n_{i}, we have

$$
\begin{equation*}
\left\langle A x_{n_{i}}, y-u_{n_{i}}\right\rangle+\frac{1}{r_{n_{i}}}\left\langle y-u_{n_{i}}, u_{n_{i}}-x_{n_{i}}\right\rangle \geq \phi\left(y, u_{n_{i}}\right), \quad \text { for all } y \in C . \tag{3.11}
\end{equation*}
$$

Set $y_{t}=t y+(1-t) z$, for all $t \in(0,1]$ and $y \in C$. Then $y_{t} \in C$. So, from (3.11),

$$
\begin{aligned}
& \left\langle y_{t}-u_{n_{i}}, A y_{t}\right\rangle \\
& \geq\left\langle y_{t}-u_{n_{i}}, A y_{t}\right\rangle-\left\langle A x_{n_{i}}, y_{t}-u_{n_{i}}\right\rangle-\left\langle y_{t}-u_{n_{i}}, \frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}}\right\rangle+\phi\left(y_{t}, u_{n_{i}}\right) \\
& =\left\langle y_{t}-u_{n_{i}}, A y_{t}-A u_{n_{i}}\right\rangle+\left\langle y_{t}-u_{n_{i}}, A u_{n_{i}}-A x_{n_{i}}\right\rangle-\left\langle y_{t}-u_{n_{i}}, \frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}}\right\rangle+\phi\left(y_{t}, u_{n_{i}}\right) .
\end{aligned}
$$

Since $\lim _{i \rightarrow \infty}\left\|u_{n_{i}}-x_{n_{i}}\right\|=0$, we have $\lim _{i \rightarrow \infty}\left\|A u_{n_{i}}-A x_{n_{i}}\right\|=0$. Further, from the monotonicity of $A,\left\langle y_{t}-u_{n_{i}}, A y_{t}-A u_{n_{i}}\right\rangle \geq 0$. So, from $\left(A_{4}\right)$,

$$
\begin{equation*}
\left\langle y_{t}-z, A y_{t}\right\rangle \geq \phi\left(y_{t}, z\right) \tag{3.12}
\end{equation*}
$$

as $i \rightarrow \infty$. From $\left(A_{1}\right),\left(A_{2}\right)$ and (3.12),

$$
0=\phi\left(y_{t}, y_{t}\right) \leq t \phi\left(y_{t}, y\right)+(1-t) \phi\left(y_{t}, z\right) \leq t \phi\left(y_{t}, y\right)+(1-t)\left\langle y_{t}-z, A y_{t}\right\rangle
$$

$$
=t \phi\left(y_{t}, y\right)+(1-t) t\left\langle y-z, A y_{t}\right\rangle,
$$

hence

$$
0 \leq \phi\left(y_{t}, y\right)+(1-t)\left\langle y-z, A y_{t}\right\rangle .
$$

Letting $t \rightarrow 0$, we get

$$
0 \leq \phi(z, y)+\langle y-z, A z\rangle, \quad \text { for all } y \in C .
$$

This implies $z \in E P$. Since $q=P_{\cap_{n=1}^{\infty} F\left(S_{n}\right) \cap E P}(I-B+\gamma f)(q)$,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\langle(B-\gamma f)(q), q-y_{n}\right\rangle & =\lim _{i \rightarrow \infty}\left\langle(B-\gamma f)(q), q-y_{n_{i}}\right\rangle=\lim _{i \rightarrow \infty}\left\langle(B-\gamma f)(q), q-u_{n_{i}}\right\rangle \\
& =\lim _{i \rightarrow \infty}\langle(B-\gamma f)(q), q-z\rangle \leq 0 .
\end{aligned}
$$

Step 6. We claim $\left\{u_{n}\right\}$ and $\left\{x_{n}\right\}$ converges strongly to q. From (1.7),

$$
\begin{aligned}
& \left\|x_{n+1}-q\right\|^{2} \\
& =\left\|\left(1-\beta_{n}\right)\left(y_{n}-q\right)+\beta_{n}\left(S_{n} y_{n}-q\right)\right\|^{2} \\
& \leq\left\|y_{n}-q\right\|^{2}=\left\|\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) S_{n} u_{n}-q\right\|^{2} \\
& =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B q\right)+\left(I-\alpha_{n} B\right)\left(S_{n} u_{n}-q\right)\right\|^{2} \\
& \leq\left\|\left(I-\alpha_{n} B\right)\left(S_{n} u_{n}-q\right)\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B q, y_{n}-q\right\rangle \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|u_{n}-q\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-\gamma f(q), y_{n}-q\right\rangle+2 \alpha_{n}\left\langle\gamma f(q)-B q, y_{n}-q\right\rangle \\
& \leq \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \gamma k\left\|x_{n}-q\right\|\left(\left\|y_{n}-x_{n}\right\|+\left\|x_{n}-q\right\|\right)+2 \alpha_{n}\left\langle\gamma f(q)-B q, y_{n}-q\right\rangle \\
& \leq \\
& \left(1-2 \alpha_{n}(\bar{\gamma}-\gamma k)\right)\left\|x_{n}-q\right\|^{2}+\left(\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \gamma k\left\|x_{n}-q\right\|\left\|y_{n}-x_{n}\right\| \\
& \\
& \quad+2 \alpha_{n}\left\langle\gamma f(q)-B q, y_{n}-q\right\rangle \\
& \leq \\
& \left(1-2 \alpha_{n}(\bar{\gamma}-\gamma k)\right)\left\|x_{n}-q\right\|^{2}+2 \alpha_{n}(\bar{\gamma}-\gamma k)\left\{\frac{\left(\alpha_{n} \bar{\gamma}^{2}\right) M_{3}^{2}}{2(\bar{\gamma}-\gamma k)}+\frac{\gamma k M_{3}}{\bar{\gamma}-\gamma k}\left\|y_{n}-x_{n}\right\|\right. \\
& \left.\quad+\frac{1}{\bar{\gamma}-\gamma k}\left\langle\gamma f(q)-B q, y_{n}-q\right\rangle\right\} \\
& = \\
& \left(1-\delta_{n}\right)\left\|x_{n}-q\right\|^{2}+\delta_{n} \theta_{n},
\end{aligned}
$$

where $M_{3}=\sup \left\{\left\|x_{n}-q\right\|: n \geq 1\right\}, \delta_{n}=2 \alpha_{n}(\bar{\gamma}-\gamma k)$ and $\theta_{n}=\left(\left(\alpha_{n} \bar{\gamma}^{2}\right) M_{3}^{2}\right) /(2(\bar{\gamma}-\gamma k))+$ $\left(\gamma k M_{3}\right) /(\bar{\gamma}-\gamma k)\left\|y_{n}-x_{n}\right\|+1 /(\bar{\gamma}-\gamma k)\left\langle\gamma f(q)-B q, y_{n}-q\right\rangle$. It is easy to see that $\lim _{n \rightarrow \infty} \delta_{n}=$ $0, \sum_{n=1}^{\infty} \delta_{n}=\infty$ and $\limsup \operatorname{sum}_{n \rightarrow \infty} \theta_{n} \leq 0$. Hence, by Lemma $2.6,\left\{x_{n}\right\}$ converges strongly to q. Consequently, $\left\{u_{n}\right\}$ converges strongly to q. This completes the proof.

Remark 3.1. Theorem 3.1 is a generalization of [15, Theorem 3.1]. To see this, $\operatorname{Set} A=0$ in Theorem 3.1, and assume $r_{n} \geq a>0$ (it is not necessary to assume $\left\{r_{n}\right\} \subset[a, b] \subset(0,2 \alpha)$).

Acknowledgement. The first author would like to thank the School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran, for supporting this research (Grant No. 90470122).

References

[1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), no. 8, 2350-2360.
[2] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
[3] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.
[4] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117-136.
[5] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge Univ. Press, Cambridge, 1990.
[6] J. S. Jung, A general composite iterative method for equilibrium problems and fixed point problems, J. Comput. Anal. Appl. in press.
[7] J. S. Jung, Strong convergence of composite iterative methods for equilibrium problems and fixed point problems, Appl. Math. Comput. 213 (2009), no. 2, 498-505
[8] A. Moudafi and M. Théra, Proximal and dynamical approaches to equilibrium problems, in Ill-posed variational problems and regularization techniques (Trier, 1998), 187-201, Lecture Notes in Econom. and Math. Systems, 477 Springer, Berlin.
[9] G. Marino and H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), no. 1, 43-52.
[10] J.-W. Peng and J.-C. Yao, A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings, Nonlinear Anal. 71 (2009), no. 12, 6001-6010
[11] S. Plubtieng and R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007), no. 1, 455-469.
[12] X. Qin, Y. J. Cho and S. M. Kang, An iterative method for an infinite family of nonexpansive mappings in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 2, 161-171.
[13] X. Qin and S. M. Kang, Convergence theorems on an iterative method for variational inequality problems and fixed point problems, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 155-167.
[14] A. Razani and M. Yazdi, Viscosity approximation method for equilibrium and fixed point problems, Fixed Point Theory, accepted.
[15] S. Wang, C. Hu and G. Chai, Strong convergence of a new composite iterative method for equilibrium problems and fixed point problems, Appl. Math. Comput. 215 (2010), no. 11, 3891-3898.

[^0]: Communicated by Tomonari Suzuki.
 Received: January 31, 2011; Revised: May 17, 2011.

