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1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. A mapping
S of C into itself is called nonexpansive, if ||Sx — Sy|| < |x —y]|, for all x,y € C. Also,
a contraction on C is a self-mapping S of C such that ||S(x) — S(y)|| < k|lx — y||, for all
x,y € C, where k € (0,1) is a constant. Moreover, F(S) denotes the fixed points set of S.
Let ¢ : C x C — R be a bifunction of C x C into R. We recall an equilibrium problem as
follows: The equilibrium problem for ¢ : C x C — R is to find u € C such that

(1.1) o(u,v) >0, forallvecC.

The set of solutions of (1.1) is denoted by EP(¢). Set ¢ (u,v) = (Tu,v—u), for all u,v € C,
where T : C — H. Then, w € EP(¢) if and only if (Tw,v—w) > 0, for all v € C, that is, w
is a solution of the variational inequality.

Combettes and Hirstoaga [4] introduced an iterative scheme for finding the best approx-
imation to the initial data when EP(¢) is nonempty and proved a strong convergence the-
orem. The equilibrium problem (1.1) includes, as special cases, numerous problems in
physics, optimization and economics. Some authors (such as [6, 7, 10, 11, 14, 15]) have
proposed some useful methods for solving the equilibrium problem (1.1). We describe
some of them as follows:
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In 2007, Plubtieng and Punpaeng [11] introduced an iterative scheme for finding a com-
mon element of the set of the solutions (1.1) and the set of fixed points of a nonexpansive
mapping in a Hilbert space as follows:

(12) (p(un,y)—l-i(y—un,un—xn}ZO, forally e H,
Xnt1 = 0V (%) + (I — €, A)Su,, n> 1.

where ¢ : H x H — R is a bifunction, A is a strongly positive bounded linear operator
on H, S is a nonexpansive mapping of H into itself such that F(S)EP(¢) # 0, fis a
contraction, ¥ > 0 is some constant, {¢,} C [0,1] and {r,} C (0,00). Also, they proved the
strong convergence of {x,}, defined by (1.2) and showed lim,, .. x, is the unique solution
of a certain variational inequality.

Jung [7] introduced the following composite iterative scheme by the viscosity approx-
imation method for finding a common point of the set of solutions of (1.1) and the set of
fixed points of a nonexpansive mapping in a Hilbert space:

O (un,y) + io’_ Un, Uy —X,) >0, forallyeC,
(1.3) Yn = O f (xn) + (1 — O ) Sttn,
Xnp1 = (1= Bu)yn + BaSyn, n>1,
where ¢ : C x C — R is a bifunction, S is a nonexpansive mapping of C into itself such that
F(S)NEP(9)#0, f is a contraction, {0, },{B,} C [0,1] and {r,} C (0,e0). He proved the
sequence {x, }, generated by (1.3), converges strongly to a point in F(S)(EP(¢) provided
{a,},{B:} and {r,} satisfy
(C) limy e 0, =0, Y7 0ty =ccand Yo | [0ty — Q| < 005
(C2) 0 < liminfyery and Yoo | |Fur1 — 1a| < oo
(C3) limy—e By =0and Y»_ | |But1 — Bl < oo
Jung [6] studied the following composite iterative scheme:
O (tn,y) + (v — thn,p —x,) > 0, forally € H,
(1.4 Yn = 0 Yf (xXn) + (I — 0, A)Suy,
Xn+1 = (17ﬁn)yn +ﬁnSyn7 n>1,
where ¢ : H x H — R is a bifunction, A is a strongly positive bounded linear operator on H,
S is a nonexpansive mapping of H into itself such that F(S) EP(¢) # 0, f is a contraction,
y> 01is some constant, {a, },{B,} C [0, 1] and {r,} C (0,). He proved, the sequence {x,},
generated by (1.4), converges strongly to a point in F(S) () EP(¢) under the conditions (C1),
(C2) and (C3).
Wang et al. [15] introduced the following composite iterative scheme:
O (un,y) + i(y— Up, Uy —Xp) >0, forally € H,
(1.5) Yo = Y[ (xn) + (I — 0A)Shity,
Xp4+1 = (l_ﬁn))’n +ﬁnsn)’na n>1,
where ¢ : H x H — R is a bifunction, A is a strongly positive bounded linear operator
on H, {S,} is a countable family of nonexpansive mappings of H into itself such that

Mz F(S)NEP(¢) # 0, f is a contraction, ¥ > 0 is some constant, x; € H, {¢,},{B,}
C [0,1] and {r,} C (0,00). They proved, under any of the following conditions:

(H) Yooy O — 0] < oo
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(Hz) oy € (0,1] forevery n € N and limy, e @/ 04y41 = 1;

(H3) |01 — 0| < 0(Qyt1)+ 0y and Y, | O, < oo,
on the sequence {a, }, {x,} (generated by (1.5)) converges strongly to a pointin (\;_; F(S,)
NEP(¢) # 0. Recently, Razani and Yazdi [14] study the convergence of a new version of
composite iterative scheme (1.5).

In this paper, we prove a strong convergence theorem, concerning a new iterative scheme,
for finding a common element of the set of solutions of a generalized equilibrium problem
and the set of common fixed points of a countable family of nonexpansive mappings in a
Hilbert space. In order to do this, we recall some definitions as follows:

A generalized equilibrium problem is to find z € C such that

(1.6) ¢(z,y) +(Az,y—2z) >0, forallyeC,

where ¢ : C x C — R is a bifunction and A : C — H is a monotone map. The set of such
z € Cisdenoted by EP, i.e.,

EP={ze€C:¢(z,y)+ (Az,y—2z) >0, forall y € C}.

In the case of A = 0, EP is denoted by EP(¢). Numerous problems in physics, variational
inequalities, optimization, minimax problems, the Nash equilibrium problem in noncooper-
ative games and economics reduce to finding a solution of (1.6) (see [8], for instance).

A mapping A : C — H is called o-inverse-strongly monotone [3], if there exists a positive
real number o such that

(Ax — Ay,x —y) > a||Ax— Ay||>, forallx,y € C.
Remark 1.1. If A : C — H is a-inverse-strongly monotone map, then it is 1 /o-Lipschitzian
mapping.
Let B be a bounded operator on C. B is strongly positive; that is, there exists a constant
7> 0 such that (Bx,x) > 7]||x||?>, forall x € C. A typical problem is that of minimizing a

quadratic function over the set of the fixed points of nonexpansive mapping on a real Hilbert
space:
1
min —(Bx,x) — (x,b),
xeF(Ss) 2 < )= b
where b is a given point in H.

Remark 1.2. Iterative method for nonexpansive mappings have been applied to solve con-
vex minimization problems (see [12, 13]).

In this paper, a new iterative method (motivated by the above results) is introduced as

follows:

¢(un7y) + i@— Up, Up —Xn> + <Axnvy_ Mn> Z 07 fOI' auy S C7
(1.7) Yn = Y[ (xn) + (I — 0B)Syuty,

Xn4+1 = (1 - ﬁn)yn +ﬁnSnyn7 n>1,
where ¢ : C x C — R is a bifunction, A is an o-inverse-strongly monotone, B is a strongly
positive bounded linear operator on C; {S, } is a countable family of nonexpansive mappings
of C into itself such that (>_; F(S,) NEP # 0; f is a contraction, x; € C, {0y, },{Bn} C[0,1]
and {r,} C [a,b] C (0,2c). Then, under any of three conditions (H;), (H2) and (H3) on
the sequence {0, }, the sequence {x, }, generated by (1.7), converges strongly to a point in
Ma=1 F(Sn) NEP.
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2. Preliminaries

Let H be a real Hilbert space with inner product (.,.) and the norm ||.|. Weak and strong
convergence are denoted by notation — and —, respectively. In a real Hilbert space H,

1A+ (L= 22 = Al + (1= 2)Iy]P = A (1= A) lx =%,
for all x,y € H and A € R. Let C be a nonempty closed convex subset of H. Then, for any
X € H, there exists a unique nearest point in C, denoted by Pc(x), such that
= PGl < x|, forallyeC.

Pc is called the metric projection of H onto C. It is known F¢ is nonexpansive. Further, for
x€HandzeC,
7=Pc(x) & (x—z,z—y) >0, forallyeC.

Now, we collect some lemmas which will be used in the main result.
Lemma 2.1. Let H be a real Hilbert space. Then for all x,y € H,

@ fx+y[? < [l +20x+):

D) [yl > fld® +2(y,).
Lemma 2.2. [5] Let H be a real Hilbert space, C a closed convex subset of H and T : C — C

a nonexpansive mapping with F(T) # 0. If {x,} is a sequence in C weakly converging to x
and if {(I — T)x,} converges toy, then (I —T)x =y.

Lemma 2.3. [2] Let C be a nonempty closed convex subset of H and ¢ : CxC — R a
bifunction satisfying the following conditions:

(A1) ¢(x,x) =0forallxeC;

(A2) ¢ is monotone, i.e., ¢(x,y)+ ¢ (y,x) <0 forall x,y € C;

(A3) foreachx,y,z€C,

ltif61¢(tz+ (1-1)x,y) < o(x,y);

(Ag) foreachx € C,y— @(x,y) is convex and weakly lower semicontinuous.
Let r > 0 and x € H. Then, there exists z € C such that

1
¢(Z7Y)+;<y—z,z—x> >0, forallyeC.

Lemma 2.4. [4] Assume ¢ : C X C — R satisfies (A1)-(A4). For r > 0 and x € H, define a
mapping T, : H — C as follows:
1
Lx={z€C:9(zy)+-(~22-x 20, forallyeC},

for all x € H. Then, the following hold:
(D T, is single-valued;
(T) T is firmly nonexpansive, i.e., for any x,y € H,
|Tox =Ty |[* < (Tox = Tyx =)
() F(T,) = EP(9);
(IV) EP(9) is closed and convex.

Lemma 2.5. [9] Assume B is a strongly positive bounded linear operator on a Hilbert space
H with coefficient 7> 0 and 0 < p < ||B||~!. Then ||I - pB|| < 1—p7.
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Lemma 2.6. [1] Assume {a,} is a sequence of nonnegative real numbers such that

a1 < (1 - Yn)an+')/izvn+una

where {7y, } is a sequence in [0, 1], { L, } is a sequence of nonnegative real numbers and {v, }
is a sequence in R such that

M Xy Vo = o
(II) limsup,,_,., vy < 0;
D) Yoy fp < oo
Then lim,_..a, =0.

Lemma 2.7. [1] Let C be a nonempty closed convex subset of H. Suppose

Y sup{[|Ti1z— Tzl 1 2€ C} < oo

n=1
Then, for each'y € C, {T,y} converges strongly to some point of C. Moreover, let T be a
mapping of C into itself defined by Ty = lim,_,« T,y, for all y € C. Then lim,_.. sup{||Tz—
Tz||:zeC} =0.

3. Main result

In this section, we prove a strong convergence theorem, concerning the iterative scheme
(1.7), for finding a common element of the set of solutions of the generalized equilibrium
problem (1.6) and the set of common fixed points of a countable family of nonexpansive
mappings in a Hilbert space. Before this, three lemmas are proved as follows:

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Assume
f is a contraction of C into itself with coefficient k, B is a strongly positive bounded linear
operator on C with coefficient ¥ > 0 such that 0 <y < £ and ||B|| < 1. Then Pc(I — B+ Yf)
is a contraction.

Proof. Let Q = Pc. Then
10U =B+7f)(x) = QU =B+ v )W) < (I =B+7f)(x) = (I =B+ vl
<[[(I=B)(x) = (I =B) W +1f () = fO
< (1 =P)llx =yl + rkllx—yl|
= (1 =T=r)llx=yl,
for all x,y € C. Therefore, Q(I — B+ yf) is a contraction of C into itself. 1

Lemma 3.2. Suppose C is a nonempty closed convex subset of a real Hilbert space H, A is
an a-inverse-strongly monotone on C and 0 < r < 2¢. Then I —rA is nonexpansive.

Proof. Forx,y € C,
I(I—rA)x—(I—rA)y|* = |lx—y—r(Ax—Ay)||?
= [lx—y[I* = 2r{x — y, Ax — Ay) + * || Ax — Ay||?
< |lx—ylI* —20r||Ax — Ay||* + || Ax — Ay||?
= |l =yl +r(r—2a)||Ax — Ay||* < x—y|*.

Thus I — rA is nonexpansive. 1
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Lemma 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
¢ : C x C — R be a bifunction satisfying the conditions (A1) — (A4) (of Lemma 2.3) and
A be an o-inverse-strongly monotone map. Suppose {x,} is a bounded sequence in C and
{ra} Cla,b] C (0,2a) is a real sequence. If u, =T, (x, — rhAx,), then

H”nJrl *MnH < ||xn+l *xn” + |rn *Vn+1|Ml,
where My = sup{||Ax,|| + 1/a|lupn+1 — knt1|| : n € N}

Proof. Let p € EP. Then ¢(p,y)+ (Ap,y—p) >0, forally € C. So

1
o(p,y)+ 7(1)— (p—raAp),y—p) >0,

n

for all y € C. Therefore, by Lemma 3.2,

(3.1 lun — pll = |T,,(I = r2A)xn — T,,(I = raA)pl| < [lxn — pll, n=>1.
Therefore, {u,} is a bounded sequence. Set k, = x, — rpAx,, we have u, = T, k, and u, 4| =
TrnJrlknJrl. So
1
(3.2) O (un,y)+ —{y—up,up, —k,) >0, forallyeC,
I'n
and
1
(33) ¢(”n+1ay) + ot <y_ Unp+1,Un+1 _kn+1> > Oa for ally eC.
n+

Sety =uy+1 in (3.2) and y = u, in (3.3), then by adding these two last inequalities and using
condition (A,), we have

Uy —ky U1 — kg1
<un+l — Up, - >0,

n In+1
and hence
I'n
Up+1 — Upy Uy — Un+1 +un+l *kn* (un+l *knJrl) ZO
In+1
This implies

r
Hun+1 _unHz < <un+1 _unakn-H —kn+ (1 — = )(un+1 _kn+1)>
n41

1
< s =l W =l + 21 =1l ~ B .
Therefore

||un+1 _unll
1
< ||kn+1 *kn” + ;‘rn - Vn+l|||“n+1 —knt1 ||
1
= Hxn+1 — I 1Axpgy — (xn - rnAxn)H + ;|rn - rn+1|||un+1 —knt1 ||

1
< g1 = rns 1A% 1 — (o = ra1Axn ) | [rn = raga |[|Axa || + 5|”n = It |tni1 = Kngr |
< ||xn+] _xn||+|rn_rn+]‘Mly
where M1 = sup{||Ax, || + 1 /a||up+1 — knt1]| : n € N}. 1
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¢ :
C x C — R be a bifunction satisfying the conditions (A1) — (A4) (of Lemma 2.3) and {S, }7_,
be an infinite family of nonexpansive self-mappings on C satisfying F :=(\;_; F(S,) NEP #
0. Let f be a contraction of C into itself with coefficient k, B be a strongly positive bounded
linear operator on C with coefficient ¥ > 0 such that | B|| < 1 and A be an a-inverse-strongly
monotone on C. Assume 0 <y <7Y/k. Suppose {0y} and {B,} are two sequences in [0,1]
and {r,} C [a,b] C (0,2¢) is a real sequence satisfying the following conditions:

(B1) im0, =0 and Y 4, = oo

(B2) lim;, e ﬁn =0 and Z:;:] |ﬁn+1 - ﬁnl < 095

(B3) ijl |rn+1 - rn| < oo,
Suppose Y sup{||Sn+12 — Snz|| : 2 € K} < oo for any bounded subset K of C. Let S be a
mapping of C into itself defined by Sz = limy_. Spz for all z € C and F(S) = (=i F(Su). If
any of three conditions (Hy) — (Hz) satisfies, then the sequences {x,} and {u,} defined by
(1.7) converge strongly to q € F, where g = P p(s,)nep(I — B+Yf)(q), which solves the
following variational inequality:

(B—vf)a,q—x) <0, forallxcF.
Proof. LetQ=Fn= (s, nEP- Q(I — B+ yf) is a contraction of C into itself by Lemma 3.1.
So, there exists a unique element g € C such that g = Q(I = B+¥f)(q) = Fr=_, p(s,)nep( —

B+ 7vf)(q). By using conditions (B;) and (B;), we may assume, without loss of generality,
a, < (1—PB,)||B||~". Since B is strongly positive bounded linear operator on C,

1B]| = sup{|(Bx,x)| : x € C, |lx[| = 1}.
Observe
(((1=Bu)I — 0B)x,x) = 1 — B, — 0 (Bx,x) > 1 — B, — 0| B|| > 0.
Thus (1 — B,)I — a,B is positive, and
[[(1 = Bu)l = 0uBl| = sup{(((1 = Bu) — uB)x,x) : x € C, [[x|| = 1}
=sup{l — B, — a,(Bx,x) :x € C,|]x]| =1} < 1 -, — o, }.
We proceed with the following steps:

Step 1. First, we claim, {x,} and {u,} are bounded. Let p € F. From the definition of 7},
up =T, (I — rpA)x,. Then, from (1.7), (3.1) and Lemma 2.5,

%01 =PIl = [|(1 = Bu) vn — P) + Bu(Suyn — P)|
<|lyn = pll = llea(¥f (%n) = Bp) + (I — 0:B) (Suttn, — p) |
< (1= o) llxn = pll + ey (f (xa) = f(P) | + el vf (P) — Bp||
< (1 = & 7)[lxn — pll + 0 Ykllxn — pll + v/ (P) — Bp||

_ _ lvf(p) —Bp||
< (1= (7= vk) Ixn — pll + 0 (Y — Yk)w
< max{“xn =pl; ||}’f§/l’_) ;kBP }

By induction,

1
Xp— P Smax{xp, f(p)—Bp }, foralln > 1.
| | [lx1 = pll 7,_yklly (p)—Bp||
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Hence, {x,} is bounded, so are {u,}, {y,}, {f(xn)}, {BSnu,} and {S,y,}. Without loss of
generality, we may assume {x, }, {un}, {vu '}, {f(xn)}, {BSuttn}, {Snyn} C K, where K is a
bounded subset of C.

Step 2. We claim, lim,,_c ||Xn+1 — X1 || = 0. Since K is bounded, {Syy, — yn}, {f(xn)},
{BSyuy} are bounded. Set

M = sup{[|Suyn = yull, [1£ Cea) [, [[BSputn]| : n € N}.
By the definition of {x,},
[[%n-+2 — Xn41]|
= (1= Bu1)yn+1 4 But1Sn1Yn+1 — (1= Bu)yn — BuSuynl|
= [[(L = But1)Yn+1 4 Bus1Sn1n41 = (L= Bus1)Yn = BuSnyn + (1 = But1)yn
= (1= Bu)yn — Bur1SnYn + Bt 1Suyn|
(1= Bat1) O+t = Yn) + Bt (Sn1¥nt1 — Spyn) + (Bat1 — Bi) (Snyn — yn) |
< (1 =Bus ) yns1 =Yl + Bus 1 1Sn+13n+1 — Suynll + [Bas1 — BulM
< (1 - ﬁn+1)||yn+1 _ynH +Bn+1 ||Sn+1yn+1 —SuYnt1 H +Bn+1 H)’n+1 _yn“
+ [Bu1 — BulM
<1 = Yall + [1Sn419n01 = Suyn1 | + Bt — BulM,
for all n € N. From (1.7),
[ynt+1 = all
= [0 1 ¥ (nr1) + (I = 01 B) Spstttngr — ¥ (xn) — (I — 0uB) Snitn|
= |(I = @ 1B) (Snt1Un+1 — Snttn) — (Quy1 — O) BSntty + Gy 1 Y(f (K1) — f (X))
+ (01 — &) VS (x|
< (1= a1 V) [|Snt 111 — Spttn| + | i1 — 0| BSnttn || + Oy 1 VK| X1 — X
+ |01 — V1] f () |
< (1= e 7) (1S 10051 — S 1tal] + [Sus 1160 — Suitn]) + 01 — M
+ G YK X1 — X || 01 — 0| YM
< (1= 01 7)1 — || + M1+ 7)1 — 0| + Cp1 Vg1 — x|
+ ||Sn+lun—Sn”nH7

34

(3.5)

for all n € N. On the other hand, u, = T, (x, — r,Ax,) (by Lemma 2.4). From Lemma 3.3,
(3.6) [ttns1 = tn || < M %ns1 = 2Xu |l + |10 — Fag1 [M,
where M| = sup{||Ax,|| + 1/al||un+1 — knt1]| : » € N}. Substituting (3.6) in (3.5), we have
lYn1 = yall
< (L= ) xns1 —xall + [ = raa [Mi 3+ M1+ 7)[ 01 — 0
+ an+17k||xn+1 _an + ||Sn+1un _SnunH
(3.7 <= 01 (V= YR X1 — Xl | + 70 — 1 [M1 + M(147) [ 01 — O
+ ||Sn+1un _Snun”
< [1 - an+l(7_ yk)]||xn+l _xn” +M2(|rn —I'ntl ‘ + |an+1 - O‘n‘)
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+ 1S+ 100 — S|
where M, = max{M,M(1+7)}. Substituting (3.7) in (3.4), we have
%012 = Xng 1| < 1= Ou1 (7= V) Pt — Xl + M ([ — rnt |
+ Qi1 — O |+ [Brs1t = Bul) +2sup{|[Sn12 — Suzl| : z € K}

Now, we show that under any of three conditions (H|) — (H3), limy—c ||Xn4+1 — x| = 0 as
follows:

Let (H;) holds. Set p, = Mo (|rn — rug1| + Qg1 — O |+ | Bug 1 — Bal) +2 sup{||Sn+12— Suz]| :
z € K}, then

(3.8)

Z Hn = M> Z ([rn = Fag1| 4 |Gyt — O]+ [Buy1 — Bal) +2 Z sup{[|Sn+1z2—Spzl| : z € K}
n=1 n=1

n=1
< oo,
Therefore, by Lemma 2.6, limy,_e ||xy+1 — X || = 0.
If (H) holds, then from (3.8),

R
Ont1
+M2(|rn+1 - Vn| + |Bn+1 _ﬁnD +25up{||sn+lz_SnZH 1zZ€ K}

Set wy = Ma(|rn1 — 1| + [Bus1 — Bul) +2sup{[|Spr12—Suzl| : 2 € K}, then

||xn+2 — Xn+1 || < [] - O‘n+1(77_ Yk)} ||xn+1 _an + Q1 Mo

)

Y 1= M2 Y (s 1l 1Bt — B+ 2 X supl 12— S,2] -2 € K) < oo
n=1 n=1

n=1
Therefore, by Lemma 2.6, limy,_,o ||x,41 — X, || = 0.
If (H3) holds, then from (3.8),

42 = Xns 1] < (1= 01 (7 — VK] || Xn 1 — X || + Ma0( 0ty 1)
+M2(Gn + |rn+l - "n| + |ﬁn+l - BnD +2sup{”5n+11_ SnZH 1ZE K}~
Set Wy, = Mo (0 + |rns1 — rn| + | But1 — Bul) + 2supf{||Su+1z2— Suz|| : z € K}, then

oo

Z M = M> Z(Grfi— [Fne1 = Fnl + B — Bal) +2 Z sup{[[Sn+12—Snzl| : 2 € K} <o,
= n=1

n=1 n=1 =
Therefore, by Lemma 2.6, lim, e ||X,+1 — X,|| = 0.
Step 3. We claim, lim,_c ||x, — yu|| = 0. Indeed, from (B,) and (1.7),

nlgrolo 01 —Ynll = nlijroloﬁnHyn —Suyall = 0.
So, from step 2 and ||x;, — yull < |xns1 — Xn|| + X001 — Yul|> we get
lim ||x, —y,|| = 0.
n—oo
Step 4. We claim 1im,, e || X, — || = 0, limy, 0 ||y, — tt, || = 0 and lim,, e ||Stt, — 14y |
= 0. To this end, let p € F. Then
l|ttn _PH2 = ||Trn(xn — rnAxy) — Trn(p_ rnAp)||2 < Jxn — raAx, _P‘H’nAPHZ
= ||xn _sz +r5||Axn —AP”Z - 2rn<xn — D, Ax, _Ap>
< | _PH2 + 1 (1 —200) || Ax _AP”Z‘
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Therefore
s =PI (1 = Ba) (3w = P) + Bu(Suyn — p)II?
<lyn—pI* = llowyf () + (I — 00B)Spun — p|>
= |0 (Y () = BSuttn) + Sutn — p|?

(3.9) = 0 (| (n) = BSutta|* + || Spttn — p|I* + 204 (Vf (x2) — BSuttn; Suttn — p)
< 0|7 () — BSut|* + l|ttn = pII* + 206 (7S (5) — BSutt, Spitn — p)
< 01| (%) = BSuttn|* + 5w = P11 + 1 (r — 200) | Axy, — Ap]|?

+ 206 ||V (xn) — BSptn|[|n — p||-
This implies
r,,(ZOt—r,,)||Ax,,—Ap||2
< b =PI = s = pII* + 05 17 () = BSatt|* + 204 Vf (x2) — BSuttn | [|un = p|
< (ln = pll+ [t = pID %1 = all + 05 177 (%) = BSputn|?
+206 £ (%n) — BSpttal||[un — |-

From lim, . 0, =0, 1, € [a,b] C (0,2a) and limy,—,e || %11 — x| =0,

3.10) }EEO||AXH —Ap| =0.

Also, from (II) in Lemma 2.4,

Jan
= 1T, (xn — raAxn) = T, (p — raAp)||* < (= 1r2Axy — (p = raAp), t — p)

I”?

1
= 5 Ul = raAsa = (p = 1Ap) [* + [l = pII* = |5 = raAsn = (p = rAp) — (tta — p) I}

1
< E{”xn —p||2+ (|4 _P||2 — [0 — ttn — 1 (Axy _AP)HZ}

= S 00— I+l I~ 0~ + 25—, Ay — Ap) — 24y — ApIP).
This implies
tn = P> < 0 = pII* = [l = tnl|* 27 (0 — 4, Axy — Ap) — 15 || Ay — Ap .

< [ _P”2 = lxn — “nHZ + 21 (X — ttn, Axp — Ap)

< [l _P||2 = lxn — L‘nH2 + 27y |0 — up ||[|Ax, — Ap].
By the same argument in (3.9),
lnr1 = pII* < 0 17 (xn) = BSutn||* + lutn — pI* 204 (¥ (xn) — BSnttn St — p)

< O‘r%HYf(xn) _BSn“n||2 + [l _PHZ — |20 — "’n”2 + 21X — up|[|Axn — Apl|
+ 20| 7 (xn) — BSuttn | [|ttn — p|-
Therefore
260 = wn||* < |10 — PII* = ns1 — PII* + o2 || 7 (xn) — BSputn]*
+ 27| xn — un ||| Axn — Apl| 4 206,[| 7 (xn) — BSptn]|||utn — pl|
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< (In = pll + %041 = PID nst — Xl + 047 7 () — BSptn |1
+ 21 [lxn — un||[|Axn — Ap|| + 200 S (xn) — BSpttn ||| un — p||.
Then lim,, e 0, = 0, lim;,—c0 || Xp41 — X4 || = 0 and (3.10) show
lim ||x, — u,|| = 0.
n—s00
Moreover, from ||y, — u || < |[yn — Xu| + [|xs — un|| and step 3,
lim ||y, — u,|| = 0.
n—oo
Since
Snttn — tn || < 1[Snttn — yull + |yn — ]l < al|Vf (xn) — BSnttn]| +[|yn — ]|,
we have lim,_.c ||Syut; — || = 0. Observe
([Sun — unl < ||Sun — Spitn|| + |[Snttn — un|| < sup{||Sz—Snz|| : z € K} +[|Snttn — |-
From Lemma 2.7, limy, e || Sty — uy|| = 0.
Step 5. We claim, limsup,_,..(Yf(q) —Bq,y» —q) <0, where g = Pn=_ r(s5,)nep(I =B+
Yf)(g).To show this, choose a subsequence {u, } of {u,} such that
limsup{(B —7v/)q,q —un) = im{(B —v/)q,q — tun;)-

n—oo

Since {u,,i} is bounded in C, without loss of generality, we assume u,, — z € C. From
limy,—e0 || Stty — || = 0 and Lemma 2.2, z € F(S). Now, we show z € EP. By u,, =T, (x, —
rpAxy), one can write

1
O (un,y) + (Axp,y —uy) + r—(y—un,un —Xx) >0, forallyeC.

n

From (A,),

1
(Axp,y —up) + r—(y—u,,,un—xn> > o(y,uy), forallyecC.

Replacing n by n;, we have

1
(311) <Axn,-7yfuni>+r7<y7uni;uni*xnl‘> Z¢()’>un,-), fOI‘ allyGC

n;

Sety, =ty+ (1 —t)z, forallr € (0,1] and y € C. Then y; € C. So, from (3.11),
<yl‘ —Mn,-yA)’t>

2 <yl —Un,-7A)’t> - <Axrl,'7yt _un,-> - <yf _un,';

Un

= Xp,
) )

n;

Up. — Xy
= <yt — un”Ayt —Auni> + <yt — uni,Auni _Ax"i> — <yt — M}’li7 nj nj > + ¢(yt7uni)'
n;
Since lim; e ||tty; — Xy, || = 0, we have lim;_o, ||Au,,, — Axy, || = 0. Further, from the mono-
tonicity of A, (y; — up;,Ay; —Auy,) > 0. So, from (A4),
(3.12) Ve —2,Ay) > 0 (y1,2),

as i — oo, From (A1), (A7) and (3.12),
0=00,y) <10y, )+ (1 =1)¢(yr,2) <19 (s, y) + (1 —1) (v —2,Ay)
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=19 (yr,y) + (1 =1)t{y —z,Ay),
hence

0<9(my)+ (1 —1)(y—z,Ay).
Letting t — 0, we get

0<¢(z,y)+(y—2zAz), forallyeC.
This implies z € EP. Since ¢ = Pn=_ r(5,)ner(I —B+7Yf)(q),
timsup((B— 17)(q).4 ~3n) = (B —71)():q ) = (B~ 1) @).q — )
= lim{(B~7/f)(9),q—2) < 0.
Step 6. We claim {u, } and {x, } converges strongly to g. From (1.7),
a1 —4l?
= [1(1=B) n = @) + Bu(Suyn — @) II?
< lyn—4qll* = llow¥f (6a) + (I = ,B)Suttn — q>
= [0t (v (xn) — Bq) + (I — 06 B) (Suitn — q) >
< NI = 00B) (Sutn — @) |I* + 200 (¥f () — Bg, yu — )
< (1= 07)lun — qlf + 206 (¥ (%) = V£ (a), 0 — @) +200(¥S (@) — Bq:yn — q)
< (1= 7)1 = q11” + 20 Ykl xn = gl[ ([l = %l + [ — q}) + 206, (¥ (9) — Bg,yn — )
< (1=206(7 = 7K)) 120 — a1 + (067) 130 — a1 + 206 Yk [0 — ][y — ]
+200(Yf(9) = Bg,yn —q)
- - (o7 )M5 | kM3
< (1=20,(7~ )b — P + 204 (7 -y { SETUE 4 T

Hyn — Xn||

@ -Ban- q>}

= (1 - 5n)||xn _(/I||2+5n9na

where M3 = sup{|x, —q| : n> 1}, 8, =20a,(¥— vk) and 6, = ((a, 7*)M32)/(2(7— Yk)) +
(VkM3) /(Y — VK) ||yn —xn ||+ 1/ (7—vk){Yf(q) — Bg,yn — q). It is easy to see that lim,,_... &, =
0, Y 8, = and limsup,_,., 6, < 0. Hence, by Lemma 2.6, {x,} converges strongly to
q. Consequently, {u, } converges strongly to g. This completes the proof.

Remark 3.1. Theorem 3.1 is a generalization of [15, Theorem 3.1]. To see this, Set A =0 in
Theorem 3.1, and assume r,, > a > 0 (it is not necessary to assume {r, } C [a,b] C (0,2a)).
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