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Abstract. We will investigate the approximate solutions of the differential equation

y′′′(x)+(α +β + γ)y′′(x)+(αβ +βγ + γα)y′(x)+αβγy(x) = 0

under some conditions imposed on α , β , γ , and on the domain of y, and we will compare
the approximate solutions with the exact ones.
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1. Introduction

The stability problem for functional equations starts from the famous talk of Ulam and the
partial solution of Hyers to the Ulam’s problem (see [32] and [8]). Thereafter, Rassias [29]
attempted to solve the stability problem of the Cauchy additive functional equation in a
more general setting.

The stability concept introduced by Rassias’s theorem significantly influenced a number
of mathematicians to investigate the stability problems for various functional equations (see
[3, 5–7, 9, 10, 17, 25, 30] and the references therein).

Assume that Y is a normed space and I is an open subset of R. If for any function
f : I→ Y satisfying the differential inequality

‖an(x)y(n)(x)+an−1(x)y(n−1)(x)+ · · ·+a1(x)y′(x)+a0(x)y(x)+h(x)‖ ≤ ε

for all x ∈ I and for some ε ≥ 0, there exists a solution f0 : I→Y of the differential equation

an(x)y(n)(x)+an−1(x)y(n−1)(x)+ · · ·+a1(x)y′(x)+a0(x)y(x)+h(x) = 0

such that ‖ f (x)− f0(x)‖ ≤ K(ε) for any x ∈ I, where K(ε) is an expression of ε only,
then we say that the above differential equation satisfies the Hyers-Ulam stability (or the
local Hyers-Ulam stability if the domain I is not the whole space R), where ai : I→K and
h : I→Y are (given) continuous functions and K is either R or C, over which Y is a normed
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space. We may apply these terminologies for other differential equations. For more detailed
definition of the Hyers-Ulam stability, we refer to [5, 6, 8–10, 17, 29, 30].

Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of
linear differential equations (see [26, 27]). Here, we will introduce a result of Alsina and
Ger (see [2]): If a differentiable function f : I→R is a solution of the differential inequality
|y′(x)− y(x)| ≤ ε , where I is an open subinterval of R, then there exists a constant C such
that | f (x)−Cex| ≤ 3ε for any x ∈ I.

This result of Alsina and Ger has been generalized by Takahasi, Miura and Miyajima:
They proved in [31] that the Hyers-Ulam stability holds for the Banach space valued differ-
ential equation y′(x) = λy(x) (see also [22]).

In [23], Miura, Miyajima and Takahasi also proved the Hyers-Ulam stability of lin-
ear differential equations of first order, y′(x) + g(x)y(x) = 0, where g(x) is a continuous
function, while the author [11] proved the Hyers-Ulam stability of differential equations
of the form c(x)y′(x) = y(x). For more recent results about this subject, we can refer
to [1, 4, 11–16, 18–21, 24, 28, 33].

The aim of this paper is to prove a kind of Hyers-Ulam stability of a linear differential
equation of third order,

(1.1) y′′′(x)+(α +β + γ)y′′(x)+(αβ +βγ + γα)y′(x)+αβγy(x) = 0,

where α , β , and γ are nonzero real numbers. More precisely, we will investigate the (ap-
proximate) solutions of the differential inequality

(1.2) |y′′′(x)+(α +β + γ)y′′(x)+(αβ +βγ + γα)y′(x)+αβγy(x)| ≤ ε

and compare them with the (exact) solutions of the differential equation (1.1).

2. Preliminaries

The author recently obtained a result concerning the Hyers-Ulam stability of linear differ-
ential equations of the form

y′(x)+g(x)y(x)+h(x) = 0

which includes the following theorem as a special case (see [13, Remark 3]).

Theorem 2.1. Let I = (a,b) be an open interval with −∞ ≤ a < b ≤ ∞. Assume that
g,h : I→ R are continuous functions and ϕ : I→ [0,∞) is a function such that

(i) g(x) and exp{
∫ x

a g(u)du}h(x) are integrable on (a,d) for each d ∈ I;
(ii) ϕ(x)exp{

∫ x
a g(u)du} is integrable on I.

If a continuously differentiable function y : I→ R satisfies the differential inequality

|y′(x)+g(x)y(x)+h(x)| ≤ ϕ(x)

for all x ∈ I, then there exists a unique real number c such that∣∣∣∣y(x)− exp
{
−
∫ x

a
g(u)du

}(
c−

∫ x

a
exp
{∫ v

a
g(u)du

}
h(v)dv

)∣∣∣∣
≤ exp

{
−
∫ x

a
g(u)du

}∫ b

x
ϕ(v)exp

{∫ v

a
g(u)du

}
dv

for every x ∈ I.
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The following corollaries are essential for the proof of our main theorems. We can prove
them easily by using Theorem 2.1.

Corollary 2.1. Let I = (a,b) be an open interval with −∞ < a < b ≤ ∞. Assume that
α 6= 0, β 6= 0, γ are real numbers and eα(x−a) is integrable on I. If a twice continuously
differentiable function f : I→ R satisfies the differential inequality

(2.1) | f ′′(x)+(α +β ) f ′(x)+αβ f (x)+ γ| ≤ ε

for all x ∈ I and for some ε ≥ 0, then there exists a unique real number c such that∣∣∣ f ′(x)+β f (x)− ce−α(x−a) +
γ

α

∣∣∣≤ ε

|α|

∣∣∣eα(b−x)−1
∣∣∣

for all x ∈ I, where eα(b−x) stands for lim
w→b

eα(w−x) and it exists even for b = ∞.

Proof. If we set z(x) = f ′(x)+β f (x) for all x ∈ I, then it follows from (2.1) that

|z′(x)+αz(x)+ γ| ≤ ε

for any x ∈ I. According to Theorem 2.1, there exists a unique real number c such that∣∣∣z(x)− ce−α(x−a) +
γ

α

∣∣∣≤ ε

|α|

∣∣∣eα(b−x)−1
∣∣∣

for x ∈ I.
The inequality (2.1) is symmetric with respect to α and β . If α and β interchange their

roles, then we obtain the following corollary.

Corollary 2.2. Let I = (a,b) be an open interval with −∞ < a < b ≤ ∞. Assume that
α 6= 0, β 6= 0, γ are real numbers and eβ (x−a) is integrable on I. If a twice continuously
differentiable function f : I → R satisfies the differential inequality (2.1) for all x ∈ I and
some ε ≥ 0, then there exists a unique real number c such that∣∣∣∣ f ′(x)+α f (x)− ce−β (x−a) +

γ

β

∣∣∣∣≤ ε

|β |

∣∣∣eβ (b−x)−1
∣∣∣

for all x ∈ I, where eβ (b−x) stands for lim
w→b

eβ (w−x) and it exists even for b = ∞.

If I = (a,∞) with a >−∞, α < 0, and β < 0, then both eα(x−a) and eβ (x−a) are integrable
on I. Thus, the following corollary is an immediate consequence of Corollaries 2.1 and 2.2.

Corollary 2.3. Let I = (a,∞) be an open interval with a >−∞. Assume that α < 0, β < 0,
γ are real numbers. If a twice continuously differentiable function f : I → R satisfies the
inequality (2.1) for all x ∈ I and for some ε ≥ 0, then there exist real numbers cα and cβ

such that ∣∣∣ f ′(x)+β f (x)− cα e−α(x−a) +
γ

α

∣∣∣≤ ε

|α|
and ∣∣∣∣ f ′(x)+α f (x)− cβ e−β (x−a) +

γ

β

∣∣∣∣≤ ε

|β |
for all x ∈ I. The real numbers cα and cβ are uniquely determined.



1066 S.-M. Jung

3. Main theorems

In this section, we investigate the approximate solutions of the differential equation (1.1) in
the class of three times continuously differentiable functions y : (a,b)→ R for the case of
either a ∈ R and b = ∞ or a =−∞ and b ∈ R.

As we know,

y(x) =


c1e−α(x−a) + c2e−β (x−a) + c3e−γ(x−a) (for distinct α , β , γ),
c1e−α(x−a) + c2xe−α(x−a) + c3e−γ(x−a) (for α = β 6= γ),
c1e−α(x−a) + c2xe−α(x−a) + c3x2e−α(x−a) (for α = β = γ)

is the general solution of the differential equation (1.1) for any real coefficients c1, c2, and
c3.

We apply the methods introduced in [2, 11, 13, 21, 33] to the proof of the following main
theorem.

Theorem 3.1. Let I = (a,∞) be an open interval with a real number a. Assume that α , β ,
γ are real numbers. Suppose y : I→ R is a three times continuously differentiable function
and the limits y(a) = limx→a+ y(x) and y′(a) = limx→a+ y′(x) exist. Moreover, assume that
y satisfies the inequality (1.2) for all x ∈ I and for some ε ≥ 0.

(i) If α < 0, β < 0, α 6= β , and γ 6∈ {0,α,β}, then there exist solutions y1, y2 : I→ R
of the differential equation (1.1) such that

|y(x)− y1(x)| ≤
ε

αβ

∣∣∣∣1γ − 1
γ−β

e−β (x−a)−
(

1
γ
− 1

γ−β

)
e−γ(x−a)

∣∣∣∣
and

|y(x)− y2(x)| ≤
ε

αβ

∣∣∣∣1γ − 1
γ−α

e−α(x−a)−
(

1
γ
− 1

γ−α

)
e−γ(x−a)

∣∣∣∣
for all x ∈ I.

(ii) If α = β < 0, and γ 6∈ {0,α}, then there exists a solution ŷ : I→R of the differential
equation (1.1) such that

|y(x)− ŷ(x)| ≤ ε

α2

∣∣∣∣1γ − 1
γ−α

e−α(x−a)−
(

1
γ
− 1

γ−α

)
e−γ(x−a)

∣∣∣∣
for all x ∈ I.

(iii) If α = β = γ < 0, then there exists a solution ŷ : I→ R of the differential equation
(1.1) such that

|y(x)− ŷ(x)| ≤ ε

α2

∣∣∣∣ 1
α
−
(

1
α
−a
)

e−α(x−a)− xe−α(x−a)
∣∣∣∣

for all x ∈ I.

Proof. We will prove (i) only. The proofs for (ii) and (iii) run in the same way as the proof
of (i).

Assume that α < 0, β < 0, and γ 6= 0 are distinct real numbers. Let us define a twice
continuously differentiable function f : I→ R by f (x) = y′(x)+ γy(x) for all x ∈ I and let
f (a) = y′(a)+ γy(a). It then follows from (1.2) that

| f ′′(x)+(α +β ) f ′(x)+αβ f (x)| ≤ ε
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for any x ∈ I. According to Corollary 2.3, there exist real numbers cα and cβ such that

(3.1)
∣∣∣ f ′(x)+β f (x)− cα e−α(x−a)

∣∣∣≤ ε

|α|
and

(3.2)
∣∣∣ f ′(x)+α f (x)− cβ e−β (x−a)

∣∣∣≤ ε

|β |
for all x ∈ I, where the real numbers cα and cβ are uniquely determined.

It follows from (3.1) that

− ε

|α|
eβ (x−a) ≤ f ′(x)eβ (x−a) +βeβ (x−a) f (x)− cα e(β−α)(x−a) ≤ ε

|α|
eβ (x−a)

or
d
dx

{
ε

αβ
eβ (x−a)

}
≤ d

dx

{
f (x)eβ (x−a)− cα

β −α
e(β−α)(x−a)

}
≤− d

dx

{
ε

αβ
eβ (x−a)

}
.

If we integrate the last inequalities from a to x, then we get
ε

αβ

[
eβ (x−a)−1

]
≤ f (x)eβ (x−a)− f (a)− cα

β −α

[
e(β−α)(x−a)−1

]
≤ ε

αβ

[
1− eβ (x−a)

]
or

ε

αβ

[
1− e−β (x−a)

]
≤ y′(x)+ γy(x)− f (a)e−β (x−a)− cα

β −α

[
e−α(x−a)− e−β (x−a)

]
≤ ε

αβ

[
e−β (x−a)−1

]
.

If we multiply by eγ(x−a) each term of the last inequalities, then we have

ε

αβ

d
dx

{
1
γ

eγ(x−a)− 1
γ−β

e(γ−β )(x−a)
}

≤ d
dx

[
y(x)eγ(x−a)− f (a)

γ−β
e(γ−β )(x−a)− cα

β −α

{
1

γ−α
e(γ−α)(x−a)− 1

γ−β
e(γ−β )(x−a)

}]
≤ ε

αβ

d
dx

{
1

γ−β
e(γ−β )(x−a)− 1

γ
eγ(x−a)

}
.

If we integrate the last inequalities from a to x and then multiply by e−γ(x−a) the resulting
inequalities, then we obtain

ε

αβ

{
1
γ
− 1

γ−β
e−β (x−a)−

(
1
γ
− 1

γ−β

)
e−γ(x−a)

}
≤ y(x)− cα

(β −α)(γ−α)
e−α(x−a)− 1

γ−β

(
f (a)− cα

β −α

)
e−β (x−a)

−
(

y(a)− f (a)
γ−β

− cα

(β −α)(γ−α)
+

cα

(β −α)(γ−β )

)
e−γ(x−a)

≤ ε

αβ

{
−1

γ
+

1
γ−β

e−β (x−a) +
(

1
γ
− 1

γ−β

)
e−γ(x−a)

}
,

that is, there exist real numbers c1, c2, c3 such that∣∣∣y(x)− c1e−α(x−a)− c2e−β (x−a)− c3e−γ(x−a)
∣∣∣
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≤ ε

αβ

∣∣∣∣1γ − 1
γ−β

e−β (x−a)−
(

1
γ
− 1

γ−β

)
e−γ(x−a)

∣∣∣∣
for all x ∈ I.

Similarly, if α and β interchange their roles, then it follows from (3.2) and the last
inequality that there exist real numbers c4, c5, c6 satisfying∣∣∣y(x)− c4e−α(x−a)− c5e−β (x−a)− c6e−γ(x−a)

∣∣∣
≤ ε

αβ

∣∣∣∣1γ − 1
γ−α

e−α(x−a)−
(

1
γ
− 1

γ−α

)
e−γ(x−a)

∣∣∣∣
for any x ∈ I.

We will now prove a counterpart of Theorem 3.1 for the case of I = (−∞,b), α > 0,
β > 0, and γ 6= 0.

Theorem 3.2. Let I = (−∞,b) be an open interval with a real number b. Assume that
α , β , γ are real numbers. Suppose y : I → R is a three times continuously differentiable
function and the limits y(b) = lim

x→b−
y(x) and y′(b) = lim

x→b−
y′(x) exist. Moreover, assume that

y satisfies the differential inequality (1.2) for all x ∈ I and for some ε ≥ 0.

(i) If α > 0, β > 0, α 6= β , and γ 6∈ {0,α,β}, then there exist solutions y1, y2 : I→ R
of the differential equation (1.1) such that

|y(x)− y1(x)| ≤
ε

αβ

∣∣∣∣1γ − 1
γ−β

eβ (b−x)−
(

1
γ
− 1

γ−β

)
eγ(b−x)

∣∣∣∣ ,
|y(x)− y2(x)| ≤

ε

αβ

∣∣∣∣1γ − 1
γ−α

eα(b−x)−
(

1
γ
− 1

γ−α

)
eγ(b−x)

∣∣∣∣(3.3)

for all x ∈ I.
(ii) If α = β > 0, and γ 6∈ {0,α}, then there exists a solution ŷ : I→R of the differential

equation (1.1) such that

|y(x)− ŷ(x)| ≤ ε

α2

∣∣∣∣1γ − 1
γ−α

eα(b−x)−
(

1
γ
− 1

γ−α

)
eγ(b−x)

∣∣∣∣
for all x ∈ I.

(iii) If α = β = γ > 0, then there exists a solution ŷ : I→ R of the differential equation
(1.1) such that

|y(x)− ŷ(x)| ≤ ε

α2

∣∣∣∣ 1
α
−
(

1
α
−b
)

eα(b−x)− xeα(b−x)
∣∣∣∣

for all x ∈ I.

Proof. We will prove (i) only. The parts (ii) and (iii) can be proved similarly. Hence, we
omit their proofs.

Assume that α > 0, β > 0, and γ 6= 0 are distinct real numbers. Let us define a three
times continuously differentiable function ỹ : Ĩ → R by ỹ(x) = y(−x), where we set Ĩ =
(−b,∞) =: (ã,∞). By the chain rule, if we set t =−x, then we have

y′(x) =−ỹ′(t), y′′(x) = ỹ′′(t), y′′′(x) =−ỹ′′′(t).
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Thus, we get

y′′′(x)+(α +β + γ)y′′(x)+(αβ +βγ + γα)y′(x)+αβγy(x)

=−ỹ′′′(t)+(α +β + γ)ỹ′′(t)− (αβ +βγ + γα)ỹ′(t)+αβγ ỹ(t)

=−[ỹ′′′(t)+(α̃ + β̃ + γ̃)ỹ′′(t)+(α̃β̃ + β̃ γ̃ + γ̃ α̃)ỹ′(t)+ α̃β̃ γ̃ ỹ(t)],

(3.4)

for all t ∈ Ĩ, where α̃ = −α < 0, β̃ = −β < 0, and γ̃ = −γ 6= 0 are distinct real numbers,
and it follows from (1.2) that

|ỹ′′′(t)+(α̃ + β̃ + γ̃)ỹ′′(t)+(α̃β̃ + β̃ γ̃ + γ̃ α̃)ỹ′(t)+ α̃β̃ γ̃ ỹ(t)| ≤ ε

for all t ∈ Ĩ.
Moreover, ỹ(ã) and ỹ′(ã) exist as we see

ỹ(ã) = lim
t→ã+

ỹ(t) = lim
x→b−

y(x) = y(b)

and
ỹ′(ã) = lim

t→ã+
ỹ′(t) = lim

x→b−
(−y′(x)) =− lim

x→b−
y′(x) =−y′(b).

According to Theorem 3.1 (i), there exist solutions ỹ1, ỹ2 : Ĩ → R of the differential
equation,

(3.5) ỹ′′′(t)+(α̃ + β̃ + γ̃)ỹ′′(t)+(α̃β̃ + β̃ γ̃ + γ̃ α̃)ỹ′(t)+ α̃β̃ γ̃ ỹ(t) = 0,

which satisfy

|ỹ(t)− ỹ1(t)| ≤
ε

α̃β̃

∣∣∣∣1γ̃ − 1
γ̃− β̃

e−β̃ (t−ã)−
(

1
γ̃
− 1

γ̃− β̃

)
e−γ̃(t−ã)

∣∣∣∣
and

|ỹ(t)− ỹ2(t)| ≤
ε

α̃β̃

∣∣∣∣1γ̃ − 1
γ̃− α̃

e−α̃(t−ã)−
(

1
γ̃
− 1

γ̃− α̃

)
e−γ̃(t−ã)

∣∣∣∣
for all t ∈ Ĩ. In view of (3.4), the differential equations (1.1) and (3.5) are equivalent in
the sense that y(x) is a solution of the differential equation (1.1) if and only if ỹ(t) is a
solution of the differential equation (3.5). Hence, there exist solutions y1, y2 : I→ R of the
differential equation (1.1) satisfying the inequalities in (3.3).

4. Applications

The inequality (1.2) is symmetric with respect to α , β , and γ . If α , β , and γ are assumed to
be distinct negative real numbers, then the following corollary is an immediate consequence
of Theorem 3.1 (i).

Corollary 4.1. Let I = (a,∞) be an open interval with a real number a. Assume that α < 0,
β < 0, γ < 0 are distinct real numbers. Suppose y : I → R is a three times continuously
differentiable function and the limits y(a) = lim

x→a+
y(x) and y′(a) = lim

x→a+
y′(x) exist. If y

satisfies the inequality (1.2) for all x ∈ I and for some ε ≥ 0, then there exists a solution
y1 : I→ R of the differential equation (1.1) such that

|y(x)− y1(x)| ≤
ε

αβ

∣∣∣∣1γ − 1
γ−β

e−β (x−a)−
(

1
γ
− 1

γ−β

)
e−γ(x−a)

∣∣∣∣
for all x ∈ I. Analogous inequalities hold for every permutation of α , β , γ .
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The following corollary follows from the 4th or the 5th inequality of Corollary 4.1 and
Theorem 3.1 (iii).

Corollary 4.2. Let I = (a,∞) be an open interval with a > −∞. Assume that α , β , γ

are negative real numbers. Suppose y : I → R is a three times continuously differentiable
function and the limits y(a) = lim

x→a+
y(x) and y′(a) = lim

x→a+
y′(x) exist. Moreover, assume that

y satisfies the inequality (1.2) for all x ∈ I and for some ε ≥ 0.
(i) If γ < β < α < 0, then there exists a solution ŷ : I→ R of the differential equation

(1.1) such that
|y(x)− ŷ(x)|= o

(
e−γ(x−a))

as x→ ∞, where o stands for the Landau little-o notation.
(ii) If α = β = γ < 0, then there exists a solution ŷ : I→ R of the differential equation

(1.1) such that
|y(x)− ŷ(x)|= O

(
xe−α(x−a))

as x→ ∞, where O stands for the Landau big-O notation.

If α , β , and γ are assumed to be distinct positive real numbers, then the following corol-
lary is an immediate consequence of Theorem 3.2 (i).

Corollary 4.3. Let I = (−∞,b) be an open interval with a real number b. Assume that α >
0, β > 0, γ > 0 are distinct real numbers. Suppose y : I→ R is a three times continuously
differentiable function and the limits y(b) = lim

x→b−
y(x) and y′(b) = lim

x→b−
y′(x) exist. If y

satisfies the inequality (1.2) for all x ∈ I and for some ε ≥ 0, then there exists a solution
y1 : I→ R of the differential equation (1.1) such that

|y(x)− y1(x)| ≤
ε

αβ

∣∣∣∣1γ − 1
γ−β

eβ (b−x)−
(

1
γ
− 1

γ−β

)
eγ(b−x)

∣∣∣∣
for all x ∈ I. Analogous inequalities hold for every permutation of α , β , γ .

The following corollary follows from the 4th or the 5th inequality of Corollary 4.3 and
Theorem 3.2 (iii).

Corollary 4.4. Let I = (−∞,b) be an open interval with b < ∞. Assume that α , β , γ

are positive real numbers. Suppose y : I → R is a three times continuously differentiable
function and the limits y(b) = lim

x→b−
y(x) and y′(b) = lim

x→b−
y′(x) exist. Moreover, assume that

y satisfies the inequality (1.2) for all x ∈ I and for some ε ≥ 0.
(i) If γ > β > α > 0, then there exists a solution ŷ : I→ R of the differential equation

(1.1) such that
|y(x)− ŷ(x)|= o

(
eγ(b−x))

as x→−∞.
(ii) If α = β = γ > 0, then there exists a solution ŷ : I→ R of the differential equation

(1.1) such that
|y(x)− ŷ(x)|= O

(
xeα(b−x))

as x→−∞.

Open Problem 4.1. Are Theorems 3.1 and 3.2 also true for the case when some of α , β ,
and γ are complex numbers and the range of y is C?
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Open Problem 4.2. Are Theorems 3.1 and 3.2 also true for the case of I = R?

5. Discussion

Let I = (a,∞) be an open interval with a real number a. Suppose y : I→ R is a three times
continuously differentiable function and the limits y(a) = lim

x→a+
y(x) and y′(a) = lim

x→a+
y′(x)

exist. Moreover, assume that y satisfies the inequality

(5.1)
∣∣y′′′(x)−6y′′(x)+11y′(x)−6y(x)

∣∣≤ ε

for all x ∈ I and for some ε ≥ 0.
According to Theorem 3.1 (i), there exist solutions y1, y2 : I → R of the differential

equation

(5.2) y′′′(x)−6y′′(x)+11y′(x)−6y(x) = 0

such that

|y(x)− y1(x)| ≤ ε

∣∣∣∣13e3(x−a)− 1
2

e2(x−a) +
1
6

∣∣∣∣
and

|y(x)− y2(x)| ≤ ε

∣∣∣∣ 1
12

e3(x−a)− 1
4

ex−a +
1
6

∣∣∣∣
for all x ∈ I. Strictly speaking, this is not a Hyers-Ulam stability of the differential equation
(5.2).

Under stronger conditions, however, the differential equation (5.2) has the Hyers-Ulam
stability. We assume that ~y : R→ R3 is a continuously differentiable vector function. We
now consider the inequality

(5.3)
∥∥~y ′(x)−A~y(x)

∥∥
∞
≤ ε

for all x ∈ R and for some ε ≥ 0, where

~y(x) =

 y1(x)
y2(x)
y3(x)

 and A =

 0 1 0
0 0 1
6 −11 6

 .

According to [14, Theorem 2], there exists a differentiable vector function ~w : R→ R3

such that
~w ′(x) = A~w(x)

and ∥∥~y(x)−~w(x)
∥∥

∞
≤ ε‖N‖∞

∥∥N−1∥∥
∞
‖B~e‖∞,

where

N =

 1 1 1
1 2 3
1 4 9

 , N−1 =

 3 − 5
2

1
2

−3 4 −1
1 − 3

2
1
2

 , B =

 1 0 0
0 1

2 0
0 0 1

3


and~e = (1 1 1)tr. That is, if we set w1(x) = w(x), then there exists a differentiable function
w : R→ R such that

w′′′(x)−6w′′(x)+11w′(x)−6w(x) = 0
and

|y1(x)−w(x)| ≤ 112ε, |y2(x)−w′(x)| ≤ 112ε, |y3(x)−w′′(x)| ≤ 112ε
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for every x ∈ R. This provides the Hyers-Ulam stability of the differential equation (5.2).
(We know that~y ′(x) = A~y(x) is equivalent to the differential equation (5.2)).

We remark that the inequality (5.3) is equivalent to the inequalities
|y′1(x)− y2(x)| ≤ ε,

|y′2(x)− y3(x)| ≤ ε,

|y′3(x)−6y1(x)+11y2(x)−6y3(x)| ≤ ε

for all x ∈ R, which in general seem to be stronger than the condition (5.1).
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