Approximate Solutions of a Linear Differential Equation of Third Order

Soon-Mo Jung
Mathematics Section, College of Science and Technology, Hongik University, 339-701 Jochiwon, Republic of Korea
smjung@hongik.ac.kr

Abstract

We will investigate the approximate solutions of the differential equation

$$
y^{\prime \prime \prime}(x)+(\alpha+\beta+\gamma) y^{\prime \prime}(x)+(\alpha \beta+\beta \gamma+\gamma \alpha) y^{\prime}(x)+\alpha \beta \gamma y(x)=0
$$

under some conditions imposed on α, β, γ, and on the domain of y, and we will compare the approximate solutions with the exact ones.

2010 Mathematics Subject Classification: Primary: 34A40, 39B82; Secondary: 26D10
Keywords and phrases: Approximate solution, linear differential equation of third order, Hyers-Ulam stability.

1. Introduction

The stability problem for functional equations starts from the famous talk of Ulam and the partial solution of Hyers to the Ulam's problem (see [32] and [8]). Thereafter, Rassias [29] attempted to solve the stability problem of the Cauchy additive functional equation in a more general setting.

The stability concept introduced by Rassias's theorem significantly influenced a number of mathematicians to investigate the stability problems for various functional equations (see [$3,5-7,9,10,17,25,30]$ and the references therein).

Assume that Y is a normed space and I is an open subset of \mathbb{R}. If for any function $f: I \rightarrow Y$ satisfying the differential inequality

$$
\left\|a_{n}(x) y^{(n)}(x)+a_{n-1}(x) y^{(n-1)}(x)+\cdots+a_{1}(x) y^{\prime}(x)+a_{0}(x) y(x)+h(x)\right\| \leq \varepsilon
$$

for all $x \in I$ and for some $\varepsilon \geq 0$, there exists a solution $f_{0}: I \rightarrow Y$ of the differential equation

$$
a_{n}(x) y^{(n)}(x)+a_{n-1}(x) y^{(n-1)}(x)+\cdots+a_{1}(x) y^{\prime}(x)+a_{0}(x) y(x)+h(x)=0
$$

such that $\left\|f(x)-f_{0}(x)\right\| \leq K(\varepsilon)$ for any $x \in I$, where $K(\varepsilon)$ is an expression of ε only, then we say that the above differential equation satisfies the Hyers-Ulam stability (or the local Hyers-Ulam stability if the domain I is not the whole space \mathbb{R}), where $a_{i}: I \rightarrow \mathbb{K}$ and $h: I \rightarrow Y$ are (given) continuous functions and \mathbb{K} is either \mathbb{R} or \mathbb{C}, over which Y is a normed

[^0]space. We may apply these terminologies for other differential equations. For more detailed definition of the Hyers-Ulam stability, we refer to [5,6,8-10, 17, 29, 30].

Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of linear differential equations (see $[26,27]$). Here, we will introduce a result of Alsina and Ger (see [2]): If a differentiable function $f: I \rightarrow \mathbb{R}$ is a solution of the differential inequality $\left|y^{\prime}(x)-y(x)\right| \leq \varepsilon$, where I is an open subinterval of \mathbb{R}, then there exists a constant C such that $\left|f(x)-C e^{x}\right| \leq 3 \varepsilon$ for any $x \in I$.

This result of Alsina and Ger has been generalized by Takahasi, Miura and Miyajima: They proved in [31] that the Hyers-Ulam stability holds for the Banach space valued differential equation $y^{\prime}(x)=\lambda y(x)$ (see also [22]).

In [23], Miura, Miyajima and Takahasi also proved the Hyers-Ulam stability of linear differential equations of first order, $y^{\prime}(x)+g(x) y(x)=0$, where $g(x)$ is a continuous function, while the author [11] proved the Hyers-Ulam stability of differential equations of the form $c(x) y^{\prime}(x)=y(x)$. For more recent results about this subject, we can refer to $[1,4,11-16,18-21,24,28,33]$.

The aim of this paper is to prove a kind of Hyers-Ulam stability of a linear differential equation of third order,

$$
\begin{equation*}
y^{\prime \prime \prime}(x)+(\alpha+\beta+\gamma) y^{\prime \prime}(x)+(\alpha \beta+\beta \gamma+\gamma \alpha) y^{\prime}(x)+\alpha \beta \gamma y(x)=0, \tag{1.1}
\end{equation*}
$$

where α, β, and γ are nonzero real numbers. More precisely, we will investigate the (approximate) solutions of the differential inequality

$$
\begin{equation*}
\left|y^{\prime \prime \prime}(x)+(\alpha+\beta+\gamma) y^{\prime \prime}(x)+(\alpha \beta+\beta \gamma+\gamma \alpha) y^{\prime}(x)+\alpha \beta \gamma y(x)\right| \leq \varepsilon \tag{1.2}
\end{equation*}
$$

and compare them with the (exact) solutions of the differential equation (1.1).

2. Preliminaries

The author recently obtained a result concerning the Hyers-Ulam stability of linear differential equations of the form

$$
y^{\prime}(x)+g(x) y(x)+h(x)=0
$$

which includes the following theorem as a special case (see [13, Remark 3]).
Theorem 2.1. Let $I=(a, b)$ be an open interval with $-\infty \leq a<b \leq \infty$. Assume that $g, h: I \rightarrow \mathbb{R}$ are continuous functions and $\varphi: I \rightarrow[0, \infty)$ is a function such that
(i) $g(x)$ and $\exp \left\{\int_{a}^{x} g(u) d u\right\} h(x)$ are integrable on (a, d) for each $d \in I$;
(ii) $\varphi(x) \exp \left\{\int_{a}^{x} g(u) d u\right\}$ is integrable on I.

If a continuously differentiable function $y: I \rightarrow \mathbb{R}$ satisfies the differential inequality

$$
\left|y^{\prime}(x)+g(x) y(x)+h(x)\right| \leq \varphi(x)
$$

for all $x \in I$, then there exists a unique real number c such that

$$
\begin{aligned}
& \left|y(x)-\exp \left\{-\int_{a}^{x} g(u) d u\right\}\left(c-\int_{a}^{x} \exp \left\{\int_{a}^{v} g(u) d u\right\} h(v) d v\right)\right| \\
& \leq \exp \left\{-\int_{a}^{x} g(u) d u\right\} \int_{x}^{b} \varphi(v) \exp \left\{\int_{a}^{v} g(u) d u\right\} d v
\end{aligned}
$$

for every $x \in I$.

The following corollaries are essential for the proof of our main theorems. We can prove them easily by using Theorem 2.1.

Corollary 2.1. Let $I=(a, b)$ be an open interval with $-\infty<a<b \leq \infty$. Assume that $\alpha \neq 0, \beta \neq 0, \gamma$ are real numbers and $e^{\alpha(x-a)}$ is integrable on I. If a twice continuously differentiable function $f: I \rightarrow \mathbb{R}$ satisfies the differential inequality

$$
\begin{equation*}
\left|f^{\prime \prime}(x)+(\alpha+\beta) f^{\prime}(x)+\alpha \beta f(x)+\gamma\right| \leq \varepsilon \tag{2.1}
\end{equation*}
$$

for all $x \in I$ and for some $\varepsilon \geq 0$, then there exists a unique real number c such that

$$
\left|f^{\prime}(x)+\beta f(x)-c e^{-\alpha(x-a)}+\frac{\gamma}{\alpha}\right| \leq \frac{\varepsilon}{|\alpha|}\left|e^{\alpha(b-x)}-1\right|
$$

for all $x \in I$, where $e^{\alpha(b-x)}$ stands for $\lim _{w \rightarrow b} e^{\alpha(w-x)}$ and it exists even for $b=\infty$.
Proof. If we set $z(x)=f^{\prime}(x)+\beta f(x)$ for all $x \in I$, then it follows from (2.1) that

$$
\left|z^{\prime}(x)+\alpha z(x)+\gamma\right| \leq \varepsilon
$$

for any $x \in I$. According to Theorem 2.1, there exists a unique real number c such that

$$
\left|z(x)-c e^{-\alpha(x-a)}+\frac{\gamma}{\alpha}\right| \leq \frac{\varepsilon}{|\alpha|}\left|e^{\alpha(b-x)}-1\right|
$$

for $x \in I$.
The inequality (2.1) is symmetric with respect to α and β. If α and β interchange their roles, then we obtain the following corollary.

Corollary 2.2. Let $I=(a, b)$ be an open interval with $-\infty<a<b \leq \infty$. Assume that $\alpha \neq 0, \beta \neq 0, \gamma$ are real numbers and $e^{\beta(x-a)}$ is integrable on I. If a twice continuously differentiable function $f: I \rightarrow \mathbb{R}$ satisfies the differential inequality (2.1) for all $x \in I$ and some $\varepsilon \geq 0$, then there exists a unique real number c such that

$$
\left|f^{\prime}(x)+\alpha f(x)-c e^{-\beta(x-a)}+\frac{\gamma}{\beta}\right| \leq \frac{\varepsilon}{|\beta|}\left|e^{\beta(b-x)}-1\right|
$$

for all $x \in I$, where $e^{\beta(b-x)}$ stands for $\lim _{w \rightarrow b} e^{\beta(w-x)}$ and it exists even for $b=\infty$.
If $I=(a, \infty)$ with $a>-\infty, \alpha<0$, and $\beta<0$, then both $e^{\alpha(x-a)}$ and $e^{\beta(x-a)}$ are integrable on I. Thus, the following corollary is an immediate consequence of Corollaries 2.1 and 2.2.

Corollary 2.3. Let $I=(a, \infty)$ be an open interval with $a>-\infty$. Assume that $\alpha<0, \beta<0$, γ are real numbers. If a twice continuously differentiable function $f: I \rightarrow \mathbb{R}$ satisfies the inequality (2.1) for all $x \in I$ and for some $\varepsilon \geq 0$, then there exist real numbers c_{α} and c_{β} such that

$$
\left|f^{\prime}(x)+\beta f(x)-c_{\alpha} e^{-\alpha(x-a)}+\frac{\gamma}{\alpha}\right| \leq \frac{\varepsilon}{|\alpha|}
$$

and

$$
\left|f^{\prime}(x)+\alpha f(x)-c_{\beta} e^{-\beta(x-a)}+\frac{\gamma}{\beta}\right| \leq \frac{\varepsilon}{|\beta|}
$$

for all $x \in I$. The real numbers c_{α} and c_{β} are uniquely determined.

3. Main theorems

In this section, we investigate the approximate solutions of the differential equation (1.1) in the class of three times continuously differentiable functions $y:(a, b) \rightarrow \mathbb{R}$ for the case of either $a \in \mathbb{R}$ and $b=\infty$ or $a=-\infty$ and $b \in \mathbb{R}$.

As we know,

$$
y(x)= \begin{cases}c_{1} e^{-\alpha(x-a)}+c_{2} e^{-\beta(x-a)}+c_{3} e^{-\gamma(x-a)} & (\text { for distinct } \alpha, \beta, \gamma), \\ c_{1} e^{-\alpha(x-a)}+c_{2} x e^{-\alpha(x-a)}+c_{3} e^{-\gamma(x-a)} & (\text { for } \alpha=\beta \neq \gamma), \\ c_{1} e^{-\alpha(x-a)}+c_{2} x e^{-\alpha(x-a)}+c_{3} x^{2} e^{-\alpha(x-a)} & (\text { for } \alpha=\beta=\gamma)\end{cases}
$$

is the general solution of the differential equation (1.1) for any real coefficients c_{1}, c_{2}, and c_{3}.

We apply the methods introduced in $[2,11,13,21,33]$ to the proof of the following main theorem.

Theorem 3.1. Let $I=(a, \infty)$ be an open interval with a real number a. Assume that α, β, γ are real numbers. Suppose $y: I \rightarrow \mathbb{R}$ is a three times continuously differentiable function and the limits $y(a)=\lim _{x \rightarrow a^{+}} y(x)$ and $y^{\prime}(a)=\lim _{x \rightarrow a^{+}} y^{\prime}(x)$ exist. Moreover, assume that y satisfies the inequality (1.2) for all $x \in I$ and for some $\varepsilon \geq 0$.
(i) If $\alpha<0, \beta<0, \alpha \neq \beta$, and $\gamma \notin\{0, \alpha, \beta\}$, then there exist solutions $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
\left|y(x)-y_{1}(x)\right| \leq \frac{\varepsilon}{\alpha \beta}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\beta} e^{-\beta(x-a)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\beta}\right) e^{-\gamma(x-a)}\right|
$$

and

$$
\left|y(x)-y_{2}(x)\right| \leq \frac{\varepsilon}{\alpha \beta}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\alpha} e^{-\alpha(x-a)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\alpha}\right) e^{-\gamma(x-a)}\right|
$$

for all $x \in I$.
(ii) If $\alpha=\beta<0$, and $\gamma \notin\{0, \alpha\}$, then there exists a solution $\hat{y}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
|y(x)-\hat{y}(x)| \leq \frac{\varepsilon}{\alpha^{2}}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\alpha} e^{-\alpha(x-a)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\alpha}\right) e^{-\gamma(x-a)}\right|
$$

for all $x \in I$.
(iii) If $\alpha=\beta=\gamma<0$, then there exists a solution $\hat{y}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
|y(x)-\hat{y}(x)| \leq \frac{\varepsilon}{\alpha^{2}}\left|\frac{1}{\alpha}-\left(\frac{1}{\alpha}-a\right) e^{-\alpha(x-a)}-x e^{-\alpha(x-a)}\right|
$$

for all $x \in I$.
Proof. We will prove (i) only. The proofs for (ii) and (iii) run in the same way as the proof of (i).

Assume that $\alpha<0, \beta<0$, and $\gamma \neq 0$ are distinct real numbers. Let us define a twice continuously differentiable function $f: I \rightarrow \mathbb{R}$ by $f(x)=y^{\prime}(x)+\gamma y(x)$ for all $x \in I$ and let $f(a)=y^{\prime}(a)+\gamma y(a)$. It then follows from (1.2) that

$$
\left|f^{\prime \prime}(x)+(\alpha+\beta) f^{\prime}(x)+\alpha \beta f(x)\right| \leq \varepsilon
$$

for any $x \in I$. According to Corollary 2.3, there exist real numbers c_{α} and c_{β} such that

$$
\begin{equation*}
\left|f^{\prime}(x)+\beta f(x)-c_{\alpha} e^{-\alpha(x-a)}\right| \leq \frac{\varepsilon}{|\alpha|} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(x)+\alpha f(x)-c_{\beta} e^{-\beta(x-a)}\right| \leq \frac{\varepsilon}{|\beta|} \tag{3.2}
\end{equation*}
$$

for all $x \in I$, where the real numbers c_{α} and c_{β} are uniquely determined.
It follows from (3.1) that

$$
-\frac{\varepsilon}{|\alpha|} e^{\beta(x-a)} \leq f^{\prime}(x) e^{\beta(x-a)}+\beta e^{\beta(x-a)} f(x)-c_{\alpha} e^{(\beta-\alpha)(x-a)} \leq \frac{\varepsilon}{|\alpha|} e^{\beta(x-a)}
$$

or

$$
\frac{d}{d x}\left\{\frac{\varepsilon}{\alpha \beta} e^{\beta(x-a)}\right\} \leq \frac{d}{d x}\left\{f(x) e^{\beta(x-a)}-\frac{c_{\alpha}}{\beta-\alpha} e^{(\beta-\alpha)(x-a)}\right\} \leq-\frac{d}{d x}\left\{\frac{\varepsilon}{\alpha \beta} e^{\beta(x-a)}\right\}
$$

If we integrate the last inequalities from a to x, then we get

$$
\frac{\varepsilon}{\alpha \beta}\left[e^{\beta(x-a)}-1\right] \leq f(x) e^{\beta(x-a)}-f(a)-\frac{c_{\alpha}}{\beta-\alpha}\left[e^{(\beta-\alpha)(x-a)}-1\right] \leq \frac{\varepsilon}{\alpha \beta}\left[1-e^{\beta(x-a)}\right]
$$

or

$$
\begin{aligned}
\frac{\varepsilon}{\alpha \beta}\left[1-e^{-\beta(x-a)}\right] & \leq y^{\prime}(x)+\gamma y(x)-f(a) e^{-\beta(x-a)}-\frac{c_{\alpha}}{\beta-\alpha}\left[e^{-\alpha(x-a)}-e^{-\beta(x-a)}\right] \\
& \leq \frac{\varepsilon}{\alpha \beta}\left[e^{-\beta(x-a)}-1\right] .
\end{aligned}
$$

If we multiply by $e^{\gamma(x-a)}$ each term of the last inequalities, then we have

$$
\begin{aligned}
& \frac{\varepsilon}{\alpha \beta} \frac{d}{d x}\left\{\frac{1}{\gamma} e^{\gamma(x-a)}-\frac{1}{\gamma-\beta} e^{(\gamma-\beta)(x-a)}\right\} \\
& \leq \frac{d}{d x}\left[y(x) e^{\gamma(x-a)}-\frac{f(a)}{\gamma-\beta} e^{(\gamma-\beta)(x-a)}-\frac{c_{\alpha}}{\beta-\alpha}\left\{\frac{1}{\gamma-\alpha} e^{(\gamma-\alpha)(x-a)}-\frac{1}{\gamma-\beta} e^{(\gamma-\beta)(x-a)}\right\}\right] \\
& \leq \frac{\varepsilon}{\alpha \beta} \frac{d}{d x}\left\{\frac{1}{\gamma-\beta} e^{(\gamma-\beta)(x-a)}-\frac{1}{\gamma} e^{\gamma(x-a)}\right\} .
\end{aligned}
$$

If we integrate the last inequalities from a to x and then multiply by $e^{-\gamma(x-a)}$ the resulting inequalities, then we obtain

$$
\begin{aligned}
& \frac{\varepsilon}{\alpha \beta}\left\{\frac{1}{\gamma}-\frac{1}{\gamma-\beta} e^{-\beta(x-a)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\beta}\right) e^{-\gamma(x-a)}\right\} \\
& \leq y(x)-\frac{c_{\alpha}}{(\beta-\alpha)(\gamma-\alpha)} e^{-\alpha(x-a)}-\frac{1}{\gamma-\beta}\left(f(a)-\frac{c_{\alpha}}{\beta-\alpha}\right) e^{-\beta(x-a)} \\
& \quad-\left(y(a)-\frac{f(a)}{\gamma-\beta}-\frac{c_{\alpha}}{(\beta-\alpha)(\gamma-\alpha)}+\frac{c_{\alpha}}{(\beta-\alpha)(\gamma-\beta)}\right) e^{-\gamma(x-a)} \\
& \leq \frac{\varepsilon}{\alpha \beta}\left\{-\frac{1}{\gamma}+\frac{1}{\gamma-\beta} e^{-\beta(x-a)}+\left(\frac{1}{\gamma}-\frac{1}{\gamma-\beta}\right) e^{-\gamma(x-a)}\right\},
\end{aligned}
$$

that is, there exist real numbers c_{1}, c_{2}, c_{3} such that

$$
\left|y(x)-c_{1} e^{-\alpha(x-a)}-c_{2} e^{-\beta(x-a)}-c_{3} e^{-\gamma(x-a)}\right|
$$

$$
\leq \frac{\varepsilon}{\alpha \beta}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\beta} e^{-\beta(x-a)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\beta}\right) e^{-\gamma(x-a)}\right|
$$

for all $x \in I$.
Similarly, if α and β interchange their roles, then it follows from (3.2) and the last inequality that there exist real numbers c_{4}, c_{5}, c_{6} satisfying

$$
\begin{aligned}
& \left|y(x)-c_{4} e^{-\alpha(x-a)}-c_{5} e^{-\beta(x-a)}-c_{6} e^{-\gamma(x-a)}\right| \\
& \leq \frac{\varepsilon}{\alpha \beta}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\alpha} e^{-\alpha(x-a)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\alpha}\right) e^{-\gamma(x-a)}\right|
\end{aligned}
$$

for any $x \in I$.
We will now prove a counterpart of Theorem 3.1 for the case of $I=(-\infty, b), \alpha>0$, $\beta>0$, and $\gamma \neq 0$.

Theorem 3.2. Let $I=(-\infty, b)$ be an open interval with a real number b. Assume that α, β, γ are real numbers. Suppose $y: I \rightarrow \mathbb{R}$ is a three times continuously differentiable function and the limits $y(b)=\lim _{x \rightarrow b^{-}} y(x)$ and $y^{\prime}(b)=\lim _{x \rightarrow b^{-}} y^{\prime}(x)$ exist. Moreover, assume that y satisfies the differential inequality (1.2) for all $x \in I$ and for some $\varepsilon \geq 0$.
(i) If $\alpha>0, \beta>0, \alpha \neq \beta$, and $\gamma \notin\{0, \alpha, \beta\}$, then there exist solutions $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
\begin{align*}
& \left|y(x)-y_{1}(x)\right| \leq \frac{\varepsilon}{\alpha \beta}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\beta} e^{\beta(b-x)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\beta}\right) e^{\gamma(b-x)}\right|, \\
& \left|y(x)-y_{2}(x)\right| \leq \frac{\varepsilon}{\alpha \beta}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\alpha} e^{\alpha(b-x)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\alpha}\right) e^{\gamma(b-x)}\right| \tag{3.3}
\end{align*}
$$

for all $x \in I$.
(ii) If $\alpha=\beta>0$, and $\gamma \notin\{0, \alpha\}$, then there exists a solution $\hat{y}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
|y(x)-\hat{y}(x)| \leq \frac{\varepsilon}{\alpha^{2}}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\alpha} e^{\alpha(b-x)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\alpha}\right) e^{\gamma(b-x)}\right|
$$

for all $x \in I$.
(iii) If $\alpha=\beta=\gamma>0$, then there exists a solution $\hat{y}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
|y(x)-\hat{y}(x)| \leq \frac{\varepsilon}{\alpha^{2}}\left|\frac{1}{\alpha}-\left(\frac{1}{\alpha}-b\right) e^{\alpha(b-x)}-x e^{\alpha(b-x)}\right|
$$

for all $x \in I$.
Proof. We will prove (i) only. The parts (ii) and (iii) can be proved similarly. Hence, we omit their proofs.

Assume that $\alpha>0, \beta>0$, and $\gamma \neq 0$ are distinct real numbers. Let us define a three times continuously differentiable function $\tilde{y}: \tilde{I} \rightarrow \mathbb{R}$ by $\tilde{y}(x)=y(-x)$, where we set $\tilde{I}=$ $(-b, \infty)=:(\tilde{a}, \infty)$. By the chain rule, if we set $t=-x$, then we have

$$
y^{\prime}(x)=-\tilde{y}^{\prime}(t), \quad y^{\prime \prime}(x)=\tilde{y}^{\prime \prime}(t), \quad y^{\prime \prime \prime}(x)=-\tilde{y}^{\prime \prime \prime}(t) .
$$

Thus, we get

$$
\begin{align*}
& y^{\prime \prime \prime}(x)+(\alpha+\beta+\gamma) y^{\prime \prime}(x)+(\alpha \beta+\beta \gamma+\gamma \alpha) y^{\prime}(x)+\alpha \beta \gamma y(x) \\
& =-\tilde{y}^{\prime \prime \prime}(t)+(\alpha+\beta+\gamma) \tilde{y}^{\prime \prime}(t)-(\alpha \beta+\beta \gamma+\gamma \alpha) \tilde{y}^{\prime}(t)+\alpha \beta \gamma \tilde{y}(t) \tag{3.4}\\
& =-\left[\tilde{y}^{\prime \prime \prime}(t)+(\tilde{\alpha}+\tilde{\beta}+\tilde{\gamma}) \tilde{y}^{\prime \prime}(t)+(\tilde{\alpha} \tilde{\beta}+\tilde{\beta} \tilde{\gamma}+\tilde{\gamma} \tilde{\alpha}) \tilde{y}^{\prime}(t)+\tilde{\alpha} \tilde{\beta} \tilde{\gamma} \tilde{y}(t)\right],
\end{align*}
$$

for all $t \in \tilde{I}$, where $\tilde{\alpha}=-\alpha<0, \tilde{\beta}=-\beta<0$, and $\tilde{\gamma}=-\gamma \neq 0$ are distinct real numbers, and it follows from (1.2) that

$$
\left|\tilde{y}^{\prime \prime \prime}(t)+(\tilde{\alpha}+\tilde{\beta}+\tilde{\gamma}) \tilde{y}^{\prime \prime}(t)+(\tilde{\alpha} \tilde{\beta}+\tilde{\beta} \tilde{\gamma}+\tilde{\gamma} \tilde{\alpha}) \tilde{y}^{\prime}(t)+\tilde{\alpha} \tilde{\beta} \tilde{\gamma} \tilde{y}(t)\right| \leq \varepsilon
$$

for all $t \in \tilde{I}$.
Moreover, $\tilde{y}(\tilde{a})$ and $\tilde{y}^{\prime}(\tilde{a})$ exist as we see

$$
\tilde{y}(\tilde{a})=\lim _{t \rightarrow \tilde{a}^{+}} \tilde{y}(t)=\lim _{x \rightarrow b^{-}} y(x)=y(b)
$$

and

$$
\tilde{y}^{\prime}(\tilde{a})=\lim _{t \rightarrow \tilde{a}^{+}} \tilde{y}^{\prime}(t)=\lim _{x \rightarrow b^{-}}\left(-y^{\prime}(x)\right)=-\lim _{x \rightarrow b^{-}} y^{\prime}(x)=-y^{\prime}(b) .
$$

According to Theorem 3.1 (i), there exist solutions $\tilde{y}_{1}, \tilde{y}_{2}: \tilde{I} \rightarrow \mathbb{R}$ of the differential equation,

$$
\begin{equation*}
\tilde{y}^{\prime \prime \prime}(t)+(\tilde{\alpha}+\tilde{\beta}+\tilde{\gamma}) \tilde{y}^{\prime \prime}(t)+(\tilde{\alpha} \tilde{\beta}+\tilde{\beta} \tilde{\gamma}+\tilde{\gamma} \tilde{\alpha}) \tilde{y}^{\prime}(t)+\tilde{\alpha} \tilde{\beta} \tilde{\gamma} \tilde{y}(t)=0, \tag{3.5}
\end{equation*}
$$

which satisfy

$$
\left|\tilde{y}(t)-\tilde{y}_{1}(t)\right| \leq \frac{\varepsilon}{\tilde{\alpha} \tilde{\beta}}\left|\frac{1}{\tilde{\gamma}}-\frac{1}{\tilde{\gamma}-\tilde{\beta}} e^{-\tilde{\beta}(t-\tilde{a})}-\left(\frac{1}{\tilde{\gamma}}-\frac{1}{\tilde{\gamma}-\tilde{\beta}}\right) e^{-\tilde{\gamma}(t-\tilde{a})}\right|
$$

and

$$
\left|\tilde{y}(t)-\tilde{y}_{2}(t)\right| \leq \frac{\varepsilon}{\tilde{\alpha} \tilde{\beta}}\left|\frac{1}{\tilde{\gamma}}-\frac{1}{\tilde{\gamma}-\tilde{\alpha}} e^{-\tilde{\alpha}(t-\tilde{a})}-\left(\frac{1}{\tilde{\gamma}}-\frac{1}{\tilde{\gamma}-\tilde{\alpha}}\right) e^{-\tilde{\gamma}(t-\tilde{a})}\right|
$$

for all $t \in \tilde{I}$. In view of (3.4), the differential equations (1.1) and (3.5) are equivalent in the sense that $y(x)$ is a solution of the differential equation (1.1) if and only if $\tilde{y}(t)$ is a solution of the differential equation (3.5). Hence, there exist solutions $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) satisfying the inequalities in (3.3).

4. Applications

The inequality (1.2) is symmetric with respect to α, β, and γ. If α, β, and γ are assumed to be distinct negative real numbers, then the following corollary is an immediate consequence of Theorem 3.1 (i).

Corollary 4.1. Let $I=(a, \infty)$ be an open interval with a real number a. Assume that $\alpha<0$, $\beta<0, \gamma<0$ are distinct real numbers. Suppose $y: I \rightarrow \mathbb{R}$ is a three times continuously differentiable function and the limits $y(a)=\lim _{x \rightarrow a^{+}} y(x)$ and $y^{\prime}(a)=\lim _{x \rightarrow a^{+}} y^{\prime}(x)$ exist. If y satisfies the inequality (1.2) for all $x \in I$ and for some $\varepsilon \geq 0$, then there exists a solution $y_{1}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
\left|y(x)-y_{1}(x)\right| \leq \frac{\varepsilon}{\alpha \beta}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\beta} e^{-\beta(x-a)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\beta}\right) e^{-\gamma(x-a)}\right|
$$

for all $x \in I$. Analogous inequalities hold for every permutation of α, β, γ.

The following corollary follows from the 4th or the 5th inequality of Corollary 4.1 and Theorem 3.1 (iii).

Corollary 4.2. Let $I=(a, \infty)$ be an open interval with $a>-\infty$. Assume that α, β, γ are negative real numbers. Suppose $y: I \rightarrow \mathbb{R}$ is a three times continuously differentiable function and the limits $y(a)=\lim _{x \rightarrow a^{+}} y(x)$ and $y^{\prime}(a)=\lim _{x \rightarrow a^{+}} y^{\prime}(x)$ exist. Moreover, assume that y satisfies the inequality (1.2) for all $x \in I$ and for some $\varepsilon \geq 0$.
(i) If $\gamma<\beta<\alpha<0$, then there exists a solution $\hat{y}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
|y(x)-\hat{y}(x)|=o\left(e^{-\gamma(x-a)}\right)
$$

as $x \rightarrow \infty$, where o stands for the Landau little-o notation.
(ii) If $\alpha=\beta=\gamma<0$, then there exists a solution $\hat{y}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
|y(x)-\hat{y}(x)|=O\left(x e^{-\alpha(x-a)}\right)
$$

as $x \rightarrow \infty$, where O stands for the Landau big-O notation.
If α, β, and γ are assumed to be distinct positive real numbers, then the following corollary is an immediate consequence of Theorem 3.2 (i).

Corollary 4.3. Let $I=(-\infty, b)$ be an open interval with a real number b. Assume that $\alpha>$ $0, \beta>0, \gamma>0$ are distinct real numbers. Suppose $y: I \rightarrow \mathbb{R}$ is a three times continuously differentiable function and the limits $y(b)=\lim _{x \rightarrow b^{-}} y(x)$ and $y^{\prime}(b)=\lim _{x \rightarrow b^{-}} y^{\prime}(x)$ exist. If y satisfies the inequality (1.2) for all $x \in I$ and for some $\varepsilon \geq 0$, then there exists a solution $y_{1}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
\left|y(x)-y_{1}(x)\right| \leq \frac{\varepsilon}{\alpha \beta}\left|\frac{1}{\gamma}-\frac{1}{\gamma-\beta} e^{\beta(b-x)}-\left(\frac{1}{\gamma}-\frac{1}{\gamma-\beta}\right) e^{\gamma(b-x)}\right|
$$

for all $x \in I$. Analogous inequalities hold for every permutation of α, β, γ.
The following corollary follows from the 4th or the 5th inequality of Corollary 4.3 and Theorem 3.2 (iii).

Corollary 4.4. Let $I=(-\infty, b)$ be an open interval with $b<\infty$. Assume that α, β, γ are positive real numbers. Suppose $y: I \rightarrow \mathbb{R}$ is a three times continuously differentiable function and the limits $y(b)=\lim _{x \rightarrow b^{-}} y(x)$ and $y^{\prime}(b)=\lim _{x \rightarrow b^{-}} y^{\prime}(x)$ exist. Moreover, assume that y satisfies the inequality (1.2) for all $x \in I$ and for some $\varepsilon \geq 0$.
(i) If $\gamma>\beta>\alpha>0$, then there exists a solution $\hat{y}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
|y(x)-\hat{y}(x)|=o\left(e^{\gamma(b-x)}\right)
$$

as $x \rightarrow-\infty$.
(ii) If $\alpha=\beta=\gamma>0$, then there exists a solution $\hat{y}: I \rightarrow \mathbb{R}$ of the differential equation (1.1) such that

$$
|y(x)-\hat{y}(x)|=O\left(x e^{\alpha(b-x)}\right)
$$

as $x \rightarrow-\infty$.
Open Problem 4.1. Are Theorems 3.1 and 3.2 also true for the case when some of α, β, and γ are complex numbers and the range of y is \mathbb{C} ?

Open Problem 4.2. Are Theorems 3.1 and 3.2 also true for the case of $I=\mathbb{R}$?

5. Discussion

Let $I=(a, \infty)$ be an open interval with a real number a. Suppose $y: I \rightarrow \mathbb{R}$ is a three times continuously differentiable function and the limits $y(a)=\lim _{x \rightarrow a^{+}} y(x)$ and $y^{\prime}(a)=\lim _{x \rightarrow a^{+}} y^{\prime}(x)$ exist. Moreover, assume that y satisfies the inequality

$$
\begin{equation*}
\left|y^{\prime \prime \prime}(x)-6 y^{\prime \prime}(x)+11 y^{\prime}(x)-6 y(x)\right| \leq \varepsilon \tag{5.1}
\end{equation*}
$$

for all $x \in I$ and for some $\varepsilon \geq 0$.
According to Theorem 3.1 (i), there exist solutions $y_{1}, y_{2}: I \rightarrow \mathbb{R}$ of the differential equation

$$
\begin{equation*}
y^{\prime \prime \prime}(x)-6 y^{\prime \prime}(x)+11 y^{\prime}(x)-6 y(x)=0 \tag{5.2}
\end{equation*}
$$

such that

$$
\left|y(x)-y_{1}(x)\right| \leq \varepsilon\left|\frac{1}{3} e^{3(x-a)}-\frac{1}{2} e^{2(x-a)}+\frac{1}{6}\right|
$$

and

$$
\left|y(x)-y_{2}(x)\right| \leq \varepsilon\left|\frac{1}{12} e^{3(x-a)}-\frac{1}{4} e^{x-a}+\frac{1}{6}\right|
$$

for all $x \in I$. Strictly speaking, this is not a Hyers-Ulam stability of the differential equation (5.2).

Under stronger conditions, however, the differential equation (5.2) has the Hyers-Ulam stability. We assume that $\vec{y}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is a continuously differentiable vector function. We now consider the inequality

$$
\begin{equation*}
\left\|\vec{y}^{\prime}(x)-\mathbf{A} \vec{y}(x)\right\|_{\infty} \leq \varepsilon \tag{5.3}
\end{equation*}
$$

for all $x \in \mathbb{R}$ and for some $\varepsilon \geq 0$, where

$$
\vec{y}(x)=\left(\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right) \quad \text { and } \quad \mathbf{A}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right)
$$

According to [14, Theorem 2], there exists a differentiable vector function $\vec{w}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ such that

$$
\vec{w}^{\prime}(x)=\mathbf{A} \vec{w}(x)
$$

and

$$
\|\vec{y}(x)-\vec{w}(x)\|_{\infty} \leq \varepsilon\|\mathbf{N}\|_{\infty}\left\|\mathbf{N}^{-1}\right\|_{\infty}\|\mathbf{B} \vec{e}\|_{\infty}
$$

where

$$
\mathbf{N}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right), \quad \mathbf{N}^{-1}=\left(\begin{array}{ccc}
3 & -\frac{5}{2} & \frac{1}{2} \\
-3 & 4 & -1 \\
1 & -\frac{3}{2} & \frac{1}{2}
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right)
$$

and $\vec{e}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{\mathrm{tr}}$. That is, if we set $w_{1}(x)=w(x)$, then there exists a differentiable function $w: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
w^{\prime \prime \prime}(x)-6 w^{\prime \prime}(x)+11 w^{\prime}(x)-6 w(x)=0
$$

and

$$
\left|y_{1}(x)-w(x)\right| \leq 112 \varepsilon, \quad\left|y_{2}(x)-w^{\prime}(x)\right| \leq 112 \varepsilon, \quad\left|y_{3}(x)-w^{\prime \prime}(x)\right| \leq 112 \varepsilon
$$

for every $x \in \mathbb{R}$. This provides the Hyers-Ulam stability of the differential equation (5.2). (We know that $\vec{y}^{\prime}(x)=\mathbf{A} \vec{y}(x)$ is equivalent to the differential equation (5.2)).

We remark that the inequality (5.3) is equivalent to the inequalities

$$
\left\{\begin{array}{l}
\left|y_{1}^{\prime}(x)-y_{2}(x)\right| \leq \varepsilon \\
\left|y_{2}^{\prime}(x)-y_{3}(x)\right| \leq \varepsilon \\
\left|y_{3}^{\prime}(x)-6 y_{1}(x)+11 y_{2}(x)-6 y_{3}(x)\right| \leq \varepsilon
\end{array}\right.
$$

for all $x \in \mathbb{R}$, which in general seem to be stronger than the condition (5.1).
Acknowledgement. This work was supported by 2011 Hongik University Research Fund.

References

[1] M. R. Abdollahpour and A. Najati, Stability of linear differential equations of third order, Appl. Math. Lett. 24 (2011), no. 11, 1827-1830.
[2] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), no. 4, 373-380.
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[4] D. S. Cîmpean and D. Popa, On the stability of the linear differential equation of higher order with constant coefficients, Appl. Math. Comput. 217 (2010), no. 8, 4141-4146.
[5] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Sci. Publishing, River Edge, NJ, 2002.
[6] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190.
[7] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
[9] D. H. Hyers, G. Isac and T. M. Rassias, Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Boston, MA, 1998.
[10] D. H. Hyers and T. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125153.
[11] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), no. 10, 1135-1140.
[12] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. III, J. Math. Anal. Appl. 311 (2005), no. 1, 139-146.
[13] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. II, Appl. Math. Lett. 19 (2006), no. 9, 854-858.
[14] S.-M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320 (2006), no. 2, 549-561.
[15] S.-M. Jung, Hyers-Ulam stability of linear partial differential equations of first order, Appl. Math. Lett. 22 (2009), no. 1, 70-74.
[16] S.-M. Jung, A fixed point approach to the stability of differential equations $y^{\prime}=F(x, y)$, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 47-56.
[17] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, 48, Springer, New York, 2011.
[18] S.-M. Jung and K.-S. Lee, Hyers-Ulam stability of first order linear partial differential equations with constant coefficients, Math. Inequal. Appl. 10 (2007), no. 2, 261-266.
[19] S.-M. Jung and T. M. Rassias, Ulam's problem for approximate homomorphisms in connection with Bernoulli's differential equation, Appl. Math. Comput. 187 (2007), no. 1, 223-227.
[20] S.-M. Jung and T. M. Rassias, Generalized Hyers-Ulam stability of Riccati differential equation, Math. Inequal. Appl. 11 (2008), no. 4, 777-782.
[21] Y. Li and Y. Shen, Hyers-Ulam stability of nonhomogeneous linear differential equations of second order, Int. J. Math. Math. Sci. 2009, Art. ID 576852, 7 pp.
[22] T. Miura, S.-M. Jung and S.-E. Takahasi, Hyers-Ulam-Rassias stability of the Banach space valued linear differential equations $y^{\prime}=\lambda y$, J. Korean Math. Soc. 41 (2004), no. 6, 995-1005.
[23] T. Miura, S. Miyajima and S.-E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. 286 (2003), no. 1, 136-146.
[24] T. Miura, S. Miyajima and S.-E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258 (2003), 90-96.
[25] A. Najati, J.-R. Lee and C. Park, On a Cauchy-Jensen functional inequality, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 2, 253-263.
[26] M. Obłoza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. No. 13 (1993), 259-270.
[27] M. Obłoza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. No. 14 (1997), 141-146.
[28] D. Popa and I. Raşa, On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal. Appl. 381 (2011), no. 2, 530-537.
[29] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[30] T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130.
[31] S.-E. Takahasi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $y^{\prime}=\lambda y$, Bull. Korean Math. Soc. 39 (2002), no. 2, 309-315.
[32] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New York, 1960.
[33] G. Wang, M. Zhou and L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21 (2008), no. 10, 1024-1028.

[^0]: Communicated by Ahmad Izani Md. Ismail.
 Received: July 26, 2011; Revised: October 13, 2011.

