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1. Introduction

It is known that the Green’s relations are useful in the study of the structure of the regular
semigroups, for example, see [1, 3, 21, 22]. In particular, it was shown by Clifford in the
early fifty of last century that a semigroup is a completely regular semigroup if and only if
it is a semilattice of completely simple semigroups [1].

By a completely regular semigroup, we mean a semigroup in which every its H -class
contains an idempotent of the semigroup. By using the above well known semilattice de-
composition theorem of completely regular semigroups, Petrich proved that a completely
regular semigroup is a normal cryptogroup, that is, a completely regular semigroup whose
Green’s relation H forms a normal band congruence if and only if it is a strong semilattice
of completely simple semigroups,see [17]. The well known Clifford theorem of completely
regular semigroup was also later generalized by Fountain in [3] and Ren et al. in [18]. In
particular, Fountain proved that if each of the H ∗-class of a superabundant semigroup S
contains an idempotent of S, then the semigroup S is a superabundant semigroup if and only
if S is a semilattice of completely J ∗-simple semigroups.

In recent years, the structure of superabundant semigroups were widely investigated by
Ren and Shum in [19–20] by using some kind of generalized Green’s relations on a given
semigroup, respectively.
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To study the structure of abundant semigroups, we often use the so called Green ∗-
relations defined on the semigroup. A special kind of abundant semigroup has been studied
by Guo [9] by using some other generalized Green reaktions. The Green ∗-relations were
first defined by Pastijn in [14] in 1975 and were adopted by Fountain in [3]. Let S be a
semigroup. Then, we define the following set of relations by the following equalities:

L ∗ = {(a,b) ∈ S×S : (∀x,y ∈ S1)ax = ay⇔ bx = by},

R∗ = {(a,b) ∈ S×S : (∀x,y ∈ S1)xa = ya⇔ xb = yb},
H ∗ = L ∗∩R∗, D∗ = L ∗∨R∗,

J ∗ = {(a,b) ∈ S×S : J∗(a) = J∗(b)},

where J∗(a) is used to denote the smallest ideal containing the element a which is satu-
rated by L ∗ and R∗, that is, J∗(a) is a union of some L ∗-classes and also a union of some
R∗-classes. It is noted that the following definition R̃ on a semigroup S was defined by
Lawson in [12–13] as in the followings:

aR̃b⇔ (∀e ∈ E(S))ea = a↔ eb = b,

where E(S) is the idempotents set of S. It is easy to see that R∗ ⊆ R̃ and for the regular
elements a,b of a semigroup S, we have aRb if and only aR̃b. The term “ample semi-
groups” in the literature was first stated by Gomes and Gould in [7, 8]. In fact, an ample
semigroup means exactly the same as the so called type A semigroup studied by Lawson in
[12]. In particular, a type A (ample) semigroup is a special case of an adequate semigroup
considered by Fountain in [4]. Thus, we always regard an adequate semigroup is a special
abundant semigroup.

For the class of abundant semigroups and their special subclasses, the reader is referred
to Shum in [21], [22] and [23]. We notice that it was shown by Lawson that the type A
semigroups constitute a class of semigroups that includes the full subsemigroups of inverse
semigroups and cancellative monoids. In particular, Lawson called any two elements in a
semigroup S L ∗-related if they are L -related in some oversemigroup. He then proved that
S is a type A semigroup if and only if each element of S is L -related to an idempotent
of S and is also R-related to an idempotent of S. By considering the modified generalized
Green’s relations on a semigroup S, Fu, Kong and Shum have recently established a structure
theorem of G-semilattice decomposition of a super r-ample semigroup in [6].

In this paper, a new definition of a Green generalized relation, namely, the (∗,∼)-Green’s
relations is introduced on a semigroup S which is a combination of the well known Green-∗
relation and the R̃ Green relation on S. For more information of the (∗,∼)-Green’s rela-
tions, the reader is referred to [6]. We now introduce below the concept of a quasi-strong
semilattice of semigroups and describe the semilattice decomposition of cryptic super r-
ample semigroups. By using this quasi-strong semilattice decomposition of semigroups,we
are able to show that a super r-ample semigroup S is a regular cryptic super r-ample semi-
group if and only if S is a quasi-strong semilattice of completely J ∗,∼-simple semigroups.
Thus, our result generalizes and enriches the main results given by Fu, Kong and Shum in
[6]. Moreover, some of the well known results obtained by Clifford, Petrich and Fountain
(see 1, 3, 17) on completely regular semigroups and abundant semigroups, as mentioned in
the first paragraph, are extended and generalized.
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We state below the newly defined (∗,∼)-Green relations on a semigroup S. These (∗,∼)-
Green relations can be regarded as a sort of generalized Green’s relations on a semigroup
S.

L ∗,∼ = L ∗,R∗,∼ = R̃

H ∗,∼ = L ∗,∼∩R∗,∼, D∗,∼ = L ∗,∼∨R∗,∼

J ∗,∼ = {(a,b) ∈ S×S : J∗,∼(a) = J∗,∼(b)},

where J∗,∼(a) is the smallest ideal containing a saturated by L ∗,∼ and R∗,∼. It can be
easily seen that the L ∗,∼ relation on S is a right congruence on S while the (∗,∼)-Green
relation R∗,∼ is only an equivalence on S.

One can easily observe that there is at most one idempotent of S contained in each of the
H ∗,∼-class of S. If e ∈H∗,∼a ∩E(S) for some a ∈ S, then we write e as x0, for any x ∈H∗,∼a .
It is clear that for any x ∈ H∗,∼a with a ∈ S, we have x = xx0 = x0x.

If a semigroup S is regular, then every L -class of S contains at least one idempotent and
so does every R-class of S. If S is a completely regular semigroup, then every H -class of
S contains an idempotent of S. In this case, we see immediately that every H -class is a
group. According to Fountain in [3]. A semigroup is an abundant semigroup if every L ∗-
and R∗-class of the semigroup S contains an idempotent of S. Thus, one can immediately
see that L ∗ = L on all the regular elements of a semigroup S. Hence,it is trivial that every
regular semigroup is obviously an abundant semigroup. We now call such a semigroup S
superabundant if each of its H ∗-class contains an idempotent, in such a semigroup S, we
can easily see that every H ∗-class of S is a cancellative monoid which is a generalization
of a completely regular semigroup in the class of abundant semigroups. We now call such a
semigroup r-ample if every L ∗,∼-class and every R∗,∼-class of the semigroup S contains an
idempotent of S. Certainly, an abundant semigroup is an r-ample semigroup [6], however,
the converse of the above statement is not true, mfor example, see [8]. We now call a
semigroup S super r-ample if each of the H ∗,∼-class of S contains an idempotent of S, in
such a semigroup, every H ∗,∼-class is a left cancellative monoid which is a generalization
of the completely regular semigroups and the superabundant semigroups in the class of
r-ample semigroups.

Recall that a regular band(normal band) is a band that satisfies the identity axya =
axaya(axya = ayxa) and a semigroup is called a cryptic semigroup if each of its (∗,∼)-
Green’s relation H ∗,∼ is a congruence on S in Clifford and Preston [1].

We now call a regular(normal) cryptic super r-ample semigroup a super r-ample semi-
group if its (∗,∼)-Green’s relation H ∗,∼ is a regular(normal) band congruence.

For further notations and terminology such as the strong semilattice decomposition of
semigroups, the reader is referred to [2, 3, 6]. For some concepts that have appeared in the
literature, we occasionally use the alternative though equivalent definitions.

2. Preliminaries

Since a completely simple semigroup S is a J -simple completely regular semigroup with
the Green’s relation H a congruence on S. We call a super r-ample semigroup S a com-
pletely J ∗,∼-simple semigroup if it is J ∗,∼-simple and the (∗,∼)-Green relation H ∗,∼

is a congruence on S.
The following lemma is a crucial lemma for the super r-ample semigroups.
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Lemma 2.1. Let S be a super r-ample semigroup. Then H ∗,∼ is a congruence on S if and
only if for any a,b ∈ S, (ab)0 = (a0b0)0.

Proof. Necessity. For any a,b ∈ S, aH ∗,∼a0 and bH ∗,∼b0. Since H ∗,∼ is a congruence
on S,abH ∗,∼a0b0 and so abH ∗,∼(ab)0.

Sufficiency. Since H ∗,∼ is an equivalence on the semigroup S, we only need prove
that H ∗,∼ is compatible. For this purpose, let (a,b) ∈H ∗,∼ and c ∈ S. Then, we have
(ca)0 = (c0a0)0 = (c0b0)0 = (cb)0 and so H ∗,∼ is left compatible with the semigroup
multiplication.

Similarly, H ∗,∼ is also right compatible with the semigroup multiplication. Thus, H ∗,∼

is indeed a congruence on S.

Lemma 2.2. If e, f are D∗,∼-related idempotents of a super r-ample semigroup, then eD f .

Proof. Since eD∗,∼ f , there are elements a1, · · · ,ak of S such that eL ∗,∼a1R
∗,∼a2 · · ·akL

∗,∼ f .
Since S is super r-ample, eL ∗,∼a0

1R
∗,∼a0

2 · · ·a0
kR
∗,∼ f . Thus, eD f since for regular ele-

ments, we have R = R∗ = R̃ and L = L ∗.

Corollary 2.1. If S is a super r-ample semigroup, then

D∗,∼ = L ∗,∼ ◦R∗,∼ = R∗,∼ ◦L ∗,∼.

Proof. If a,b ∈ S and aD∗,∼b, then by Lemma 2.2, we have a0Db0. Thus, there ex-
ist elements c,d in S with a0L cRb0 and a0RdL b0. Now,it can be easily verified that
aL ∗,∼cR∗,∼b and aR∗,∼dL ∗,∼b and the result follows.

The relationship of the idempotents of a super r-ample semigroup is described in the
following lemma.

Lemma 2.3. Let e, f be idempotents in a super r-ample semigroup S. If eJ f , then eD f .

Proof. Since SeS = S f S, there exist elements x,y,s, t in S such that f = set,e = x f y. Let
h = ( f y)0 and k = (se)0. Then h f y = f y = f f y so that h = h2 = f h, and sek = se = see so
that k = k2 = ke. It hence follows that h f ,ek are idempotents with h f Rh and ekL k. Hence,
eh f Reh and ek f L k f . Now, we deduce that eh = x f yh = x f y = e and k f = kset = set = f
so that eRe f L f .This leads to eD f .

Proposition 2.1. If a is an element of a cryptic super r-ample semigroup S, then J∗,∼(a) =
Sa0S.

Proof. Certainly, a0 ∈ J∗,∼(a) so that Sa0S ⊆ J∗,∼(a). We now show that the ideal Sa0S is
indeed an ideal saturated by L ∗,∼ and R∗,∼. Since a = aa0 ∈ Sa0S, the result follows. Let
b = xa0y ∈ Sa0S(x,y ∈ S) and k = (a0y)0. Then, we have a0a0y = ka0y so that a0(a0y)0 =
k2 = k. Also since H ∗,∼ is a congruence on S, xa0yH ∗,∼xk. Now, if h = (xk)0 = (xa0y)0,
Then xkh = xkk so that h = h2 = hk = ha0k ∈ Sa0S. Hence, if c ∈ L∗,∼b ,d ∈ R∗,∼b then
c = ch,d = hd ∈ Sa0S. This shows that Sa0S is an ideal saturated by L ∗,∼ and R∗,∼, as
required.

Proposition 2.2. In a completely J ∗,∼-simple semigroup S, we have J ∗,∼ = D∗,∼.

Proof. Suppose that a,b∈ S with aJ ∗,∼b. Then, by Proposition 2.1, we have Sa0S = Sb0S.
By Lemma 2.3, a0Db0 and so aH ∗,∼a0Db0H ∗,∼b,which implies that aD∗,∼b and hence
J ∗,∼ ⊆ D∗,∼. Conversely, let a,b ∈ S with aD∗,∼b. By Corollary 2.1, there exists c ∈ S
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such that aL ∗,∼cR∗,∼b. Thus a0L c0Rb0 and so Sa0S = Sc0S = Sb0S. By Proposition 2.1,
(a,b) ∈J ∗,∼ and hence D∗,∼ ⊆J ∗,∼. Now, we have J ∗,∼ = D∗,∼.

The following lemma is a crucial lemma of a completely J ∗,∼-simple semigroup.

Lemma 2.4. The idempotents of a completely J ∗,∼-simple S are primitive idempotents.

Proof. Let e, f be idempotents of the semigroup S with e ≤ f . Since S is a completely
J ∗,∼-simple semigroup, it follows from Proposition 2.1 that f ∈ SeS. Now, by the first
part of Exercise 3 in [1, §8.4], there exists an idempotent g of S such that f Dg and g ≤ e.
Let a ∈ S be such that f L aRg. Then, f L a0Rg and since g≤ f , we have

a0 = ga0(g f )a0 = g( f a0) = g f = g.

Now, we have g≤ f and gL f so that f = f g = g. But g≤ e so that e = f . This shows that
and all idempotent of S are primitive.

Lemma 2.5. In a completely J ∗,∼-simple semigroup S, the regular elements of S generate
a completely simple subsemigroup.

Proof. Let a,b be regular elements of S. Since S consists of a single D∗,∼-class(by Proposi-
tion 2.2), it follows from Corollary 2.1 that there exists an element c∈ S with aL ∗,∼cR∗,∼b.
Hence, we have aL ∗,∼c0R∗,∼b. Thus, c0b = b and aL c0 since a is regular. Now, we see
that abL b and the regularity of ab follows from that of b. The property of completely sim-
ple of the subsemigroup generated by the regular elements follows from Proposition 2.2,
Lemma 2.2 and Corollary 2.1 easily.

Theorem 2.1. Let S be a cryptic super r-ample semigroup. Then S is a semi-lattice Y of
completely J ∗,∼-simple semigroups Sα(α ∈Y ) such that for α ∈Y and a∈ Sα ,L ∗,∼

a (S) =
L ∗,∼

a (Sα),R∗,∼a (S) = R∗,∼a (Sα).

Proof. If a ∈ S, then aH ∗,∼a2 so that by Proposition 2.1, J∗,∼(a) = J∗,∼(a2). Now for
a,b ∈ S,(ab)2 ∈ SbaS, and so we have

J∗,∼(ab) = J∗,∼((ab)2)⊆ J∗,∼(ba)

and by symmetry, we get J∗,∼(ab)= J∗,∼(ba). By Proposition 2.1, J∗,∼(a)= Sa0S, J∗,∼(b)=
Sb0S so that if c ∈ J∗,∼(a)∩ J∗,∼(b), we have c = xa0y = zb0t for some x,y,z, t ∈ S. Now,
c2 = zb0txa0y∈ Sb0txa0S⊆ J∗,∼(b0txa0) and J∗,∼(b0txa0) = J∗,∼(a0b0tx) by the preceding
paragraph. Hence, we deduce that c2 ∈ J∗,∼(a0b0) and since cH ∗,∼c2, we also have c ∈
J∗,∼(a0b0). Since aH ∗,∼a0, bH ∗,∼b0 and H ∗,∼ is a congruence on S and so abH ∗,∼a0b0.
Hence, c ∈H ∗,∼(ab). This shows that J∗,∼(a)∩J∗,∼(b)⊆ J∗,∼(ab) and since the opposite
inclusion is clear, we have proved that J∗,∼(a)∩ J∗,∼(b) = J∗,∼(ab).

Now, it is clear that the set Y of all ideals J∗,∼(a)(a ∈ S) is a semilattice under set inter-
section and that the map a 7→ J∗,∼(a) is a homomorphism from S onto Y . The inverse image
of J∗,∼(a) is just the J ∗,∼-class J∗,∼a which is a subsemigroup of S. This proves that the
semigroup S is a semilattice Y of the semigroups J∗,∼a .

Finally, we let a,b be elements of J ∗,∼-class J∗,∼ and suppose that (a,b)∈L ∗,∼(J∗,∼).
Certainly a0,b0 ∈ J∗,∼ so that we have (a0,b0) ∈L ∗,∼(J∗,∼), that is, a0b0 = a0,b0a0 = b0,
and (a0,b0) ∈L ∗,∼(S). It follows that (a,b) ∈L ∗,∼(S) and consequently, since L∗,∼a (S)⊆
J∗,∼, L∗,∼a (S)= L∗,∼a (J∗,∼). By using similar arguments, we can similarly prove that R∗,∼a (S)=
R∗,∼a (J∗,∼).
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From the last paragraph, we have H∗,∼a (J∗,∼) = H∗,∼a (S) so that J∗,∼ is super r-ample.
Furthermore, if a,b ∈ J∗,∼, then by Proposition 2.2, (a,b) ∈ D∗,∼(S) so that, by Corollary
2.1, there exists an element c in L∗,∼a (S)∩R∗,∼b (S)L∗,∼a (J∗,∼)∩R∗,∼b (J∗,∼). Thus, a,b are
D∗,∼-related in J∗,∼ so that J∗,∼ is J ∗,∼-simple.

We now consider the cryptic super r-simple semigroups.

Lemma 2.6. Let S = (Y ;Sα) be a cryptic super r-ample semigroup. Then, the following
statements hold:

(i) Let a ∈ Sα and α ≥ β . Then there exists b ∈ Sβ with a≥ b;
(ii) Let a,b,c ∈ S, bH ∗,∼c, and a≥ b,c. Then b = c;

(iii) Let a ∈ E(S) and b ∈ S be such that a≥ b. Then b ∈ E(S).

Proof. (i) Let b ∈ Sβ , by Lemma 2.1, a(aba)0,(aba)0a and (aba)0 are in the same H ∗,∼-
class and so a(aba)0 = (aba)0a(aba)0 = (aba)0a. Let b = a(aba)0. Then b ∈ Sβ and a≥ b.

(ii) By the definition of “≥”, there exist e, f ,g,h ∈ E(S) such that b = ea = a f , c = ga =
ah. From eb = b and bH ∗,∼b0, we have eb0 = b0. Similarly, c0h = c0. Thus, ec = ec0c =
eb0c = b0c = c. Similarly, bh = b so that b = bh = eah = ec = c, as required.

(iii) We have b = ea = a f for some e, f ∈ E(S), and whence

b2 = (ea)(a f ) = ea2 f = b.

Following Proposition 2.2, we can easily prove the following lemma.

Lemma 2.7. Let φ be a homomorphism from a completely J ∗,∼-simple semigroup S into
another completely J ∗,∼-simple semigroup T . Then (aφ)0 = a0φ .

Let φ be a homomorphism between two completely J ∗,∼-simple semigroups. Then
the (∗,∼)-Green’s relations L ∗,∼, R∗,∼ are preserved, so that D∗,∼ is preserved. We call
the homomorphism which preserves the L ∗,∼ and R∗,∼ classes the good homomorphisms.
By applying Proposition 2.2 and Lemma 2.6, we can easily show that the idempotents of a
completely J ∗,∼-simple semigroup are primitive.

3. Quasi-strong semilattice of semigroups

In this section, we introduce the quasi-strong semilattice of semigroups which is a general-
ization of strong semilattice of semigroups.

Definition 3.1. Let S = (Y ;Sα) be a semilattice Y decomposition of semigroup S into
subsemigroups Sα(α ∈ Y ). Suppose that the following conditions hold in the semigroup S.
Then the following properties hold:

(C1) for any α,β ∈ Y , there is a band congruence ρα,β on Sβ with congruence classes
{Sd(α,β ) : d(α,β ) ∈ D(α,β )}, where D(α,β ) is the index set and for α ∈ Y , ρα,α is the
universal relation ωSα

;
(C2) for α ≥ β on Y and any d(α,β ) ∈ D(α,β ), there is a homomorphism φd(α,β ) from

Sα into Sd(α,β ). Let Φα,β = {φd(α,β ) : d(α,β ) ∈ D(α,β )}. Then, we have the following
properties:

(i) for α ∈ Y , the homomorphism φD(α,α) : Sα −→ Sα is the identity automorphism of
the semigroup Sα .

(ii) for α ≥ β ≥ γ on Y , Φα,β Φβ ,γ ⊆Φα,γ ,where

Φα,β Φβ ,γ = {φd(α,β )φd(β ,γ) : d(α,β ) ∈ D(α,β ),d(β ,γ) ∈ D(β ,γ)}.
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(iii) for α ≥ β on Y and a ∈ Sα , x ∈ Sd(α,β ), ax = (aφd(α,β ))x and xa = x(aφd(α,β )).

We call the semigroup S a quasi-strong semilattice of subsemigroups Sα(α ∈ Y ) and is
denoted by S = [Y ;Sα ,ρα,β ,Φα,β ].

If S = [Y ;Sα ,Φα,β ] is a strong semilattice of subsemigroups Sα with structure homo-
morphism Φα,β . Then, we let every band congruence ρα,β be the universal relation on Sβ ,
and hence, every D(α,β ) is a singleton.Thus, a strong semilattice of semigroups must be
a quasi-strong semilattice of semigroups, but from our results,the converse of the above
statement does not hold.

4. Regular cryptic super r-ample semigroups

Following Theorem 2.1, we can easily see that a cryptic super r-ample semigroup S is a
semilattice of a completely J ∗,∼-simple semigroups and so S=Sα(α ∈ Y ).

In this section, we consider the band congruence ρα,β on a regular cryptic super r-ample
semigroup S = (Y ;Sα) with the structure homomorphisms set Φα,β .

Finally, we show that a cryptic super r-ample semigroup is a regular cryptic super r-
ample semigroup if and only if it is a quasi-strong semilattice of completely J ∗,∼-simple
semigroups.

As a corollary of the above result, we deduce that a cryptic super r-ample semigroup is a
normal cryptic super r-ample semigroup if and only if it is a strong semilattice of completely
J ∗,∼-simple semigroups. This is the main result of this paper.

We now prove the following lemma on regular cryptic super r-ample semigroups.

Lemma 4.1. Let S = (Y ;Sα) be a regular cryptic super r-ample semigroup, that is, S is
a cryptic super r-ample semigroup with (∗,∼)-Green’s relation H ∗,∼ is a regular band
congruence. For any α,β ∈ Y , we define ρα,β on Sβ as the followings:

(x,y ∈ Sβ )(x,y) ∈ ρα,β ⇔ (axa)0 = (aya)0

for some a ∈ Sα . Then the following statements hold:
(i) ρα,β is a band congruence on Sβ and for x,y ∈ Sβ , (x,y) ∈ ρα,β if and only if for

any b ∈ Sα , (bxb)0 = (byb)0.
(ii) for α ≥ β ≥ γ on Y , ρα,γ ⊆ ρβ ,γ and ρα,α is the universal relation ωSα

on Sα .
(iii) for α ≥ β on Y and a ∈ Sα , b ∈ Sβ , abρα,β bρα,β ba.

Proof. We only prove (i), (ii) as (iii) can be proved similarly. Let x,y ∈ Sβ with (x,y) ∈
ρα,β , then there exists a ∈ Sα such that (axa)0 = (aya)0. For any element b ∈ Sα , we
have b(axa)0b = b(aya)0b. Thus, we have (b(axa)0b)0 = (b(aya)0b)0. By the property of
regular bands and Lemma 2.1 and 2.6, we easily have (bxb)0 = (byb)0. Now the proof is
completed.

We denote the ρα,β -congruence classes by {Sd(α,β ) : d(α,β ) ∈ D(α,β )}, following
Lemma 2.8, D(α,α) is a singleton.

Lemma 4.2. Let S = (Y ;Sα) be a regular cryptic super r-ample semigroup. Then, the
following properties hold:

(i) For any α ≥ β on Y and d(α,β ) ∈ D(α,β ). Let a ∈ Sα , there exists a unique
element ad(α,β ) ∈ Sd(α,β ) such that a≥ ad(α,β ).



866 K. Xiang-Zhi and K. P. Shum

(ii) For any α ≥ β on Y and a ∈ Sα , x ∈ Sd(α,β ). If a0 ≥ e for some idempotent e ∈
Sd(α,β ), then eax = ax,xae = xa, ea = ae and (ea)0 = e.

Proof. (i) By Lemma 2.8 (iii) and Lemma 2.6 (i), for any c ∈ Sd(α,β ), the element ad(α,β ) =
a(aca)0 = (aca)0a ∈ Sd(α,β ) such that a ≥ ad(α,β ). It can be easily seen that a0

d(α,β ) =
(aca)0. If there is another b∈ Sd(α,β ) such that a≥ b, then there are idempotents g,h∈ E(S)
such that b = ga = ah and so ba0 = b = a0b, thus b0a0 = b0 = a0b0 since bH ∗,∼b0, which
implies b0 ≤ a0 and hence b0 = a0b0a0 = (aba)0 = (aca)0 = a0

d(α,β ), that is, bH ∗,∼ad(α,β ).
Thus by Lemma 2.6 (ii), ad(α,β ) = b as required.

(ii) Since (a0(ax)0a0)a0 = a0(ax)0a0 = a0(a0(ax)0a0) and a0(ax)0a0H ∗,∼(a0(ax)0a0)0,
we have (a0(ax)0a0)0a0 = (a0(ax)0a0)0 = a0(a0(ax)0a0)0, that is, a0 ≥ (a0(ax)0a0)0. Also,
since a ∈ Sα and x ∈ Sd(α,β ), we have ax ∈ Sd(α,β ) and so that e = (a0(ax)0a0)0 by (i).
Thereby, we have eax = (a0(ax)0a0)0ax = (a0(ax)0a0)0a0(ax)0a0ax = ax. Similarly, we
have xae = xa. Since x is an arbitrarily chosen element in Sd(α,β ), we can particularly
choose x = e. In this manner, we deduce that ea = ae and consequently, by Lemma 2.1, we
have (ea)0 = (ea0)0 = e.

Lemma 4.3. Let S = (Y ;Sα) be a regular cryptic super r-ample semigroup. For any α ≥ β

on Y and d(α,β ) ∈D(α,β ), define a mapping φd(α,β ) from Sα into Sd(α,β ) with aφd(α,β ) =
ad(α,β ), where ad(α,β ) is defined in Lemma 2.9. Write Φα,β = {φd(α,β ) : d(α,β )∈D(α,β )}.
Then,the following statements hold:

(i) φd(α,β ) is a homomorphism.
(ii) for α ∈ Y , φD(α,α) is the identity homomorphism of Sα .

(iii) for α ≥ β ≥ γ on Y , Φα,β Φβ ,γ ⊆Φα,γ .
(iv) for α ≥ β on Y and a ∈ Sα , x ∈ Sd(α,β ), ax = (aφd(α,β ))x and xa = x(aφd(α,β )).

Proof. (i) Following Lemma 2.9, φd(α,β ) is well defined. For a,b ∈ Sα and c ∈ Sd(α,β ), by
Lemma 2.9 again,

(aφd(α,β ))(bφd(α,β )) = (aca)0ab(bcb)0 = (aca)0ab = ab(bcb)0 ≤ ab

and so (ab)φd(α,β ) = (aφd(α,β ))(bφd(α,β )).
(ii) This part follows easily since Sα is primitive.
(iii) We only need to show that for any d(α,β )∈D(α,β ) d(β ,γ)∈D(α,γ), Sd(α,β )φd(β ,γ)⊆

Sd(α,γ) for some d(α,γ) ∈ D(α,γ). Let a ∈ Sα , b1,b2 ∈ Sd(α,β ) and c ∈ Sγ , we have
(ab1a)0 = (ab2a)0 and b1φd(β ,γ) = b1(b1cb1)0, b2φd(β ,γ) = b2(b2cb2)0 and so

(a(b1φd(β ,γ))a)0 = (ab1(b1cb1)0a)0 = (ab2(b2cb2)0a)0 = (a(b2φd(β ,γ))a)0,

which implies Sd(α,β )φd(β ,γ) ⊆ Sd(α,β ) for some d(α,γ) ∈ D(α,γ).
(iv) By (i), aφd(α,β ) = (axa)0a and so aφd(α,β )x = (axa)0ax = ax by Lemma 2.9 (ii).

Similarly xa = x(aφd(α,β )).

Theorem 4.1. A super r-ample semigroup S is a regular cryptic super r-ample semigroup
if and only if it is a quasi-strong semilattice of completely J ∗,∼-simple semigroups.

Proof. We have already proved the necessity part of the theorem from Lemma 2.8 and
2.9. Now we proceed to prove the sufficiency part of the Theorem. We first let S =
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[Y ;Sα ,ρα,β ,Φα,β ] be a quasi-strong semilattice of completely J ∗,∼-simple semigroups
Sα . We only need prove that H ∗,∼ is a congruence and S/H ∗,∼ is a regular band. For
a ∈ Sα ,b ∈ Sβ , we suppose that a0b0 falls in Sd(α,αβ ), for some d(α,αβ ) ∈ D(α,αβ ) and
also ab falls in Sd(β ,αβ ), for some d(β ,αβ ) ∈ D(β ,αβ ). Then, by Definition 3.1, we have
the following equalities:

ab = aa0b0b = [(aφd(α,αβ ))a
0][b0(bφd(β ,αβ ))]

= [(aφd(α,αβ ))(a
0
φd(α,αβ ))][(b

0
φd(β ,αβ ))(bφd(β ,αβ ))]

= (aφd(α,αβ ))(bφd(β ,αβ )).

Hence, we deduce that (ab)0 = [(a0φd(α,αβ ))(b0φd(β ,αβ ))]0 = (a0b0)0 by Lemma 2.7 and its
remark. Thus, by Lemma 2.1, S is a cryptic semigroup. To show that S/H ∗,∼ is a regular
band, let a ∈ Sα ,x ∈ Sβ ,y ∈ Sγ and a0x falls in Sd(α,αβ ) and ya0 falls in Sd(β ,βγ), by a direct
computing in a similar fashion as the the above, we have obtain the following equalities
(axya)H ∗,∼ = [a(a0x)(ya0)a]H ∗,∼ = [(aφd(α,αβ ))(aφd(α,αγ))]H ∗,∼ and (axaya)H ∗,∼ =
[a(a0x)a(ya0)a]H ∗,∼= [(aφd(α,αβ ))(aφd(α,αγ))]H ∗,∼.Thus, we deduce that (axya)H ∗,∼=
axaya)H ∗,∼ and so S/H ∗,∼ is a regular band.

Finally, we notice that the normal cryptic super r-ample semigroup S = (Y ;Sα), the band
congruence ρα,β defined in Lemma 2.8 is the universal relation ωSβ

of Sβ for all α,β ∈ Y .
Hence, we deduce the following theorem which characterizes the super r-ample semigroup
to be a normal cryptic super r-ample semigroup.

The following theorem is a characterization theorem of a normal super r-ample semi-
group, which can be proved easily and it can be regarded as a generalized version of the
main result of M. Petrich in r-ample semigroups.

Theorem 4.2. A super r-ample semigroup is a normal cryptic super r-ample semigroup if
and only if it is a strong semilattice of completely J ∗,∼-simple semigroups.
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