Automatic Continuity of Higher Derivations

${ }^{1}$ Madjid Mirzavaziri and ${ }^{2}$ Elahe Omidvar Tehrani
${ }^{1}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Iran
${ }^{2}$ Department of Mathematics, Razavi University of Mashhad, Mashhad, Iran
${ }^{1}$ mirzavaziri@gmail.com, ${ }^{2}$ el_om3@stu-mail.um.ac.ir

Abstract

Let \mathscr{A} and \mathscr{B} be two algebras. A sequence $\left\{d_{n}\right\}$ of linear mappings from \mathscr{A} into \mathscr{B} is called a higher derivation if $d_{n}\left(a_{1} a_{2}\right)=\sum_{k=0}^{n} d_{k}\left(a_{1}\right) d_{n-k}\left(a_{2}\right)$ for each $a_{1}, a_{2} \in \mathscr{A}$ and each nonnegative integer n. In this paper, we show that if $\left\{d_{n}\right\}$ is a higher derivation from \mathscr{A} into \mathscr{B} such that d_{0} is onto and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$, then there is a sequence $\left\{\delta_{n}\right\}$ of derivations on \mathscr{B} such that $$
d_{n}=\sum_{i=1}^{n}\left(\sum_{\sum_{j=1}^{i} r_{j}=n}\left(\prod_{j=1}^{i} \frac{1}{r_{j}+\ldots+r_{i}}\right) \delta_{r_{1} \ldots} \delta_{r_{i}} d_{0}\right)
$$

As a corollary we prove that a higher derivation $\left\{d_{n}\right\}$ from a Banach algebra into a semisimple Banach algebra is continuous provided that d_{0} is onto and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$. We also deduce that if \mathscr{A} is a semisimple Jordan Banach algebra and $\left\{d_{n}\right\}$ is a higher derivation on \mathscr{A} with $d_{0}(\mathscr{A})=\mathscr{A}$ and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$ then $\left\{d_{n}\right\}$ is continuous.

2010 Mathematics Subject Classification: 46H40, 16W25, 47B47, 46L57
Keywords and phrases: Algebra, module, derivation, higher derivation, normal higher derivation, σ-derivation, automatic continuity.

1. Introduction

Let \mathscr{A} and \mathscr{B} be two algebras, \mathscr{X} be a \mathscr{B}-bimodule and $\sigma: \mathscr{A} \rightarrow \mathscr{B}$ be a linear mapping. A linear mapping $\delta: \mathscr{A} \rightarrow \mathscr{X}$ is called a σ-derivation if it satisfies the generalized Leibniz rule $\delta\left(a_{1} a_{2}\right)=\boldsymbol{\delta}\left(a_{1}\right) \sigma\left(a_{2}\right)+\sigma\left(a_{1}\right) \boldsymbol{\delta}\left(a_{2}\right)$ for each $a_{1}, a_{2} \in \mathscr{A}$. In the case $\mathscr{A}=\mathscr{B}=\mathscr{X}$ and $\sigma=$ $I_{\mathscr{A}}$, the identity mapping on \mathscr{A}, a σ-derivation is called a derivation. (For other approaches to generalized derivations and their applications see $[2,3,5,14,13]$ and references therein. In particular, an automatic continuity problem for (σ, τ)-derivations is considered in [12] and an achievement of continuity of (σ, τ)-derivations without linearity is given in [7].)

A sequence $\left\{d_{n}\right\}$ of linear mappings from \mathscr{A} into \mathscr{B} is called a higher derivation if $d_{n}\left(a_{1} a_{2}\right)=\sum_{k=0}^{n} d_{k}\left(a_{1}\right) d_{n-k}\left(a_{2}\right)$ for each $a_{1}, a_{2} \in \mathscr{A}$ and each nonnegative integer n. Higher derivations were introduced by Hasse and Schmidt [6], and algebraists sometimes call them

Hasse-Schmidt derivations. For an account on higher derivations the reader is referred to the book [4].

In this paper we characterize all higher derivations from an algebra \mathscr{A} into another algebra \mathscr{B} in terms of derivations on \mathscr{B}, provided that d_{0} is onto and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$. A characterization of higher derivations on an algebra \mathscr{A} into itself can be found in [11]. Indeed, we show that each higher derivation is a linear combination of compositions of d_{0} and some derivations on \mathscr{B}. The importance of our work is to transfer the problems such as innerness (for a definition and discussion see [15]) and automatic continuity (see [8, 10]) of higher derivations into the same problems concerning derivations. As a corollary, using the facts that each homomorphism from a Banach algebra onto a semisimple Banach algebra is automatically continuous [4,5.1.5] and each derivation on a semisimple Banach algebra is automatically continuous [9], we prove a theorem of Jewell [8], which asserts that a higher derivation $\left\{d_{n}\right\}$ from a Banach algebra into a semisimple Banach algebra is continuous provided that d_{0} is onto and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$. We also deduce that if \mathscr{A} is a semisimple Jordan Banach algebra and $\left\{d_{n}\right\}$ is a higher derivation on \mathscr{A} with $d_{0}(\mathscr{A})=\mathscr{A}$ and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$ then $\left\{d_{n}\right\}$ is continuous. Throughout the paper, all algebras are assumed over the filed of complex numbers.

2. The results

Let \mathscr{A} and \mathscr{B} be two algebras, \mathscr{X} be a \mathscr{B}-bimodule and $\sigma: \mathscr{A} \rightarrow \mathscr{B}$ be a linear mapping. A linear mapping $\delta: \mathscr{A} \rightarrow \mathscr{X}$ is called a σ-derivation if it satisfies the generalized Leibniz rule $\delta\left(a_{1} a_{2}\right)=\boldsymbol{\delta}\left(a_{1}\right) \sigma\left(a_{2}\right)+\sigma\left(a_{1}\right) \boldsymbol{\delta}\left(a_{2}\right)$ for all $a_{1}, a_{2} \in \mathscr{A}$. A sequence $\left\{d_{n}\right\}$ of linear mappings from \mathscr{A} into \mathscr{B} is called a higher derivation if $d_{n}\left(a_{1} a_{2}\right)=\sum_{k=0}^{n} d_{k}\left(a_{1}\right) d_{n-k}\left(a_{2}\right)$ for each $a_{1}, a_{2} \in \mathscr{A}$ and each nonnegative integer n.

Let $\left\{d_{n}\right\}$ be a higher derivation. Then d_{0} is a homomorphism and d_{1} is a d_{0}-derivation. Thus if d_{0} is onto then $\tilde{d}_{0}: \mathscr{A} / \operatorname{ker}\left(d_{0}\right) \rightarrow \mathscr{B}$ defined by $\tilde{d}_{0}\left(a+\operatorname{ker}\left(d_{0}\right)\right)=d_{0}(a)$ is an isomorphism. Moreover, for each $n \in \mathbb{N}, \tilde{d}_{n}: \mathscr{A} / \operatorname{ker}\left(d_{0}\right) \rightarrow \mathscr{B}$ defined by $\tilde{d}_{n}\left(a+\operatorname{ker}\left(d_{0}\right)\right)=$ $d_{n}(a)$ is a well-defined linear mapping provided that $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)$.

Proposition 2.1. Let \mathscr{A} and \mathscr{B} be two algebras (associative or not) and $\left\{d_{n}\right\}$ be a higher derivation from \mathscr{A} into \mathscr{B} with $d_{0}(\mathscr{A})=\mathscr{B}$ and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$. Then there is a sequence $\left\{\delta_{n}\right\}$ of derivations on \mathscr{B} such that for each nonnegative integer n

$$
\begin{equation*}
(n+1) \tilde{d}_{n+1}=\sum_{k=0}^{n} \delta_{k+1} \tilde{d}_{n-k} \tag{2.1}
\end{equation*}
$$

Proof. We use induction on n. For $n=0$, let $\delta_{1}: \mathscr{B} \rightarrow \mathscr{B}$ be defined by $\delta_{1}=\tilde{d}_{1} \tilde{d}_{0}^{-1}$ and $b_{1}, b_{2} \in \mathscr{B}$. Since \tilde{d}_{0} is an isomorphism, there exist $a_{1}, a_{2} \in \mathscr{A}$ such that $d_{0}\left(a_{1}\right)=b_{1}$ and $d_{0}\left(a_{2}\right)=b_{2}$. We thus have

$$
\begin{aligned}
\delta_{1}\left(b_{1} b_{2}\right) & =\tilde{d}_{1} \tilde{d}_{0}^{-1}\left(d_{0}\left(a_{1}\right) d_{0}\left(a_{2}\right)\right) \\
& =d_{1}\left(a_{1} a_{2}\right) \\
& =d_{0}\left(a_{1}\right) d_{1}\left(a_{2}\right)+d_{1}\left(a_{1}\right) d_{0}\left(a_{2}\right) \\
& =d_{0}\left(a_{1}\right) \tilde{d}_{1} \tilde{d}_{0}^{-1}\left(d_{0}\left(a_{2}\right)\right)+\tilde{d}_{1} \tilde{d}_{0}^{-1}\left(d_{0}\left(a_{1}\right)\right) d_{0}\left(a_{2}\right) \\
& =b_{1} \delta_{1}\left(b_{2}\right)+\delta_{1}\left(b_{1}\right) b_{2} .
\end{aligned}
$$

So δ_{1} is a derivation. Note that $\tilde{d}_{1}=\delta_{1} \tilde{d}_{0}$.

Now suppose that δ_{k} is defined and is a derivation for $k \leq n$ satisfying (2.1). Putting $\delta_{n+1}=\left[(n+1) \tilde{d}_{n+1}-\sum_{k=0}^{n-1} \delta_{k+1} \tilde{d}_{n-k}\right] \tilde{d}_{0}^{-1}$, we show that δ_{n+1} is a derivation. For $b_{1}, b_{2} \in \mathscr{B}$ there are $a_{1}, a_{2} \in \mathscr{A}$ such that $d_{0}\left(a_{1}\right)=b_{1}$ and $d_{0}\left(a_{2}\right)=b_{2}$. Hence

$$
\begin{aligned}
\delta_{n+1}\left(b_{1} b_{2}\right) & =\left[(n+1) \tilde{d}_{n+1}-\sum_{k=0}^{n-1} \delta_{k+1} \tilde{d}_{n-k}\right] \tilde{d}_{0}^{-1}\left(d_{0}\left(a_{1}\right) d_{0}\left(a_{2}\right)\right) \\
& =\left[(n+1) \tilde{d}_{n+1}-\sum_{k=0}^{n-1} \delta_{k+1} \tilde{d}_{n-k}\right]\left(a_{1} a_{2}+\operatorname{ker}\left(d_{0}\right)\right) \\
& =(n+1) d_{n+1}\left(a_{1} a_{2}\right)-\sum_{k=0}^{n-1} \delta_{k+1} d_{n-k}\left(a_{1} a_{2}\right) \\
& =(n+1) \sum_{k=0}^{n+1} d_{k}\left(a_{1}\right) d_{n+1-k}\left(a_{2}\right)-\sum_{k=0}^{n-1} \delta_{k+1}\left(\sum_{\ell=0}^{n-k} d_{\ell}\left(a_{1}\right) d_{n-k-\ell}\left(a_{2}\right)\right) .
\end{aligned}
$$

Since $\delta_{1}, \ldots, \delta_{n}$ are derivations,

$$
\begin{aligned}
\delta_{n+1}\left(b_{1} b_{2}\right)= & \sum_{k=0}^{n+1} k d_{k}\left(a_{1}\right) d_{n+1-k}\left(a_{2}\right)+\sum_{k=0}^{n+1} d_{k}\left(a_{1}\right)(n+1-k) d_{n+1-k}\left(a_{2}\right) \\
& -\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-k}\left[\delta_{k+1}\left(d_{\ell}\left(a_{1}\right)\right) d_{n-k-\ell}\left(a_{2}\right)+d_{\ell}\left(a_{1}\right) \delta_{k+1}\left(d_{n-k-\ell}\left(a_{2}\right)\right)\right] .
\end{aligned}
$$

Writing

$$
\begin{aligned}
K & =\sum_{k=0}^{n+1} k d_{k}\left(a_{1}\right) d_{n+1-k}\left(a_{2}\right)-\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-k} \delta_{k+1}\left(d_{\ell}\left(a_{1}\right)\right) d_{n-k-\ell}\left(a_{2}\right), \\
L & =\sum_{k=0}^{n+1} d_{k}\left(a_{1}\right)(n+1-k) d_{n+1-k}\left(a_{2}\right)-\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-k} d_{\ell}\left(a_{1}\right) \delta_{k+1}\left(d_{n-k-\ell}\left(a_{2}\right)\right)
\end{aligned}
$$

we have $\delta_{n+1}\left(b_{1} b_{2}\right)=K+L$. Let us compute K and L. In the summation $\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-k}$ we have $0 \leq k+\ell \leq n$ and $k \neq n$. Thus if we put $r=k+\ell$ then we can write it as the form $\sum_{r=0}^{n} \sum_{k+\ell=r, k \neq n}$. Putting $\ell=r-k$ we indeed have

$$
\begin{aligned}
K & =\sum_{k=0}^{n+1} k d_{k}\left(a_{1}\right) d_{n+1-k}\left(a_{2}\right)-\sum_{r=0}^{n} \sum_{0 \leq k \leq r, k \neq n} \delta_{k+1}\left(d_{r-k}\left(a_{1}\right)\right) d_{n-r}\left(a_{2}\right) \\
& =\sum_{k=0}^{n+1} k d_{k}\left(a_{1}\right) d_{n+1-k}\left(a_{2}\right)-\sum_{r=0}^{n-1} \sum_{k=0}^{r} \delta_{k+1}\left(d_{r-k}\left(a_{1}\right)\right) d_{n-r}\left(a_{2}\right)-\sum_{k=0}^{n-1} \delta_{k+1}\left(d_{n-k}\left(a_{1}\right)\right) d_{0}\left(a_{2}\right) .
\end{aligned}
$$

Putting $r+1$ instead of k in the first summation we have

$$
\begin{aligned}
& K+\sum_{k=0}^{n-1} \delta_{k+1}\left(d_{n-k}\left(a_{1}\right)\right) d_{0}\left(a_{2}\right) \\
& =\sum_{r=0}^{n}(r+1) d_{r+1}\left(a_{1}\right) d_{n-r}\left(a_{2}\right)-\sum_{r=0}^{n-1} \sum_{k=0}^{r} \delta_{k+1}\left(d_{r-k}\left(a_{1}\right)\right) d_{n-r}\left(a_{2}\right) \\
& =\sum_{r=0}^{n-1}\left[(r+1) d_{r+1}\left(a_{1}\right)-\sum_{k=0}^{r} \delta_{k+1}\left(d_{r-k}\left(a_{1}\right)\right)\right] d_{n-r}\left(a_{2}\right)+(n+1) d_{n+1}\left(a_{1}\right) d_{0}\left(a_{2}\right)
\end{aligned}
$$

$$
=\sum_{r=0}^{n-1}\left[(r+1) \tilde{d}_{r+1}-\sum_{k=0}^{r} \delta_{k+1} \tilde{d}_{r-k}\right]\left(\tilde{d}_{0}^{-1} d_{0}\left(a_{1}\right)\right) d_{n-r}\left(a_{2}\right)+(n+1) d_{n+1}\left(a_{1}\right) d_{0}\left(a_{2}\right)
$$

By our assumption

$$
(r+1) \tilde{d}_{r+1}-\sum_{k=0}^{r} \delta_{k+1} \tilde{d}_{r-k}=0
$$

for $r=0, \ldots, n-1$. We can therefore deduce that

$$
\begin{aligned}
K & =\left[(n+1) d_{n+1}\left(a_{1}\right)-\sum_{k=0}^{n-1} \delta_{k+1}\left(d_{n-k}\left(a_{1}\right)\right)\right] d_{0}\left(a_{2}\right) \\
& =\left[(n+1) \tilde{d}_{n+1}-\sum_{k=0}^{n-1} \delta_{k+1} \tilde{d}_{n-k}\right]\left(\tilde{d}_{0}^{-1} d_{0}\left(a_{1}\right)\right) d_{0}\left(a_{2}\right) \\
& =\delta_{n+1}\left(b_{1}\right) b_{2}
\end{aligned}
$$

By a similar argument we have

$$
\begin{aligned}
L & =d_{0}\left(a_{1}\right)\left[(n+1) \tilde{d}_{n+1}-\sum_{k=0}^{n-1} \delta_{k+1} \tilde{d}_{n-k}\right]\left(\tilde{d}_{0}^{-1} d_{0}\left(a_{2}\right)\right) \\
& =b_{1} \delta_{n+1}\left(b_{2}\right)
\end{aligned}
$$

Thus

$$
\delta_{n+1}\left(b_{1} b_{2}\right)=K+L=\delta_{n+1}\left(b_{1}\right) b_{2}+b_{1} \delta_{n+1}\left(b_{2}\right) .
$$

Whence δ_{n+1} is a derivation on \mathscr{A}.
Theorem 2.1. Let \mathscr{A} and \mathscr{B} be two algebras (associative or not) and $\left\{d_{n}\right\}$ be a higher derivation from \mathscr{A} into \mathscr{B} with $d_{0}(\mathscr{A})=\mathscr{B}$ and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$. Then there is a sequence $\left\{\delta_{n}\right\}$ of derivations on \mathscr{B} such that

$$
d_{n}=\sum_{i=1}^{n}\left(\sum_{\sum_{j=1}^{i} r_{j}=n}\left(\prod_{j=1}^{i} \frac{1}{r_{j}+\ldots+r_{i}}\right) \delta_{r_{1}} \ldots \delta_{r_{i}} d_{0}\right)
$$

where the inner summation is taken over all positive integers r_{1}, \ldots, r_{i} with $\sum_{j=1}^{i} r_{j}=n$.
Proof. We show that if d_{n} is of the above form then \tilde{d}_{n} satisfies the recursive relation of Proposition 2.1. Since the solution of the recursive relation is unique, this proves the theorem.

Simplifying the notation we put

$$
a_{r_{1}, \ldots, r_{i}}=\prod_{j=1}^{i} \frac{1}{r_{j}+\ldots+r_{i}}
$$

Note that if $r_{1}+\ldots+r_{i}=n+1$ then $(n+1) a_{r_{1}, \ldots, r_{i}}=a_{r_{2}, \ldots, r_{i}}$. Moreover, $a_{n+1}=1 /(n+1)$.
Now for each $a \in \mathscr{A}$ we have

$$
\begin{aligned}
& (n+1) \tilde{d}_{n+1}\left(a+\operatorname{ker}\left(d_{0}\right)\right) \\
& =(n+1) d_{n+1}(a)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=2}^{n+1}\left(\sum_{\sum_{j=1}^{i} r_{j}=n+1}(n+1) a_{r_{1}, \ldots, r_{i}} \delta_{r_{1}} \ldots \delta_{r_{i}} d_{0}\right)(a)+\delta_{n+1} d_{0}(a) \\
& =\sum_{i=2}^{n+1}\left(\sum_{r_{1}=1}^{n+2-i} \delta_{r_{1}} \sum_{\sum_{j=2}^{i} r_{j}=n+1-r_{1}} a_{r_{2}, \ldots, r_{i}} \delta_{r_{2}} \ldots \delta_{r_{i}} d_{0}\right)(a)+\delta_{n+1} d_{0}(a) \\
& \left.=\sum_{r_{1}=1}^{n} \delta_{r_{1}}^{n-\left(r_{1}-2\right)} \sum_{i=2} \sum_{\sum_{j=2}^{i} r_{j}=n-\left(r_{1}-2\right)} a_{r_{2}, \ldots, r_{i}} \delta_{r_{2}} \ldots \delta_{r_{i}} d_{0}\right)(a)+\delta_{n+1} d_{0}(a) \\
& =\sum_{r_{1}=1}^{n} \delta_{r_{1}} d_{n-\left(r_{1}-1\right)}(a)+\delta_{n+1} d_{0}(a) \\
& =\sum_{k=0}^{n} \delta_{k+1} \tilde{d}_{n-k}\left(a+\operatorname{ker}\left(d_{0}\right)\right) .
\end{aligned}
$$

We therefore have $(n+1) \tilde{d}_{n+1}=\sum_{k=0}^{n} \delta_{k+1} \tilde{d}_{n-k}$.
Example 2.1. We evaluate the coefficients $a_{r_{1}, \ldots, r_{i}}$ for the case $n=4$.
$d_{4}=\left(\frac{1}{4} \delta_{4}+\frac{1}{12} \delta_{1} \delta_{3}+\frac{1}{4} \delta_{3} \delta_{1}+\frac{1}{8} \delta_{2} \delta_{2}+\frac{1}{24} \delta_{1} \delta_{1} \delta_{2}+\frac{1}{12} \delta_{1} \delta_{2} \delta_{1}+\frac{1}{8} \delta_{2} \delta_{1} \delta_{1}+\frac{1}{24} \delta_{1} \delta_{1} \delta_{1} \delta_{1}\right) d_{0}$.
Theorem 2.2. Let \mathscr{A} and \mathscr{B} be two algebras (associative or not), $\sigma: \mathscr{A} \rightarrow \mathscr{B}$ be a surjective homomorphism and D be the set of all higher derivations $\left\{d_{n}\right\}_{n=0,1, \ldots}$ from \mathscr{A} into \mathscr{B} with $d_{0}=\sigma$ and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$. Suppose also that Δ is the set of all sequences $\left\{\delta_{n}\right\}_{n=1,2, \ldots}$ of derivations on \mathscr{B}. Then there is a one to one correspondence between D and Δ.

Proof. Let $\left\{\delta_{n}\right\} \in \Delta$. Define $d_{n}: \mathscr{A} \rightarrow \mathscr{B}$ by $d_{0}=\sigma$ and

$$
d_{n}=\sum_{i=1}^{n}\left(\sum_{\sum_{j=1}^{i} r_{j}=n}\left(\prod_{j=1}^{i} \frac{1}{r_{j}+\ldots+r_{i}}\right) \delta_{r_{1}} \ldots \delta_{r_{i}} d_{0}\right)
$$

We show that $\left\{d_{n}\right\} \in D$. By Theorem 2.1, $\left\{\tilde{d}_{n}\right\}$ satisfies the recursive relation

$$
(n+1) \tilde{d}_{n+1}=\sum_{k=0}^{n} \delta_{k+1} \tilde{d}_{n-k}
$$

To show that $\left\{d_{n}\right\}$ is a higher derivation we use induction on n. For $n=0$ we have $d_{0}\left(a_{1} a_{2}\right)=\sigma\left(a_{1} a_{2}\right)=d_{0}\left(a_{1}\right) d_{0}\left(a_{2}\right)$. Let us assume that $d_{k}\left(a_{1} a_{2}\right)=\sum_{i=0}^{k} d_{i}\left(a_{1}\right) d_{k-i}\left(a_{2}\right)$ for $k \leq n$. Thus we have

$$
\begin{aligned}
& (n+1) d_{n+1}\left(a_{1} a_{2}\right) \\
& =(n+1) \tilde{d}_{n+1}\left(a_{1} a_{2}+\operatorname{ker}\left(d_{0}\right)\right) \\
& =\sum_{k=0}^{n} \delta_{k+1} \tilde{d}_{n-k}\left(a_{1} a_{2}+\operatorname{ker}\left(d_{0}\right)\right) \\
& =\sum_{k=0}^{n} \delta_{k+1} d_{n-k}\left(a_{1} a_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{k=0}^{n} \delta_{k+1} \sum_{i=0}^{n-k} d_{i}\left(a_{1}\right) d_{n-k-i}\left(a_{2}\right) \\
= & \sum_{i=0}^{n}\left(\sum_{k=0}^{n-i} \delta_{k+1} d_{n-k-i}\left(a_{1}\right)\right) d_{i}\left(a_{2}\right)+\sum_{i=0}^{n} d_{i}\left(a_{1}\right)\left(\sum_{k=0}^{n-i} \delta_{k+1} d_{n-k-i}\left(a_{2}\right)\right) \\
= & \sum_{i=0}^{n}\left(\sum_{k=0}^{n-i} \delta_{k+1} \tilde{d}_{n-k-i}\left(a_{1}+\operatorname{ker}\left(d_{0}\right)\right)\right) d_{i}\left(a_{2}\right) \\
& +\sum_{i=0}^{n} d_{i}\left(a_{1}\right)\left(\sum_{k=0}^{n-i} \delta_{k+1} \tilde{d}_{n-k-i}\left(a_{2}+\operatorname{ker}\left(d_{0}\right)\right)\right) .
\end{aligned}
$$

Using our assumption, we can write

$$
\begin{aligned}
& (n+1) d_{n+1}\left(a_{1} a_{2}\right) \\
& =\sum_{i=0}^{n}(n-i+1) \tilde{d}_{n-i+1}\left(a_{1}+\operatorname{ker}\left(d_{0}\right)\right) d_{i}\left(a_{2}\right)+\sum_{i=0}^{n} d_{i}\left(a_{1}\right)(n-i+1) \tilde{d}_{n-i+1}\left(a_{2}+\operatorname{ker}\left(d_{0}\right)\right) \\
& =\sum_{i=0}^{n}(n-i+1) d_{n-i+1}\left(a_{1}\right) d_{i}\left(a_{2}\right)+\sum_{i=0}^{n} d_{i}\left(a_{1}\right)(n-i+1) d_{n-i+1}\left(a_{2}\right) \\
& =\sum_{i=1}^{n+1} i d_{i}\left(a_{1}\right) d_{n+1-i}\left(a_{2}\right)+\sum_{i=0}^{n}(n+1-i) d_{i}\left(a_{1}\right) d_{n+1-i}\left(a_{2}\right) \\
& =(n+1) \sum_{k=0}^{n+1} d_{k}\left(a_{1}\right) d_{n+1-k}\left(a_{2}\right)
\end{aligned}
$$

Thus $\left\{d_{n}\right\} \in D$. Note that for each $n \in \mathbb{N}, \operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)$.
Conversely, suppose that $\left\{d_{n}\right\} \in D$. Define $\delta_{n}: \mathscr{B} \rightarrow \mathscr{B}$ by $\delta_{1}=\tilde{d}_{1} \tilde{d}_{0}^{-1}$ and

$$
\delta_{n}=\left[n \tilde{d}_{n}-\sum_{k=0}^{n-2} \delta_{k+1} \tilde{d}_{n-1-k}\right] \tilde{d}_{0}^{-1} \quad(n \geqslant 2) .
$$

Then Proposition 2.1 ensures us that $\left\{\delta_{n}\right\} \in \Delta$.
Now define $\varphi: \Delta \rightarrow D$ by $\varphi\left(\left\{\delta_{n}\right\}\right)=\left\{d_{n}\right\}$, where

$$
\begin{equation*}
d_{n}=\sum_{i=1}^{n}\left(\sum_{\sum_{j=1}^{i} r_{j}=n}\left(\prod_{j=1}^{i} \frac{1}{r_{j}+\ldots+r_{i}}\right) \delta_{r_{1}} \ldots \delta_{r_{i}} d_{0}\right) \tag{2.2}
\end{equation*}
$$

Then φ is clearly surjective, we show that it is injective. Let $\left\{d_{n}\right\}=\varphi\left(\left\{\delta_{n}\right\}\right)=\varphi\left(\left\{\delta_{n}^{\prime}\right\}\right)=$ $\left\{d_{n}^{\prime}\right\}$. We use induction on n . For $n=1$ we have

$$
\delta_{1}=\tilde{d}_{1} \tilde{d}_{0}^{-1}=\tilde{d}^{\prime}{ }_{1} \tilde{d}_{0}^{\prime-1}=\delta_{1}^{\prime}
$$

Now suppose that $\delta_{k}=\delta_{k}^{\prime}$ for $k \leqslant n$. As in the proof of Theorem 2.1, the following relations are obtained

$$
(n+1) \tilde{d}_{n+1}=\sum_{k=0}^{n} \delta_{k+1} \tilde{d}_{n-k}, \quad(n+1) \tilde{d}^{\prime}{ }_{n+1}=\sum_{k=0}^{n} \delta_{k+1}^{\prime} \tilde{d}_{n-k}^{\prime}
$$

Thus

$$
\delta_{n+1}=\left[(n+1) \tilde{d}_{n+1}-\sum_{k=0}^{n-1} \delta_{k+1} \tilde{d}_{n-k}\right] \tilde{d}_{0}^{-1}=\left[(n+1) \tilde{d}^{\prime}{ }_{n+1}-\sum_{k=0}^{n-1} \delta_{k+1}^{\prime} \tilde{d}_{n-k}^{\prime}\right] \tilde{d}_{0}^{-1}=\delta_{n+1}^{\prime} .
$$

Corollary 2.1. Let \mathscr{A} and \mathscr{B} be two normed algebras. If $\left\{d_{n}\right\}$ is a higher derivation from \mathscr{A} into \mathscr{B} with $d_{0}(\mathscr{A})=\mathscr{B}$ and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$ then $\left\{d_{n}\right\}$ is continuous whenever d_{0} and all derivations on \mathscr{B} are continuous.

Theorem 2.3. [8] Each higher derivation $\left\{d_{n}\right\}$ from a Banach algebra into a semisimple Banach algebra is continuous provided that d_{0} is onto and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in \mathbb{N})$.
Proof. Since every homomorphism from a Banach algebra onto a semisimple Banach algebra is automatically continuous [4,5.1.5] and every derivation on a semisimple Banach algebra is automatically continuous [9], the result is obvious.

Our next result is about Jordan algebras. Recall that a Jordan algebra is a commutative non-associative algebra \mathscr{A} satisfying the Jordan identity $(a b) a^{2}=a\left(b a^{2}\right)$ for all $a, b \in \mathscr{A}$.

Theorem 2.4. Each higher derivation $\left\{d_{n}\right\}$ from a Jordan Banach algebra into a semisimple Jordan Banach algebra is continuous provided that d_{0} is onto and $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)(n \in$ \mathbb{N}).

Proof. It is known that every homomorphism from a Jordan Banach algebra onto a semisimple Jordan Banach algebra is automatically continuous [1] and every derivation on a semisimple Jordan Banach algebra is automatically continuous [16]. Hence Theorem 2.1 implies that $\left\{d_{n}\right\}$ is continuous.

A higher derivation $\left\{d_{n}\right\}$ on an algebra \mathscr{A} is called normal if $d_{0}=i d_{\mathscr{A}}$. A normal higher derivation clearly satisfies the conditions of Theorem 2.1. Thus we have following corollary.
Corollary 2.2. Let \mathscr{A} be a semisimple (Jordan) Banach algebra. If $\left\{d_{n}\right\}$ is a higher derivation on \mathscr{A} and d_{0} is an isomorphism, then $\left\{d_{n}\right\}$ is continuous. In particular, every normal higher derivation on a semisimple (Jordan) Banach algebra is continuous.

Acknowledgement. This research was supported by a grant from Ferdowsi University of Mashhad; No. MP89169MIZ.

References

[1] B. Aupetit, The uniqueness of the complete norm topology in Banach algebras and Banach Jordan algebras, J. Funct. Anal. 47 (1982), no. 1, 1-6.
[2] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93
[3] M. Brešar and A. R. Villena, The noncommutative Singer-Wermer conjecture and ϕ-derivations, J. London Math. Soc. (2) 66 (2002), no. 3, 710-720.
[4] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, 24, Oxford Univ. Press, New York, 2000.
[5] J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), no. 2, 314-361.
[6] H. Hasse and F. K. Schmidt, Noch eine Begrüdung der theorie der höheren Differential quotienten in einem algebraischen Funtionenkörper einer Unbestimmeten, J. Reine Angew. Math. 177 (1937), 215-237.
[7] S. Hejazian et al., Achievement of continuity of (ϕ, ψ)-derivations without linearity, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 4, 641-652.
[8] N. P. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68 (1977), no. 1, 91-98.
[9] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073.
[10] R. J. Loy, Continuity of higher derivations, Proc. Amer. Math. Soc. 37 (1973), 505-510.
[11] M. Mirzavaziri, Characterization of higher derivations on algebras, Comm. Algebra 38 (2010), no. 3, 981987.
[12] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ-derivations on C^{*}-algebras, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3319-3327 (electronic).
[13] M. Mirzavaziri and M. S. Moslehian, σ-amenability of Banach algebras, Southeast Asian Bull. Math. 33 (2009), no. 1, 89-99.
[14] M. Mirzavaziri and M. S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc. 32 (2006), no. 1, 65-78, 97.
[15] A. Roy and R. Sridharan, Higher derivations and central simple algebras, Nagoya Math. J. 32 (1968), 21-30.
[16] A. R. Villena, Derivations on Jordan-Banach algebras, Studia Math. 118 (1996), no. 3, 205-229.

