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Abstract. Let R be a commutative Noetherian ring and I, J two ideals of R. Let M be a
finitely generated R-module; it is shown that (1) if dimR/(I+J)= 0, then H i

I,J(M)/JH i
I,J(M)

is I-cofinite Artinian for all i ≥ 0; let dimR M/JM = d (2) if R is local and S is a non-zero
Serre subcategory of the category of R-modules satisfying the condition CI , then Hd

I,J(M)/
JHd

I,J(M) ∈ S (3) if M has finite Krull dimension, then Hd+1
I,J (M)/JHd+1

I,J (M) = 0. Further-
more, notion of (I,J)-relative Goldie dimension of modules is defined and it is shown that
Hn

I,J(M)/JHn
I,J(M) is Artinian, whenever M is a ZD-module of dimension n such that the

(I,J)-relative Goldie dimension of any quotient of M is finite.
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1. Introduction

Throughout this paper, R is a commutative Noetherian ring with non-zero identity, I, J are
two ideals of R and M is an R-module. For notations and terminologies not given in this
paper, the reader is referred to [5, 6] and [12], if necessary.

The local cohomology theory has been an significant tool in commutative Algebra and
Algebraic Geometry. As a generalization of the ordinary local cohomology modules, in
[12], the authors introduced the local cohomology modules with respect to a pair of ideals.
To be more precise, let W(I,J) = {p∈ Spec(R) : It ⊆ J +p for some positive integer t}. The
set of elements x of M such that SuppR Rx ⊆W(I,J) is said to be (I,J)-torsion submodule
of M and is denoted by ΓI,J(M). It is easy to see that ΓI,J is a covariant, R-linear functor
from the category of R-modules to itself. For an integer i, the local cohomology functor
H i

I,J with respect to (I,J) is defined to be the i-th right derived functor of ΓI,J . Also H i
I,J(M)

is called the i-th local cohomology module of M with respect to (I,J). If J = 0, then H i
I,J

coincides with the ordinary local cohomology functor H i
I .

Recently, some authors approached the study of local cohomology modules by means of
Serre subcategories and it is noteworthy that their approach enables us to deal with several
important problems on local cohomology modules comprehensively; see, for example [1–
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4]. In this direction, we study the local cohomology modules with respect to a pair of ideals
by the notion of Serre subcategory. One of the main results of this paper (Theorem 2.1) is
a generalization of [9, Theorem 3.1], and shows that if M is a ZD-module and S a Serre
subcategory of the category of R-modules satisfying the condition CI , then the following
statements are equivalent: (i) ΓI,J(M/N)/JΓI,J(M/N) ∈ S for any submodule N of M; (ii)
H i

I,J(M/N)/JH i
I,J(M/N) ∈ S for any submodule N of M and all i≥ 0.

Theorem 2.2 in [7] shows that if (R,m) is local,
√

I + J = m, M is a finitely generated R-
module and t is an integer such that H i

I,J(M) is Artinian for all i > t, then Ht
I,J(M)/JHt

I,J(M)
is Artinian. In Corollary 2.2, we improve this theorem by using the above mentioned result
and we show that, for any finitely generated R-module M, H i

I,J(M)/JH i
I,J(M) is Artinian for

all i≥ 0, when R is an arbitrary (not necessary local) ring and dimR/(I + J) = 0.
As a generalization of the concept of I-relative Goldie dimension, that is introduced

in [9], we say that M has finite (I,J)-relative Goldie dimension if the Goldie dimension of
(I,J)-torsion submodule of M is finite. Let M be a ZD-module with finite Krull dimension
n. It is shown that Hn

I,J(M)/JHn
I,J(M) is Artinian, whenever (I,J)-relative Goldie dimension

of any quotient of M is finite.

2. Artinianness of H i
I,J(M)

Recall that R is a Noetherian ring, I, J are two ideals of R and M is an R-module. Let ZR(M)
denote the set of zero-divisors of M.

Definition 2.1. An R-module M is said to be zero-divisor module if for any submodule N of
M, the set ZR(M/N) is a finite union of prime ideals in AssR(M/N).

According to [9, Example 2.2], the class of zero-divisor modules (ZD-modules) contains
finitely generated, Laskerian [11], weakly Laskerian [10], linearly compact and Matlis re-
flexive modules. Also it contains modules whose quotients have finite Goldie dimension
and modules with finite support, in particular Artinian modules.

Definition 2.2. A full subcategory of the category of R-modules is said to be Serre subcate-
gory, if it is closed under taking submodules, quotients and extensions. A Serre subcategory
S is said to be satisfy the condition CI if for any I-torsion R-module M, 0 :M I ∈ S implies
that M ∈ S.

Examples 2.4 and 2.5 in [1] show that the class of zero modules, Artinian modules, I-
cofinite Artinian modules, modules with finite support and the class of R-modules M with
dimR M ≤ t, where t is a non-negative integer are Serre subcategories of the category of
R-modules satisfy the condition CI .

In the rest of the paper, S denotes a Serre subcategory of the category of R-modules
satisfying the condition CI . The following result is a generalization of [9, Theorem 3.1].

Theorem 2.1. Let M be a ZD-module such that ΓI,J(M/N)/JΓI,J(M/N) ∈ S for any sub-
module N of M. Then H i

I,J(M/N)/JH i
I,J(M/N)∈ S for any submodule N of M and all i≥ 0.

Proof. We may assume that I is not zero, this can be done simply because ΓI,J is identity
functor when I = 0. We use induction on i. The case i = 0 is trivial by assumption. So
assume, inductively, that i > 0 and we have shown that H i−1

I,J (M′/N′)/JH i−1
I,J (M′/N′) ∈ S

for any ZD-module M′ and any submodule N′ of M′. Now let M be a ZD-module, N a sub-
module of M and X = M/N. Then H i

I,J(X/ΓI,J(X)) ∼= H i
I,J(X) by [12, Corollary 1.13(4)].
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Also X/ΓI,J(X) is a (ZD-module) (I,J)-torsion free R-module. We therefore assume in
addition that X is an (I,J)-torsion free R-module. We now use [9, Lemma 2.4] to de-
duce that I contains an element a which is a non zero-divisor on X . The exact sequence
0−→ X a−→ X −→ X/aX −→ 0 induces an exact sequence

· · · −→ H i−1
I,J (X/aX)−→ H i

I,J(X) a−→ H i
I,J(X)−→ H i

I,J(X/aX)−→ ·· ·

of local cohomology modules. So we have the exact sequence

H i−1
I,J (X/aX)/JH i−1

I,J (X/aX)→ H i
I,J(X)/JH i

I,J(X) a→ aH i
I,J(X)/aJH i

I,J(X)→ 0.

Since X/aX ∼= M/(aM + N) is a ZD-module, it follows from the inductive hypothesis that
H i−1

I,J (X/aX)/JH i−1
I,J (X/aX) ∈ S. So the above exact sequence shows that the R-module

0 :H i
I,J(X)/JH i

I,J(X) a ∈ S. Hence, H i
I,J(X)/JH i

I,J(X) ∈ S by [1, Lemma 2.3]. This completes
the inductive step. The result follows by induction.

The following result is an improvement of [7, Theorem 2.2].

Corollary 2.1. Let (R,m) be local,
√

I + J = m, S non-zero and M a finitely generated
R-module. Then H i

I,J(M/N)/JH i
I,J(M/N) ∈ S for any submodule N of M and all i≥ 0.

Proof. In view of Theorem 2.1, it is enough to show that ΓI,J(M/N)/JΓI,J(M/N) ∈ S for
any submodule N of M. Assume that N is a submodule of M; [12, Proposition 1.4] shows
that

ΓI,J(M/N) = ΓI+J,J(M/N) = Γ√I+J,J(M/N) = Γm,J(M/N).

Since Γm,J(M/N)/JΓm,J(M/N) is a finitely generated R-module and annihilated by a power
of m; hence Γm,J(M/N)/JΓm,J(M/N) has finite length. So by [4, Lemma 2.11], we have
Γm,J(M/N)/JΓm,J(M/N) ∈ S.

The following corollary improves Corollary 2.1, when S is considered the class of I-
cofinite Artinian modules.

Corollary 2.2. Let dimR/(I + J) = 0 and M be a finitely generated R-module. Then
H i

I,J(M)/JH i
I,J(M) is I-cofinite Artinian for all i≥ 0.

Proof. The proof is similar to that of Corollary 2.1.

Let R be local, S non-zero and M a finitely generated R-module of dimension n. Then by
using the method of proof of [5, Theorem 7.1.6], one can see that Hn

I (M)∈ S by [4, Lemma
2.11]. Having this in mind, we get the following theorem which is a generalization of [7,
Theorem 2.3].

Theorem 2.2. Let R be local, S non-zero and M a finitely generated R-module with dimR M/
JM = d. Then Hd

I,J(M)/JHd
I,J(M) ∈ S.

Proof. When dimR M = −1, there is nothing to prove, as then M = 0. We argue by in-
duction on dimR M. If dimR M = 0, then M has finite length. Thus ΓI,J(M)/JΓI,J(M) has
finite length. So the result follows by [4, Lemma 2.11]. Now suppose, inductively, that
dimR M = n > 0, and the result has been proved for all R-modules of dimensions smaller
than n satisfying the hypothesis. The exact sequence

(2.1) 0−→ ΓJ(M)−→M −→M/ΓJ(M)−→ 0
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induces the long exact sequence

(2.2) · · · → H i
I,J(ΓJ(M))→ H i

I,J(M)→ H i
I,J(M/ΓJ(M))→ H i+1

I,J (ΓJ(M))→ ·· · .

By [12, Corollary 2.5], H i
I,J(ΓJ(M)) ∼= H i

I(ΓJ(M)), for all i ≥ 0, since ΓJ(M) is J-torsion.
On the other hand, dimR ΓJ(M) ≤ dimR M/JM = d. Thus Hd

I (ΓJ(M)) ∈ S by the previous
paragraph and Hd+1

I (ΓJ(M)) = 0. Therefore, Hd
I,J(ΓJ(M))∈ S and Hd+1

I,J (ΓJ(M)) = 0. Now
by the exact sequence

Hd
I,J(ΓJ(M))/JHd

I,J(ΓJ(M))−→ Hd
I,J(M)/JHd

I,J(M)

−→ Hd
I,J(M/ΓJ(M))/JHd

I,J(M/ΓJ(M))−→ 0

we only have to show that Hd
I,J(M/ΓJ(M))/JHd

I,J(M/ΓJ(M)) ∈ S. We have

(2.3) dimR(M/ΓJ(M))/J(M/ΓJ(M)) = dimR M/(JM +ΓJ(M))≤ dimR M/JM = d.

So, in view of [12, Theorem 4.3], we may assume that ΓJ(M) = 0. So the ideal J contains
an element a which is a non zero-divisor on M. The exact sequence 0 −→ M a−→ M −→
M/aM −→ 0 induces the exact sequence

· · · −→ Hd
I,J(M) a−→ Hd

I,J(M)−→ Hd
I,J(M/aM)−→ 0

of local cohomology modules, see [12, Theorem 4.3]. Now the exact sequence

Hd
I,J(M)/JHd

I,J(M) a−→ Hd
I,J(M)/JHd

I,J(M)−→ Hd
I,J(M/aM)/JHd

I,J(M/aM)−→ 0

shows that

Hd
I,J(M/aM)/JHd

I,J(M/aM)∼= Hd
I,J(M)/(J +Ra)Hd

I,J(M) = Hd
I,J(M)/JHd

I,J(M).

We have dimR M/aM = n−1 and

dimR(M/aM)/J(M/aM) = dimR M/(J +Ra)M = dimR M/JM = d.

Thus, by the inductive hypothesis Hd
I,J(M/aM)/JHd

I,J(M/aM) ∈ S. This completes the in-
ductive step.

Let k be a field and R = k[x] the polynomials ring in an indeterminate x, with coefficients
in k. Let I = (x−1) and J = I∩(x) = (x2−x). Then one has dimR R/J = 0 and H1

I,J(R) 6= 0;
see [12, Remark 4.6 (2)]. Nevertheless, we have the following result.

Theorem 2.3. Let M be a finitely generated R-module of finite Krull dimension. If dimR M/

JM = d, then Hd+1
I,J (M)/JHd+1

I,J (M) = 0.

Proof. If JM = M, then (1+a)M = 0 for some a∈ J by Nakayama’s Lemma. Thus Jx = Rx
for all x ∈ M and so M is (I,J)-torsion. Hence, ΓI,J(M)/JΓI,J(M) = 0. Now suppose
that d ≥ 0. We use induction on dimR M. If dimR M = 0, then H1

I,J(M)/JH1
I,J(M) = 0

by [12, Theorem 4.7(1)]. So assume, inductively, that dimR M = n > 0 and we established
the result for R-modules of dimension smaller than n satisfying the hypothesis. By an-
other using of [12, Theorem 4.7(1)], we have Hd+1

I,J (ΓJ(M)) = Hd+2
I,J (ΓJ(M)) = 0 since

dimR ΓJ(M)≤ dimR M/JM = d. Therefore, the exact sequence (2.2) shows that Hd+1
I,J (M)∼=

Hd+1
I,J (M/ΓJ(M)). Hence, it is enough to show that Hd+1

I,J (M/ΓJ(M))/JHd+1
I,J (M/ΓJ(M)) =

0. Also by using the exact sequence (2.3) and [12, Theorem 4.7(2)], we may assume
ΓJ(M) = 0. The argument now proceeds like that used in the proof of Theorem 2.2.
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Now we get some results on the finiteness of the support of the local cohomology mod-
ules.

Corollary 2.3. Let M be a ZD-module such that ΓI,J(M/N)/JΓI,J(M/N) has finite sup-
port for any submodule N of M. Then H i

I,J(M/N)/JH i
I,J(M/N) has finite support for any

submodule N of M and all i≥ 0.

Proof. Apply Theorem 2.1 and the fact that the class of modules with finite support is a
Serre subcategory of the category of R-modules satisfying the condition CI .

Corollary 2.4. Let R be local and M a finitely generated R-module such that for any sub-
module N of M and for all p ∈ SuppR ΓI(M/N), dimRR/p ≤ 1. Then H i

I(M) has finite
support for all i≥ 0.

Proof. In view of [8, Corollary 4.3], ΓI(M/N) has finite support, for any submodules N of
M. Now the result follows by Corollary 2.3.

3. Goldie dimension and Artinianness of H i
I,J(M)

For an R-module M, the Goldie dimension of M is defined as the cardinal of the set of
indecomposable submodules of ER(M), which appear in a decomposition of ER(M) into
direct sum of indecomposable submodules. We shall use GdimM to denote the Goldie
dimension of M. Let µ0(p,M) denote the 0-th Bass number of M with respect to prime ideal
p. It is clear that GdimM = ∑p∈spec(R) µ0(p,M). In [9], the authors, offered a generalization
of the notion of Goldie dimension and introduced the concept of I-relative Goldie dimension
of M as GdimIM = ∑p∈V(I) µ0(p,M), where V(I) denotes the set of prime ideals of R which
are containing I. We first generalize this concept as follows.

Definition 3.1. Let I, J be two ideals of R. For an R-module M, we define (I,J)-relative
Goldie dimension of M as GdimI,JM = ∑p∈W(I,J) µ0(p,M). Here W(I,J) denotes the set of
prime ideals p of R such that It ⊆ p+ J for some positive integer t.

It is easy to see that finitely generated modules, Artinian modules, quotients of the Matlis
reflexive modules and quotients of the linearly compact modules have finite (I,J)-relative
Goldie dimension, see [9, Example 2.2]. Also it is clear that if J = 0, then W(I,J) = V(I)
and so GdimI,JM = GdimIM. Moreover

GdimIM ≤ GdimI,JM ≤ GdimM.

But the following example shows that these inequalities may be strict. Let I = 2Z, J = 3Z
and M = Z/2Z⊕Z/3Z⊕Z/5Z. Then V(I) = {2Z}, W(I,J)∩AssZM = {2Z,5Z} and
EZ(M) = EZ(Z/2Z)⊕ EZ(Z/3Z)⊕ EZ(Z/5Z). Therefore GdimIM = 1, GdimI,JM = 2
and GdimM = 3.

Theorem 3.1. Let M be a ZD-module such that GdimIRq,JRqMq is finite, for any prime ideal
q which is maximal in AssR M. Then GdimI,JM is finite.

Proof. Let {q1,q2, . . . ,qt} be the set of all prime ideals with the property being maximal in
AssR M; note that this set is finite by [9, Lemma 2.3]. It is easy to see that if p ∈W(I,J) and
p⊆ q, then pRq ∈W(IRq,JRq), where q is an arbitrary prime ideal of R. Thus

GdimI,JM = ∑
p∈W(I,J)

µ
0(p,M)≤

t

∑
i=1

∑
p∈W(I,J),p⊆qi

µ
0(p,M)
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≤
t

∑
i=1

∑
pRqi∈W(IRqi ,JRqi )

µ
0(pRqi ,Mqi)

=
t

∑
i=1

GdimIRqi ,JRqi
Mqi

so the claim follows.
In the following we show that, for any R-module M, (I,J)-relative Goldie dimension of

M is equal to Goldie dimension of its (I,J)-torsion submodule. Precisely, we shall show
that:

Lemma 3.1. If M is an R-module, then GdimI,JM = GdimΓI,J(M).

Proof. Let ER(M)∼=⊕p∈spec(R)µ
0(p,M)ER(R/p) be a decomposition of ER(M) as the direct

sum of indecomposable injective R-modules, where ER(R/p) denotes the injective hull of
R/p and µ0(p,M) denotes the 0-th Bass number of M with respect to prime ideal p. Then
by using [12, Proposition 1.11], we have ΓI,J(ER(M))∼=⊕p∈W(I,J)µ

0(p,M)ER(R/p) and so
it is an injective R-module. We have to show that ΓI,J(ER(M)) is an essential extension of
ΓI,J(M). Suppose x be a non-zero element of ΓI,J(ER(M)). Thus there exists r ∈ R and
a positive integer t such that Itx ⊆ Jx and 0 6= rx ∈ M ∩Rx. So that It(rx) ⊆ J(rx) and
0 6= rx ∈ ΓI,J(M)∩Rx. Hence, ΓI,J(ER(M)) is an injective essential extension of ΓI,J(M).
Therefore we have ER(ΓI,J(M))∼= ΓI,J(ER(M)) and so

GdimI,JM = ∑
p∈W(I,J)

µ
0(p,M) = GdimΓI,J(M).

The following result is a generalization of [9, Corollary 3.3(ii)].

Theorem 3.2. Let M be a ZD-module of dimension n such that (I,J)-relative Goldie di-
mension of any quotient of M is finite. Then Hn

I,J(M)/JHn
I,J(M) is Artinian.

Proof. The proof, which we include for the reader’s convenience, proceeds like that used in
the proof of Theorem 2.2. We use induction on n. If n = 0, then AssR ΓI,J(M)⊆ AssR M ⊆
Max(R). Hence ER(ΓI,J(M)) is a finite direct sum of ER(R/m), where m is a maximal ideal
of R. Therefore ER(ΓI,J(M)) and so ΓI,J(M)/JΓI,J(M) is Artinian. We therefore assume,
inductively, that n > 0 and the result has been proved for any R-module of dimension less
than n satisfying the hypothesis. The exact sequence (2.1) induces the long exact sequence

· · · → Hn
I,J(ΓJ(M))→ Hn

I,J(M)→ Hn
I,J(M/ΓJ(M))→ Hn+1

I,J (ΓJ(M))→ ·· · .

By [12, Corollary 2.5], H i
I,J(ΓJ(M)) ∼= H i

I(ΓJ(M)), for all i ≥ 0, since ΓJ(M) is J-torsion.
On the other hand, we have dimR ΓJ(M) ≤ dimR M = n, thus Hn

I (ΓJ(M)) is Artinian and
Hn+1

I (ΓJ(M)) = 0. Hence Hn
I,J(ΓJ(M)) is Artinian and Hn+1

I,J (ΓJ(M)) = 0. Now by the
exact sequence

Hn
I,J(ΓJ(M))/JHn

I,J(ΓJ(M))−→ Hn
I,J(M)/JHn

I,J(M)

−→ Hn
I,J(M/ΓJ(M))/JHn

I,J(M/ΓJ(M))−→ 0

we can assume that ΓJ(M) = 0. Thus J contains an element a which is a non zero-divisor
on M, by [9, Lemma 2.4]. Since dimR M/aM ≤ n−1, thus it follows either from inductive
hypothesis or from [12, Theorem 3.2], and Grothendieck’s Vanishing Theorem [5, Theorem
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6.1.2], that Hn−1
I,J (M/aM)/JHn−1

I,J (M/aM) is Artinian. The exact sequence 0 −→ M a−→
M −→M/aM −→ 0 induces the exact sequence

Hn−1
I,J (M/aM)/JHn−1

I,J (M/aM)→ Hn
I,J(M)/JHn

I,J(M) a→ Hn
I,J(M)/JHn

I,J(M)→ 0.

Now we have 0 :Hn
I,J(M)/JHn

I,J(M) a is Artinian and so Hn
I,J(M)/JHn

I,J(M) is Artinian by [1,
Lemma 2.3]. This completes the inductive step.

Corollary 3.1. Let M be a finitely generated R-module of dimension n. Then Hn
I,J(M)/

JHn
I,J(M) is Artinian.
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