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Abstract. In this paper we give formulas for the number of elements of the monoids
ORm×n of all full transformations on a finite chain with mn elements that preserve a uni-
form m-partition and preserve or reverse the orientation and for its submonoids ODm×n
of all order-preserving or order-reversing elements, OPm×n of all orientation-preserving
elements, Om×n of all order-preserving elements, O+

m×n of all extensive order-preserving
elements and O−m×n of all co-extensive order-preserving elements.
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1. Introduction and preliminaries

For n ∈ N, let Xn = {1,2, . . . ,n}. Following the standard notation, we denote by PT n the
monoid (under composition) of all partial transformations on Xn and by Tn and In its sub-
monoids of all full transformations and of all injective partial transformations, respectively.
Now, consider the usual linear order on Xn, i.e. Xn = {1 < 2 < · · · < n}. A transformation
α ∈PT n is said to be extensive [resp., co-extensive] if x ≤ xα [resp., xα ≤ x], for all
x ∈ Dom(α). We denote by T +

n [resp., T −
n ] the submonoid of Tn of all extensive [resp.,

co-extensive] transformations.
A transformation α ∈PT n is said to be order-preserving [resp., order-reversing] if

x ≤ y implies xα ≤ yα [resp., yα ≤ xα], for all x,y ∈ Dom(α). We denote by POn the
submonoid of PT n of all order-preserving partial transformations. As usual, we denote by
On the monoid POn ∩Tn of all full transformations that preserve the order. This monoid
has been extensively studied since the sixties (e.g. see [1, 2, 3, 7, 9, 21, 32, 35]). In partic-
ular, in 1971, Howie [22] showed that the cardinal of On is

(2n−1
n−1

)
and in [19], jointly with
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Gomes, they proved that

|POn|=
n

∑
i=1

(
n
i

)(
n+ i−1

i

)
+1.

See also Laradji and Umar [28, 29].
Next, denote by O+

n [resp., by O−n ] the monoid T +
n ∩On [resp., T −

n ∩On] of all exten-
sive [resp., co-extensive] order-preserving full transformations. The monoids O+

n and O−n
are isomorphic and their cardinal is the nth-Catalan number, i.e.

|O+
n |= |O−n |=

1
n+1

(
2n
n

)
(see [33]). Moreover, the family {O+

n | n ∈ N} generates the pseudovariety of J -trivial
monoids. Notice that, this pseudovariety is also generated by the syntactic monoids of
the piecewise testable languages (see e.g. [31]). Regarding the injective counterpart of
On, i.e. the inverse monoid POI n = POn ∩In of all injective order-preserving partial
transformations, we have |POI n|=

(2n
n

)
. This result was first presented by Garba in [18]

(see also [7]).
Now, being PODn the submonoid of PT n of all partial transformations that preserve

or reverse the order, ODn = PODn ∩Tn and PODI n = PODn ∩In (the full and
partial injective counterparts of PODn, respectively), Fernandes et al. [10, 11] proved that

|PODn|=
n

∑
i=1

(
n
i

)(
2
(

n+ i−1
i

)
−n
)

+1, |ODn|= 2
(

2n−1
n−1

)
−n

and

|PODI n|= 2
(

2n
n

)
−n2−1.

Wider classes of monoids are obtained when we consider transformations that either
preserve or reverse the orientation. Let a = (a1,a2, . . . ,at) be a sequence of t, t ≥ 0, elements
from the chain Xn. We say that a is cyclic [resp., anti-cyclic] if there exists no more than
one index i ∈ {1, . . . , t} such that ai > ai+1 [resp., ai < ai+1], where at+1 denotes a1. Let
α ∈ Tn and suppose that Dom(α) = {a1, . . . ,at}, with t ≥ 0 and a1 < · · · < at . We say
that α is orientation-preserving [resp., orientation-reversing] if the sequence of its images
(a1α,a2α, . . . ,atα) is cyclic [resp., anti-cyclic]. This notions were introduced by McAlister
in [30] and independently by Catarino and Higgins in [6].

Denote by POPn [resp., PORn] the submonoid of PT n of all orientation-preserving
[resp., orientation-preserving or orientation-reversing] transformations. The cardinalities of
POPn and PORn were calculated by Fernandes et al. [12] and are 1 + (2n− 1)n +
∑

n
k=2 k

(n
k

)22n−k and 1 +(2n− 1)n + 2
(n

2

)22n−2 + ∑
n
k=3 2k

(n
k

)22n−k, respectively. As usual,
OPn denotes the monoid POPn∩Tn of all full transformations that preserve the orien-
tation, ORn denotes the monoid PORn ∩Tn of all full transformations that preserve or
reserve the orientation and POPI n and PORI n denote the submonoids of POPn
and PORn, respectively, whose elements are the injective transformations. McAlister in
[30], and independently Catarino and Higgins in [6], proved that

|OPn|= n
(

2n−1
n−1

)
−n(n−1) and |ORn|= n

(
2n
n

)
− n2

2
(n2−2n+5)+n.
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The monoids OPn and ORn were also studied by Arthur and Ruškuc in [5]. Regarding
their injective counterparts, in [8], Fernandes established that |POPI n|= 1+ n

2

(2n
n

)
and,

in [10], Fernandes et al. showed that

|PORI n|= 1+n
(

2n
n

)
− n2

2
(n2−2n+3).

All these results are summarized in [13].
Now, let X be a set and denote by T (X) the monoid (under composition) of all full trans-

formations on X . Let ρ be an equivalence relation on X and denote by Tρ(X) the submonoid
of T (X) of all transformations that preserve the equivalence relation ρ , i.e. Tρ(X) = {α ∈
T (X) | (aα,bα)∈ ρ, for all (a,b) ∈ ρ}. This monoid was studied by Huisheng in [24] who
determined its regular elements and described its Green’s relations.

Let m,n∈N. Of particular interest is the submonoid Tm×n = Tρ(Xmn) of Tmn, with ρ the
equivalence relation on Xmn defined by ρ = (A1×A1)∪ (A2×A2)∪·· ·∪ (Am×Am), where
Ai = {(i−1)n+1, . . . , in}, for i ∈ {1, . . . ,m}. Notice that the ρ-classes Ai, with 1≤ i≤ m,
form a uniform m-partition of Xmn. Regarding the rank of Tm×n, first, Huisheng [23] proved
that it is at most 6 and, later, Araújo and Schneider [4] improved this result by showing that,
for m≥ 2 and n≥ 2, the rank of Tm×n is precisely 4.

Finally, denote by ORm×n the submonoid of Tm×n of all orientation-preserving or orien-
tation-reversing transformations, i.e. ORm×n = Tm×n ∩ORmn. Similarly, let ODm×n =
Tm×n ∩ODmn, OPm×n = Tm×n ∩OPmn and Om×n = Tm×n ∩Omn. Consider also the
submonoids O+

m×n = Om×n ∩T +
mn and O−m×n = Om×n ∩T −

mn of Om×n whose elements are
the extensive transformations and the co-extensive transformations, respectively.

Example 1.1. Consider the following transformations of T12:

α1 =
(

1 2 3 4 5 6 7 8 9 10 11 12
9 11 10 12 1 3 3 2 5 5 7 8

)
,

α2 =
(

1 2 3 4 5 6 7 8 9 10 11 12
8 8 8 6 6 5 5 5 12 12 11 10

)
,

α3 =
(

1 2 3 4 5 6 7 8 9 10 11 12
11 11 10 10 10 9 9 9 4 3 3 1

)
,

α4 =
(

1 2 3 4 5 6 7 8 9 10 11 12
7 7 7 8 8 8 5 5 5 6 6 7

)
,

α5 =
(

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 2 3 3 4 4 10 11 11 11

)
,

α6 =
(

1 2 3 4 5 6 7 8 9 10 11 12
5 5 6 6 6 7 7 8 10 11 11 12

)
,

α7 =
(

1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 5 5 6 8 9 9 10 11

)
,

α8 =
(

1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 5 5 6 9 9 10 10 11

)
.

Then, we have: α1 ∈T3×4, but α1 6∈OR3×4; α2 ∈OR3×4, but α2 6∈OP3×4; α3 ∈OD3×4,
but α3 6∈ O3×4; α4 ∈ OP3×4, but α4 6∈ O3×4; α5 ∈ O3×4, but α5 6∈ O+

3×4 and α5 6∈ O−3×4;
α6 ∈ O+

3×4; α7 ∈ O−3×4; and, finally, α8 6∈T3×4.
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Observe that, as happens with O−n and O+
n , the monoids O−m×n and O+

m×n are isomor-
phic [15]. Recall that in [26] Kunze proved that the monoid On is a quotient of a bilateral
semidirect product of its subsemigroups O−n and O+

n . This result was generalized by the
authors [15] by showing that Om×n is also a quotient of a bilateral semidirect product of
its subsemigroups O−m×n and O+

m×n. See also [27, 14]. In [25] Huisheng and Dingyu de-
scribed the regular elements and the Green relations of Om×n. On the other hand, the ranks
of the monoids Om×n, O+

m×n and O−m×n were calculated by the authors in [15]. Regarding
OPm×n, a description of the regular elements and a characterization of the Green relations
were given by Sun et al. in [34]. Its rank was determined by the authors in [16], who also
computed in the same paper the ranks of the monoids ODm×n and ORm×n.

In this paper we calculate the cardinals of the monoids ORm×n, OPm×n, ODm×n,
Om×n, O+

m×n and O−m×n. In order to achieve this goal we use a wreath product description of
Tm×n, due to Araújo and Schneider [4], that we recall in Section 2.

2. Wreath products of transformation semigroups

In [4] Araújo and Schneider proved that the rank of Tm×n is 4, by using the concept of
wreath product of transformation semigroups. This approach will also be very useful in
this paper. Next, we recall some facts from [4, 15, 16]. First, we define the wreath prod-
uct Tn oTm of Tn and Tm as being the monoid with underlying set T m

n ×Tm and mul-
tiplication defined by (α1, . . . ,αm;β )(α ′1, . . . ,α

′
m;β ′) = (α1α ′1β

, . . . ,αmα ′mβ
;ββ ′), for all

(α1, . . . ,αm;β ),(α ′1, . . . ,α
′
m;β ′) ∈ T m

n ×Tm. Now, let α ∈ Tm×n and let β = α/ρ ∈ Tm
be the quotient map of α by ρ , i.e. for all j ∈ {1, . . . ,m}, we have A jα ⊆ A jβ . For each
j ∈ {1, . . . ,m}, define α j ∈Tn by kα j = (( j−1)n+k)α− ( jβ −1)n, for all k ∈ {1, . . . ,n}.
Let α = (α1,α2, . . . ,αm;β ) ∈ T m

n ×Tm. With these notations, the function ψ : Tm×n −→
Tn oTm, α 7−→ α , is an isomorphism (see [4, Lemma 2.1]).

Observe that, from this fact, we can immediately conclude that the cardinal of Tm×n is
nnmmm.

Example 2.1. Consider the transformation

α =
(

1 2 3 4 5 6 7 8 9 10 11 12
5 5 7 6 10 10 9 12 1 1 2 3

)
∈T3×4.

Since

β =
(

1 2 3
2 3 1

)
, α1 =

(
1 2 3 4
1 1 3 2

)
,

α2 =
(

1 2 3 4
2 2 1 4

)
, α3 =

(
1 2 3 4
1 1 2 3

)
,

we have α = (α1,α2,α3;β ).

Next, consider

Om×n = {(α1, . . . ,αm;β ) ∈ Om
n ×Om | jβ = ( j +1)β implies

nα j ≤ 1α j+1, for all j ∈ {1, . . . ,m−1}}.
Notice that, if (α1, . . . ,αm;β ) ∈Om×n and 1≤ i < j ≤m are such that iβ = jβ , then nαi ≤
1α j.
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Proposition 2.1. [15] The set Om×n is a submonoid of Tn oTm (and of On oOm) isomorphic
to Om×n.

On the other hand, since

O
+
m×n = {(α1, . . . ,αm;β ) ∈ Om−1

n ×O+
n ×O+

m | jβ = ( j +1)β implies nα j ≤ 1α j+1 and

jβ = j implies α j ∈ O+
n , for all j ∈ {1, . . . ,m−1}}

and

O
−
m×n = {(α1, . . . ,αm;β ) ∈ O−n ×Om−1

n ×O−m | ( j−1)β = jβ implies nα j−1 ≤ 1α j and

jβ = j implies α j ∈ O−n , for all j ∈ {2, . . . ,m}},
we have:

Proposition 2.2. [15] The set O
+
m×n [resp. O

−
m×n] is a submonoid of Tn oTm (and of On oOm)

isomorphic to O+
m×n [resp. O−m×n].

A description of OPm×n in terms of wreath products is more elaborate. In fact, consid-
ering addition modulo m (in particular, m+1 = 1), we have:

Proposition 2.3. [16] A (m+1)-tuple (α1,α2, . . . ,αm;β ) of T m
n ×Tm belongs to OPm×nψ

if and only if it satisfies one of the following conditions:
(1) (a) β is a non-constant transformation of OPm,

(b) for all i ∈ {1, . . . ,m}, αi ∈ On and,
(c) for all j ∈ {1, . . . ,m}, jβ = ( j +1)β implies nα j ≤ 1α j+1;

(2) (a) β is a constant transformation,
(b) for all i ∈ {1, . . . ,m}, αi ∈ On and
(c) there exists at most one index j ∈ {1, . . . ,m} such that nα j > 1α j+1;

(3) (a) β is a constant transformation,
(b) there exists one index i ∈ {1, . . . ,m} such that αi ∈ OPn \On and, for all

j ∈ {1, . . . ,m}\{i}, α j ∈ On
(c) and, for all j ∈ {1, . . . ,m}, nα j ≤ 1α j+1.

Let α ∈ OPm×n. We say that α is of type i if αψ satisfies the condition (i) of the
previous proposition, for i ∈ {1,2,3}.

3. The cardinals

In this section we use the previous bijections to obtain formulas for the number of elements
of the monoids Om×n, O+

m×n, O−m×n, ODm×n, OPm×n and ORm×n. In order to count the
elements of Om×n, on one hand, for each transformation β ∈Om, we determine the number
of sequences (α1, . . . ,αm) ∈ Om

n such that (α1, . . . ,αm;β ) ∈ Om×n and, on the other hand,
we notice that this last number just depends of the kernel of β (and not of β itself).

With this purpose, let β ∈Om. Suppose that Im(β ) = {b1 < b2 < · · ·< bt}, for some 1≤
t ≤m, and define ki = |biβ

−1|, for i = 1, . . . , t. Being β an order-preserving transformation,
the sequence (k1, . . . ,kt) determines the kernel of β : we have {k1 + · · ·+ ki−1 + 1, . . . ,k1 +
· · ·+ki}β = {bi}, for i = 1, . . . , t (considering k1 + · · ·+ki−1 +1 = 1, with i = 1). We define
the kernel type of β as being the sequence (k1, . . . ,kt). Notice that 1≤ ki≤m, for i = 1, . . . , t,
and k1 + k2 + · · ·+ kt = m. Now, recall that the number of non-decreasing sequences of
length k whose terms are taken from a chain with n elements is equal to

(n+k−1
k

)
=
(n+k−1

n−1

)
,
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i.e. the number of k-combinations with repetitions from a set with n elements (see [20],
for example). Therefore, since (α1, . . . ,αk) ∈ Ok

n satisfies the condition nα j ≤ 1α j+1, for
all 1 ≤ j ≤ k− 1, if and only if the sequence obtained by concatenating the sequences of
images of α1, . . . ,αk (by this order) is non-decreasing, it follows that the set {(α1, . . . ,αk) ∈
Ok

n | nα j ≤ 1α j+1, for all 1≤ j ≤ k−1} has size
(n+kn−1

n−1

)
.

Since (α1, . . . ,αm;β )∈Om×n if and only if, for all 1≤ i≤ t, αk1+···+ki−1+1, . . . ,αk1+···+ki

are ki order-preserving transformations such that the concatenation sequence of their images
(by this order) is still a non-decreasing sequence, then we have ∏

t
i=1
(kin+n−1

n−1

)
elements in

Om×n whose (m+1)-component is β .
Finally it is clear that if β and β ′ are two elements of Om with the same kernel type

then (α1, . . . ,αm;β ) ∈Om×n if and only if (α1, . . . ,αm;β ′) ∈Om×n. Thus, as the number of
transformations β ∈Om with kernel type of length t (1≤ t ≤ m) coincides with the number
of t-combinations (without repetition) from a set with m elements, it follows:

Theorem 3.1. |Om×n|= ∑
1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

(m
t

) t

∏
i=1

(kin+n−1
n−1

)
.

The table below shows the size of the monoid Om×n for several values of m and n. These
calculations were performed by using GAP [17].

m \ n 1 2 3 4 5 6
1 1 3 10 35 126 462
2 3 19 156 1555 17878 225820
3 10 138 2845 78890 2768760 115865211
4 35 1059 55268 4284451 454664910 61824611940
5 126 8378 1109880 241505530 77543615751 34003513468232
6 462 67582 22752795 13924561150 13556873588212 19134117191404027

In view of Theorem 3.1, finding the cardinal of ODm×n is not difficult. Indeed, consider
the reflexion permutation h =

( 1 2 ··· mn−1 mn
mn mn−1 ··· 2 1

)
. Observe that h ∈ ODm×n and, given

α ∈Tm×n, we have α ∈ODm×n if and only if α ∈Om×n or hα ∈Om×n. On the other hand,
as clearly |Om×n| = |hOm×n| and |Om×n ∩ hOm×n| = |{α ∈ Om×n | | Im(α)| = 1}| = mn, it
follows immediately that

Theorem 3.2. |ODm×n|= 2|Om×n|−mn = 2 ∑
1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

(m
t

) t

∏
i=1

(kin+n−1
n−1

)
−mn.

Next, we describe a process to count the number of elements of O+
m×n. First, recall that

the cardinal of O+
n is the nth-Catalan number, i.e. |O+

n | = 1
n+1

(2n
n

)
. See [33]. It is also

useful to consider the following numbers: θ(n, i) = |{α ∈ O+
n | 1α = i}|, for 1 ≤ i ≤ n.

Clearly, we have |O+
n |= ∑

n
i=1 θ(n, i). Moreover, for 2≤ i≤ n−1, we have θ(n, i) = θ(n, i+

1)+ θ(n−1, i−1). In fact, {α ∈ O+
n | 1α = i} = {α ∈ O+

n | 1α = i < 2α}∪̇{α ∈ O+
n |

1α = 2α = i} and it is easy to show that the function which maps each transformation
β ∈ {α ∈ O+

n | 1α = i < 2α} into the transformation(
1 2 . . . n

i+1 2β . . . nβ

)
∈ {α ∈ O+

n | 1α = i+1}
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and the function which maps each transformation β ∈ {α ∈ O+
n−1 | 1α = i− 1} into the

transformation(
1 2 3 . . . n−1 n
i i 2β +1 . . . (n−2)β +1 (n−1)β +1

)
∈ {α ∈ O+

n | 1α = 2α = i}

are bijections. Thus

θ(n, i) = |{α ∈ O+
n | 1α = i < 2α}|+ |{α ∈ O+

n | 1α = 2α = i}|
= |{α ∈ O+

n | 1α = i+1}|+ |{α ∈ O+
n−1 | 1α = i−1}|

= θ(n, i+1)+θ(n−1, i−1).

Also, it is not hard to prove that θ(n,2) = θ(n,1) = ∑
n−1
i=1 θ(n−1, i) = |O+

n−1|.
Now, we can prove:

Lemma 3.1. For all 1≤ i≤ n,

θ(n, i) =
i
n

(
2n− i−1

n− i

)
=

i
n

(
2n− i−1

n−1

)
.

Proof. We prove the lemma by induction on n. For n = 1, it is clear that θ(1,1) = 1 =
1
1

(2−1−1
1−1

)
. Let n ≥ 2 and suppose that the formula is valid for n− 1. Next, we prove the

formula for n by induction on i. For i = 1, as observed above, we have

θ(n,1) = |O+
n−1|=

1
n

(
2n−2
n−1

)
.

For i = 2, we have

θ(n,2) = θ(n,1) =
1
n

(
2n−2
n−1

)
=

2
n

(2n−2)!
(n−1)!(n−1)!

n−1
2n−2

=
2
n

(2n−3)!
(n−1)!(n−2)!

=
2
n

(
2n−3
n−1

)
.

Now, suppose that the formula is valid for i− 1, with 3 ≤ i ≤ n. Then, using both
induction hypotheses on i and on n in the second equality, we have

θ(n, i) = θ(n, i−1)−θ(n−1, i−2) =
i−1

n

(
2n− i
n−1

)
− i−2

n−1

(
2n− i−1

n−2

)
=

i−1
n

(2n− i)!
(n−1)!(n− i+1)!

− i−2
n−1

(2n− i−1)!
(n−2)!(n− i+1)!

=
i(n− i+1)
n(2n− i)

(2n− i)!
(n−1)!(n− i+1)!

=
i
n

(
2n− i−1

n−1

)
,

as required.

Recall that (α1, . . . ,αm;β ) ∈ O
+
m×n if and only if β ∈ O+

m , αm ∈ O+
n , α1, . . . ,αm−1 ∈ On

and, for all j ∈ {1, . . . ,m− 1}, jβ = ( j + 1)β implies nα j ≤ 1α j+1 and jβ = j implies
α j ∈ O+

n . Let β ∈ O+
m . As for the monoid Om×n, we aim to count the number of sequences

(α1, . . . ,αm) ∈ Om
n such that (α1, . . . ,αm;β ) ∈ O

+
m×n. Let (k1, . . . ,kt) be the kernel type of

β . Let Ki = {k1 + · · ·+ ki−1 + 1, . . . ,k1 + · · ·+ ki}, for i = 1, . . . , t. Then, β fixes a point in
Ki if and only if it fixes k1 + · · ·+ ki, for i = 1, . . . , t. It follows that (α1, . . . ,αm;β ) ∈ O

+
m×n

if and only if, for all 1≤ i≤ t:
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(1) If β does not fix a point in Ki, then αk1+···+ki−1+1, . . . ,αk1+···+ki are ki order-preserving
transformations such that the concatenation sequence of their images (by this order)
is still a non-decreasing sequence (in this case, we have

(kin+n−1
n−1

)
subsequences

(αk1+···+ki−1+1, . . . ,αk1+···+ki) allowed);
(2) If β fixes a point in Ki, then αk1+···+ki−1+1, . . . ,αk1+···+ki−1 are ki−1 order-preserving

transformations such that the concatenation sequence of their images (by this order)
is still a non-decreasing sequence, nαk1+···+ki−1 ≤ 1αk1+···+ki and αk1+···+ki ∈ O+

n

(in this case, we have ∑
n
j=1
((ki−1)n+ j−1

j−1

)
θ(n, j) subsequences (αk1+···+ki−1+1, . . . ,

αk1+···+ki) allowed).

Define

d(β , i) =

{ (kin+n−1
n−1

)
, if (k1 + · · ·+ ki)β 6= k1 + · · ·+ ki

∑
n
j=1

j
n

(2n− j−1
n−1

)((ki−1)n+ j−1
j−1

)
, if (k1 + · · ·+ ki)β = k1 + · · ·+ ki,

for all 1≤ i≤ t. Thus, we have

Proposition 3.1. |O+
m×n|= ∑

β∈O+
m

t

∏
i=1

d(β , i).

Next, we obtain a formula for |O+
m×n| which does not depend on β ∈ O+

m . Let β be an
element of O+

m with kernel type (k1, . . . ,kt). Define sβ = (s1, . . . ,st) ∈ {0,1}t−1×{1} by
si = 1 if and only if (k1 + · · ·+ki)β = k1 + · · ·+ki, for all 1≤ i≤ t−1. Let 1≤ t,k1, . . . ,kt ≤
m be such that k1 + · · ·+ kt = m and let (s1, . . . ,st) ∈ {0,1}t−1×{1}. Let k = (k1, . . . ,kt)
and s = (s1, . . . ,st). Define ∆(k,s) = |{β ∈ O+

m | β has kernel type k and sβ = s}|.
In order to get a formula for ∆(k,s), we count the number of distinct restrictions to unions

of partition classes of the kernel of transformations β of O+
m with kernel type k and sβ = s

corresponding to maximal subsequences of consecutive zeros of s. Let β be an element
of O+

m with kernel type k and sβ = s. First, notice that, given i ∈ {1, . . . , t}, if si = 1 then
Kiβ = {k1 + · · ·+ki} and if si = 0 then the (unique) element of Kiβ belongs to K j, for some
i < j ≤ t.

Next, let i ∈ {1, . . . , t} and r ∈ {1, . . . , t − i} be such that s j = 0, for all j ∈ {i, . . . , i +
r− 1}, si+r = 1 and, if i > 1, si−1 = 1 (i.e. (si, . . . ,si+r−1) is a maximal subsequence of
consecutive zeros of s). Then

(Ki∪·· ·∪Ki+r−2∪Ki+r−1)β ⊆ Ki+1∪·· ·∪Ki+r−1∪ (Ki+r \{k1 + · · ·+ ki+r}).

Let ` j = |Ki+ j∩(Ki∪·· ·∪Ki+r−1)β |, for 1≤ j≤ r. Hence, we have `1, . . . , `r−1 ≥ 0, `r ≥ 1,
`1 + · · ·+ `r = r and 0≤ `1 + · · ·+ ` j ≤ j, for all 1≤ j ≤ r−1.

On the other hand, given `1, . . . , `r such that `1, . . . , `r−1 ≥ 0, `r ≥ 1, `1 + · · ·+`r = r and
0≤ `1 + · · ·+ ` j ≤ j, for all 1≤ j ≤ r−1, we have precisely(

ki+1

`1

)(
ki+2

`2

)
· · ·
(

ki+r−1

`r−1

)(
ki+r−1

`r

)
=
(

ki+r−1
`r

) r−1

∏
j=1

(
ki+ j

` j

)
distinct restrictions to Ki∪ ·· ·∪Ki+r−1 of transformations β of O+

m , with kernel type k and
sβ = s, such that ` j = |Ki+ j∩ (Ki∪·· ·∪Ki+r−1)β |, for 1≤ j≤ r. It follows that the number
of distinct restrictions to Ki ∪ ·· · ∪Ki+r−1 of transformations β of O+

m with kernel type k
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and sβ = s is

∑
`1+···+`r=r

0≤`1+···+` j≤ j, 1≤ j≤r−1
`1,...,`r−1≥0, `r≥1

(
ki+r−1

`r

) r−1

∏
j=1

(
ki+ j

` j

)
.

Now, let p be the number of distinct maximal subsequences of consecutive zeros of s.
Clearly, if p = 0 then ∆(k,s) = 1. Hence, suppose that p ≥ 1 and let 1 ≤ u1 < v1 < u2 <
v2 < · · ·< up < vp ≤ t be such that

{ j ∈ {1, . . . , t} | s j = 0}=
p⋃

i=1

{ui, . . . ,vi−1}

(i.e. (sui , . . . ,svi−1), with 1≤ i≤ p, are the p distinct maximal subsequences of consecutive
zeros of s). Then, being ri = vi−ui, for 1≤ i≤ p, we have

∆(k,s) =
p

∏
i=1

∑
`1+···+`ri =ri

0≤`1+···+` j≤ j 1≤ j≤ri−1
`1,...,`ri−1≥0, `ri≥1

(
kui+ri −1

`ri

) ri−1

∏
j=1

(
kui+ j

` j

)
.

Finally, notice that, if β and β ′ are two elements of O+
m with kernel type k = (k1, . . . ,kt)

such that sβ ′ = sβ , then d(β , i) = d(β ′, i), for all 1 ≤ i ≤ t. Thus, defining Λ(k,s) =
∏

t
i=1 d(β , i), where β is any transformation of O+

m with kernel type k and sβ = s, we have:

Theorem 3.3. |O+
m×n|= |O−m×n|= ∑

k=(k1,...,kt )
1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

∑
s∈{0,1}t−1×{1}

∆(k,s)Λ(k,s).

The next table gives the size of the monoid O+
m×n (or O−m×n) for several values of m and n.

m \ n 1 2 3 4 5 6
1 1 2 5 14 42 132
2 2 8 35 306 2401 21232
3 5 42 569 10024 210765 5089370
4 14 252 8482 410994 25366480 1847511492
5 42 1636 138348 18795636 3547275837 839181666224
6 132 11188 2388624 913768388 531098927994 415847258403464

Despite the unpleasant appearance, the previous formula allows us to calculate the car-
dinal of O+

m×n, even for larger m and n. For instance, we have

|O+
10×10|= 47016758951069862896388976221392645550606752244.

All these calculations were performed by using GAP [17].
In order to count the number of elements of the monoid OPm×n, we begin by recalling

that, for k ∈ N, being gk the k-cycle
(

1 2 · · · k−1 k
2 3 · · · k 1

)
∈ OPk, each element

α ∈ OPk admits a factorization α = g j
kγ , with 0 ≤ j ≤ k−1 and γ ∈ Ok, which is unique

unless α is constant [6].
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Next, consider the permutations (of {1, . . . ,mn})

g = gmn =
(

1 2 · · · mn−1 mn
2 3 · · · mn 1

)
∈ OPmn

and

f = gn =
(

1 · · · n n+1 · · · mn−n mn−n+1 · · · mn
n+1 · · · 2n 2n+1 · · · mn 1 · · · n

)
∈OPm×n.

Being α an element of OPm×n \Om×n of type 1 or 2 (see Proposition 2.3) and j ∈
{1, . . . ,m− 1} such that ( jn)α > ( jn + 1)α , as ( jn + 1)α ≤ ·· · ≤ (mn)α ≤ 1α ≤ ·· · ≤
( jn)α , it is clear that f jα ∈ Om×n. Thus, each element α of OPm×n of type 1 or 2 admits
a factorization α = f jγ , with 0≤ j≤m−1 and γ ∈Om×n, which is unique unless α is con-
stant. Notice that, this uniqueness follows immediately from Catarino and Higgins’s result
mentioned above. Therefore we have precisely m(|Om×n|−mn) non-constant transforma-
tions of OPm×n of types 1 and 2 and mn constant transformations (which are elements of
type 2 of OPm×n).

Now, let α be a transformation of OPm×n of type 3. As α is not constant, it can be
factorized in a unique way as grγ , for some r ∈ {0, . . . ,mn− 1} \ { jn | 0 ≤ j ≤ m− 1}
and some non-constant order-preserving transformation γ from {1, . . . ,mn} to Ai, for some
1 ≤ i ≤ m. Since only elements of OPm×n of type 3 have factorizations of this form and
the number of non-constant and non-decreasing sequences of length mn from a chain with n
elements is equal to

(mn+n−1
n−1

)
−n, we have precisely m(mn−m)

((mn+n−1
n−1

)
−n
)

elements

of type 3 in OPm×n. Thus |OPm×n| = m|Om×n|+ m2(n−1)
(mn+n−1

n−1

)
−mn(mn−1) and

so we obtain:

Theorem 3.4. |OPm×n|= m ∑
1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

(m
t

) t

∏
i=1

(kin+n−1
n−1

)
+m2(n−1)

(mn+n−1
n−1

)
−mn(mn−1).

It follows a table with the sizes of the monoids OPm×n for some values of m and n.
Again, these calculations were performed by using GAP [17].

m \ n 1 2 3 4 5 6
1 1 4 24 128 610 2742
2 4 46 506 5034 51682 575268
3 24 447 9453 248823 8445606 349109532
4 128 4324 223852 17184076 1819339324 247307947608
5 610 42075 5555990 1207660095 387720453255 170017607919290
6 2742 405828 136530144 83547682248 81341248206546 114804703283314542

We finish this paper computing the cardinal of the monoid ORm×n. Notice that, as
for ODm×n and Om×n, we have a similar relationship between ORm×n and OPm×n. In
fact, α ∈ ORm×n if and only if α ∈ OPm×n or hα ∈ OPm×n. Hence, since |OPm×n| =
|hOPm×n| and OPm×n∩hOPm×n = {α ∈OPm×n | | Im(α)| ≤ 2}, we obtain |ORm×n|=
2|OPm×n|− |{α ∈ OPm×n | | Im(α)|= 2}|−mn.

It remains to calculate the number of elements of A = {α ∈ OPm×n | | Im(α)| = 2}.
First, we count the number of elements of A of types 2 and 3. Let α be such a transformation.
Then, there exists k ∈ {1, . . . ,m} such that | Im(α)| ⊆ Ak. Clearly, in this case, the number
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of distinct kernels allowed for α coincides with the number of distinct kernels allowed for
transformations of OPmn of rank 2, which is

(mn
2

)
(see [6]). On the other hand, it is easy to

check that we have m
(n

2

)
distinct images for α . Furthermore, for each such possible kernel

and image, we have two distinct transformations of A. Hence, the total number of elements
of A of types 2 and 3 is precisely 2m

(n
2

)(mn
2

)
.

Finally, we determine the number of elements of A of type 1. Let α ∈ A be of type 1
and suppose that αψ = (α1, . . . ,αm;β ). Then β must have rank 2 and so, as β ∈OPm, we
have 2

(m
2

)2 distinct possibilities for β (see [6]). Moreover, for each 1 ≤ i ≤ m, αi must be
a constant transformation of On and, for 1 ≤ i, j ≤ m, if iβ = jβ then αi = α j. Thus, for a
fixed β , since β as rank 2, we have precisely n2 sequences (α1, . . . ,αm;β ) allowed. Hence,
A has 2n2

(m
2

)2 distinct elements of type 1. Therefore,

|ORm×n|= 2|OPm×n|−2m
(

n
2

)(
mn
2

)
−2n2

(
m
2

)2

−mn

= 2m|Om×n|+2m2(n−1)
(

mn+n−1
n−1

)
−2m

(
n
2

)(
mn
2

)
−2n2

(
m
2

)2

−mn(2mn−1)

and so we get:

Theorem 3.5.

|ORm×n|= 2m ∑
1≤k1,...,kt≤m
k1+···+kt=m

1≤t≤m

(
m
t

) t

∏
i=1

(
kin+n−1

n−1

)
+2m2(n−1)

(
mn+n−1

n−1

)

−2m
(

n
2

)(
mn
2

)
−2n2

(
m
2

)2

−mn(2mn−1).
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