The Cardinal of Various Monoids of Transformations That Preserve a Uniform Partition

${ }^{1}$ Vítor H. Fernandes and ${ }^{2}$ Teresa M. Quinteiro
${ }^{1}$ Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal
${ }^{1}$ Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
${ }^{2}$ Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1950-062 Lisboa, Portugal
${ }^{1}$ vhf@fct.unl.pt, ${ }^{2}$ tmelo@dec.isel.ipl.pt

Abstract

In this paper we give formulas for the number of elements of the monoids $\mathscr{O} \mathscr{R}_{m \times n}$ of all full transformations on a finite chain with $m n$ elements that preserve a uniform m-partition and preserve or reverse the orientation and for its submonoids $\mathscr{O} \mathscr{D}_{m \times n}$ of all order-preserving or order-reversing elements, $\mathscr{O} \mathscr{P}_{m \times n}$ of all orientation-preserving elements, $\mathscr{O}_{m \times n}$ of all order-preserving elements, $\mathscr{O}_{m \times n}^{+}$of all extensive order-preserving elements and $\mathscr{O}_{m \times n}^{-}$of all co-extensive order-preserving elements.

2010 Mathematics Subject Classification: 20M20, 05A10
Keywords and phrases: Order-preserving/reversing, orientation-preserving/reversing, extensive, equivalence-preserving, transformations.

1. Introduction and preliminaries

For $n \in \mathbb{N}$, let $X_{n}=\{1,2, \ldots, n\}$. Following the standard notation, we denote by $\mathscr{P} \mathscr{T}_{n}$ the monoid (under composition) of all partial transformations on X_{n} and by \mathscr{T}_{n} and \mathscr{I}_{n} its submonoids of all full transformations and of all injective partial transformations, respectively. Now, consider the usual linear order on X_{n}, i.e. $X_{n}=\{1<2<\cdots<n\}$. A transformation $\alpha \in \mathscr{P} \mathscr{T}_{n}$ is said to be extensive [resp., co-extensive] if $x \leq x \alpha$ [resp., $x \alpha \leq x$], for all $x \in \operatorname{Dom}(\alpha)$. We denote by \mathscr{T}_{n}^{+}[resp., \mathscr{T}_{n}^{-}] the submonoid of \mathscr{T}_{n} of all extensive [resp., co-extensive] transformations.

A transformation $\alpha \in \mathscr{P} \mathscr{T}_{n}$ is said to be order-preserving [resp., order-reversing] if $x \leq y$ implies $x \alpha \leq y \alpha$ [resp., $y \alpha \leq x \alpha$], for all $x, y \in \operatorname{Dom}(\alpha)$. We denote by $\mathscr{P} \mathscr{O}_{n}$ the submonoid of $\mathscr{P} \mathscr{T}_{n}$ of all order-preserving partial transformations. As usual, we denote by \mathscr{O}_{n} the monoid $\mathscr{P} \mathscr{O}_{n} \cap \mathscr{T}_{n}$ of all full transformations that preserve the order. This monoid has been extensively studied since the sixties (e.g. see [1, 2, 3, 7, 9, 21, 32, 35]). In particular, in 1971, Howie [22] showed that the cardinal of \mathscr{O}_{n} is $\binom{2 n-1}{n-1}$ and in [19], jointly with

[^0]Gomes, they proved that

$$
\left|\mathscr{P} \mathscr{O}_{n}\right|=\sum_{i=1}^{n}\binom{n}{i}\binom{n+i-1}{i}+1 .
$$

See also Laradji and Umar [28, 29].
Next, denote by \mathscr{O}_{n}^{+}[resp., by \mathscr{O}_{n}^{-}] the monoid $\mathscr{T}_{n}^{+} \cap \mathscr{O}_{n}$ [resp., $\left.\mathscr{T}_{n}^{-} \cap \mathscr{O}_{n}\right]$ of all extensive [resp., co-extensive] order-preserving full transformations. The monoids \mathscr{O}_{n}^{+}and \mathscr{O}_{n}^{-} are isomorphic and their cardinal is the $n^{\text {th }}$-Catalan number, i.e.

$$
\left|\mathscr{O}_{n}^{+}\right|=\left|\mathscr{O}_{n}^{-}\right|=\frac{1}{n+1}\binom{2 n}{n}
$$

(see [33]). Moreover, the family $\left\{\mathscr{O}_{n}^{+} \mid n \in \mathbb{N}\right\}$ generates the pseudovariety of \mathscr{J}-trivial monoids. Notice that, this pseudovariety is also generated by the syntactic monoids of the piecewise testable languages (see e.g. [31]). Regarding the injective counterpart of \mathscr{O}_{n}, i.e. the inverse monoid $\mathscr{P} \mathscr{O} \mathscr{I}_{n}=\mathscr{P} \mathscr{O}_{n} \cap \mathscr{I}_{n}$ of all injective order-preserving partial transformations, we have $\left|\mathscr{P} \mathscr{O} \mathscr{I}_{n}\right|=\binom{2 n}{n}$. This result was first presented by Garba in [18] (see also [7]).

Now, being $\mathscr{P} \mathscr{O} \mathscr{D}_{n}$ the submonoid of $\mathscr{P} \mathscr{T}_{n}$ of all partial transformations that preserve or reverse the order, $\mathscr{O} \mathscr{D}_{n}=\mathscr{P} \mathscr{O} \mathscr{D}_{n} \cap \mathscr{T}_{n}$ and $\mathscr{P} \mathscr{O} \mathscr{D} \mathscr{I}_{n}=\mathscr{P} \mathscr{O} \mathscr{D}_{n} \cap \mathscr{I}_{n}$ (the full and partial injective counterparts of $\mathscr{P} \mathscr{O} \mathscr{D}_{n}$, respectively), Fernandes et al. [10, 11] proved that

$$
\left|\mathscr{P} \mathscr{O} \mathscr{D}_{n}\right|=\sum_{i=1}^{n}\binom{n}{i}\left(2\binom{n+i-1}{i}-n\right)+1, \quad\left|\mathscr{O} \mathscr{D}_{n}\right|=2\binom{2 n-1}{n-1}-n
$$

and

$$
\left|\mathscr{P} \mathscr{O} \mathscr{D} \mathscr{I}_{n}\right|=2\binom{2 n}{n}-n^{2}-1 .
$$

Wider classes of monoids are obtained when we consider transformations that either preserve or reverse the orientation. Let $a=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be a sequence of $t, t \geq 0$, elements from the chain X_{n}. We say that a is cyclic [resp., anti-cyclic] if there exists no more than one index $i \in\{1, \ldots, t\}$ such that $a_{i}>a_{i+1}$ [resp., $a_{i}<a_{i+1}$], where a_{t+1} denotes a_{1}. Let $\alpha \in \mathscr{T}_{n}$ and suppose that $\operatorname{Dom}(\alpha)=\left\{a_{1}, \ldots, a_{t}\right\}$, with $t \geq 0$ and $a_{1}<\cdots<a_{t}$. We say that α is orientation-preserving [resp., orientation-reversing] if the sequence of its images $\left(a_{1} \alpha, a_{2} \alpha, \ldots, a_{t} \alpha\right)$ is cyclic [resp., anti-cyclic]. This notions were introduced by McAlister in [30] and independently by Catarino and Higgins in [6].

Denote by $\mathscr{P} \mathscr{O} \mathscr{P}_{n}$ [resp., $\mathscr{P} \mathscr{O} \mathscr{R}_{n}$] the submonoid of $\mathscr{P} \mathscr{T}_{n}$ of all orientation-preserving [resp., orientation-preserving or orientation-reversing] transformations. The cardinalities of $\mathscr{P} \mathscr{O} \mathscr{P}_{n}$ and $\mathscr{P} \mathscr{O} \mathscr{R}_{n}$ were calculated by Fernandes et al. [12] and are $1+\left(2^{n}-1\right) n+$ $\sum_{k=2}^{n} k\binom{n}{k}^{2} 2^{n-k}$ and $1+\left(2^{n}-1\right) n+2\binom{n}{2}^{2} 2^{n-2}+\sum_{k=3}^{n} 2 k\binom{n}{k}^{2} 2^{n-k}$, respectively. As usual, $\mathscr{O} \mathscr{P}_{n}$ denotes the monoid $\mathscr{P} \mathscr{O} \mathscr{P}_{n} \cap \mathscr{T}_{n}$ of all full transformations that preserve the orientation, $\mathscr{O} \mathscr{R}_{n}$ denotes the monoid $\mathscr{P} \mathscr{O} \mathscr{R}_{n} \cap \mathscr{T}_{n}$ of all full transformations that preserve or reserve the orientation and $\mathscr{P} \mathscr{O} \mathscr{P} \mathscr{I}_{n}$ and $\mathscr{P} \mathscr{O} \mathscr{R} \mathscr{I}_{n}$ denote the submonoids of $\mathscr{P} \mathscr{O} \mathscr{P}_{n}$ and $\mathscr{P} \mathscr{O} \mathscr{R}_{n}$, respectively, whose elements are the injective transformations. McAlister in [30], and independently Catarino and Higgins in [6], proved that

$$
\left|\mathscr{O} \mathscr{P}_{n}\right|=n\binom{2 n-1}{n-1}-n(n-1) \quad \text { and } \quad\left|\mathscr{O} \mathscr{R}_{n}\right|=n\binom{2 n}{n}-\frac{n^{2}}{2}\left(n^{2}-2 n+5\right)+n .
$$

The monoids $\mathscr{O} \mathscr{P}_{n}$ and $\mathscr{O} \mathscr{R}_{n}$ were also studied by Arthur and Ruškuc in [5]. Regarding their injective counterparts, in [8], Fernandes established that $\left|\mathscr{P} \mathscr{O} \mathscr{P} \mathscr{I}_{n}\right|=1+\frac{n}{2}\binom{2 n}{n}$ and, in [10], Fernandes et al. showed that

$$
\left|\mathscr{P} \mathscr{O} \mathscr{R} \mathscr{I}_{n}\right|=1+n\binom{2 n}{n}-\frac{n^{2}}{2}\left(n^{2}-2 n+3\right) .
$$

All these results are summarized in [13].
Now, let X be a set and denote by $\mathscr{T}(X)$ the monoid (under composition) of all full transformations on X. Let ρ be an equivalence relation on X and denote by $\mathscr{T}_{\rho}(X)$ the submonoid of $\mathscr{T}(X)$ of all transformations that preserve the equivalence relation ρ, i.e. $\mathscr{T}_{\rho}(X)=\{\alpha \in$ $\mathscr{T}(X) \mid(a \alpha, b \alpha) \in \rho$, for all $(a, b) \in \rho\}$. This monoid was studied by Huisheng in [24] who determined its regular elements and described its Green's relations.

Let $m, n \in \mathbb{N}$. Of particular interest is the submonoid $\mathscr{T}_{m \times n}=\mathscr{T}_{\rho}\left(X_{m n}\right)$ of $\mathscr{T}_{m n}$, with ρ the equivalence relation on $X_{m n}$ defined by $\rho=\left(A_{1} \times A_{1}\right) \cup\left(A_{2} \times A_{2}\right) \cup \cdots \cup\left(A_{m} \times A_{m}\right)$, where $A_{i}=\{(i-1) n+1, \ldots, i n\}$, for $i \in\{1, \ldots, m\}$. Notice that the ρ-classes A_{i}, with $1 \leq i \leq m$, form a uniform m-partition of $X_{m n}$. Regarding the rank of $\mathscr{T}_{m \times n}$, first, Huisheng [23] proved that it is at most 6 and, later, Araújo and Schneider [4] improved this result by showing that, for $m \geq 2$ and $n \geq 2$, the rank of $\mathscr{T}_{m \times n}$ is precisely 4 .

Finally, denote by $\mathscr{O} \mathscr{R}_{m \times n}$ the submonoid of $\mathscr{T}_{m \times n}$ of all orientation-preserving or orien-tation-reversing transformations, i.e. $\mathscr{O} \mathscr{R}_{m \times n}=\mathscr{T}_{m \times n} \cap \mathscr{O} \mathscr{R}_{m n}$. Similarly, let $\mathscr{O} \mathscr{D}_{m \times n}=$ $\mathscr{T}_{m \times n} \cap \mathscr{O} \mathscr{D}_{m n}, \mathscr{O} \mathscr{P}_{m \times n}=\mathscr{T}_{m \times n} \cap \mathscr{O} \mathscr{P}_{m n}$ and $\mathscr{O}_{m \times n}=\mathscr{T}_{m \times n} \cap \mathscr{O}_{m n}$. Consider also the submonoids $\mathscr{O}_{m \times n}^{+}=\mathscr{O}_{m \times n} \cap \mathscr{T}_{m n}^{+}$and $\mathscr{O}_{m \times n}^{-}=\mathscr{O}_{m \times n} \cap \mathscr{T}_{m n}^{-}$of $\mathscr{O}_{m \times n}$ whose elements are the extensive transformations and the co-extensive transformations, respectively.
Example 1.1. Consider the following transformations of \mathscr{T}_{12} :

$$
\begin{aligned}
& \alpha_{1}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
9 & 11 & 10 & 12 & 1 & 3 & 3 & 2 & 5 & 5 & 7 & 8
\end{array}\right), \\
& \alpha_{2}=\left(\begin{array}{llll|llll|llll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
8 & 8 & 8 & 6 & 6 & 5 & 5 & 5 & 12 & 12 & 11 & 10
\end{array}\right) \text {, } \\
& \alpha_{3}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
11 & 11 & 10 & 10 & 10 & 9 & 9 & 9 & 4 & 3 & 3 & 1
\end{array}\right) \text {, } \\
& \alpha_{4}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
7 & 7 & 7 & 8 & 8 & 8 & 5 & 5 & 5 & 6 & 6 & 7
\end{array}\right), \\
& \alpha_{5}=\left(\begin{array}{llll|llll|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 1 & 2 & 3 & 3 & 4 & 4 & 10 & 11 & 11 & 11
\end{array}\right) \text {, } \\
& \alpha_{6}=\left(\begin{array}{llll|llll|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 5 & 6 & 6 & 6 & 7 & 7 & 8 & 10 & 11 & 11 & 12
\end{array}\right) \text {, } \\
& \alpha_{7}=\left(\begin{array}{llll|llll|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 2 & 3 & 5 & 5 & 6 & 8 & 9 & 9 & 10 & 11
\end{array}\right), \\
& \alpha_{8}=\left(\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 2 & 3 & 5 & 5 & 6 & 9 & 9 & 10 & 10 & 11
\end{array}\right) .
\end{aligned}
$$

Then, we have: $\alpha_{1} \in \mathscr{T}_{3 \times 4}$, but $\alpha_{1} \notin \mathscr{O} \mathscr{R}_{3 \times 4} ; \alpha_{2} \in \mathscr{O} \mathscr{R}_{3 \times 4}$, but $\alpha_{2} \notin \mathscr{O} \mathscr{P}_{3 \times 4} ; \alpha_{3} \in \mathscr{O} \mathscr{D}_{3 \times 4}$, but $\alpha_{3} \notin \mathscr{O}_{3 \times 4} ; \alpha_{4} \in \mathscr{O} \mathscr{P}_{3 \times 4}$, but $\alpha_{4} \notin \mathscr{O}_{3 \times 4} ; \alpha_{5} \in \mathscr{O}_{3 \times 4}$, but $\alpha_{5} \notin \mathscr{O}_{3 \times 4}^{+}$and $\alpha_{5} \notin \mathscr{O}_{3 \times 4}^{-}$; $\alpha_{6} \in \mathscr{O}_{3 \times 4}^{+} ; \alpha_{7} \in \mathscr{O}_{3 \times 4}^{-} ;$and, finally, $\alpha_{8} \notin \mathscr{T}_{3 \times 4}$.

Observe that, as happens with \mathscr{O}_{n}^{-}and \mathscr{O}_{n}^{+}, the monoids $\mathscr{O}_{m \times n}^{-}$and $\mathscr{O}_{m \times n}^{+}$are isomorphic [15]. Recall that in [26] Kunze proved that the monoid \mathscr{O}_{n} is a quotient of a bilateral semidirect product of its subsemigroups \mathscr{O}_{n}^{-}and \mathscr{O}_{n}^{+}. This result was generalized by the authors [15] by showing that $\mathscr{O}_{m \times n}$ is also a quotient of a bilateral semidirect product of its subsemigroups $\mathscr{O}_{m \times n}^{-}$and $\mathscr{O}_{m \times n}^{+}$. See also [27, 14]. In [25] Huisheng and Dingyu described the regular elements and the Green relations of $\mathscr{O}_{m \times n}$. On the other hand, the ranks of the monoids $\mathscr{O}_{m \times n}, \mathscr{O}_{m \times n}^{+}$and $\mathscr{O}_{m \times n}^{-}$were calculated by the authors in [15]. Regarding $\mathscr{O} \mathscr{P}_{m \times n}$, a description of the regular elements and a characterization of the Green relations were given by Sun et al. in [34]. Its rank was determined by the authors in [16], who also computed in the same paper the ranks of the monoids $\mathscr{O} \mathscr{D}_{m \times n}$ and $\mathscr{O} \mathscr{R}_{m \times n}$.

In this paper we calculate the cardinals of the monoids $\mathscr{O} \mathscr{R}_{m \times n}, \mathscr{O} \mathscr{P}_{m \times n}, \mathscr{O} \mathscr{D}_{m \times n}$, $\mathscr{O}_{m \times n}, \mathscr{O}_{m \times n}^{+}$and $\mathscr{O}_{m \times n}^{-}$. In order to achieve this goal we use a wreath product description of $\mathscr{T}_{m \times n}$, due to Araújo and Schneider [4], that we recall in Section 2.

2. Wreath products of transformation semigroups

In [4] Araújo and Schneider proved that the rank of $\mathscr{T}_{m \times n}$ is 4 , by using the concept of wreath product of transformation semigroups. This approach will also be very useful in this paper. Next, we recall some facts from [4, 15, 16]. First, we define the wreath product $\mathscr{T}_{n} \imath \mathscr{T}_{m}$ of \mathscr{T}_{n} and \mathscr{T}_{m} as being the monoid with underlying set $\mathscr{T}_{n}^{m} \times \mathscr{T}_{m}$ and multiplication defined by $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right)\left(\alpha_{1}^{\prime}, \ldots, \alpha_{m}^{\prime} ; \beta^{\prime}\right)=\left(\alpha_{1} \alpha_{1 \beta}^{\prime}, \ldots, \alpha_{m} \alpha_{m \beta}^{\prime} ; \beta \beta^{\prime}\right)$, for all $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right),\left(\alpha_{1}^{\prime}, \ldots, \alpha_{m}^{\prime} ; \beta^{\prime}\right) \in \mathscr{T}_{n}^{m} \times \mathscr{T}_{m}$. Now, let $\alpha \in \mathscr{T}_{m \times n}$ and let $\beta=\alpha / \rho \in \mathscr{T}_{m}$ be the quotient map of α by ρ, i.e. for all $j \in\{1, \ldots, m\}$, we have $A_{j} \alpha \subseteq A_{j \beta}$. For each $j \in\{1, \ldots, m\}$, define $\alpha_{j} \in \mathscr{T}_{n}$ by $k \alpha_{j}=((j-1) n+k) \alpha-(j \beta-1) n$, for all $k \in\{1, \ldots, n\}$. Let $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} ; \beta\right) \in \mathscr{T}_{n}^{m} \times \mathscr{T}_{m}$. With these notations, the function $\psi: \mathscr{T}_{m \times n} \longrightarrow$ $\mathscr{T}_{n} \backslash \mathscr{T}_{m}, \alpha \longmapsto \bar{\alpha}$, is an isomorphism (see [4, Lemma 2.1]).

Observe that, from this fact, we can immediately conclude that the cardinal of $\mathscr{T}_{m \times n}$ is $n^{n m} m^{m}$.

Example 2.1. Consider the transformation

$$
\alpha=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 5 & 7 & 6 & 10 & 10 & 9 & 12 & 1 & 1 & 2 & 3
\end{array}\right) \in \mathscr{T}_{3 \times 4} .
$$

Since

$$
\begin{gathered}
\beta=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \alpha_{1}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 1 & 3 & 2
\end{array}\right), \\
\alpha_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 2 & 1 & 4
\end{array}\right), \alpha_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3
\end{array}\right),
\end{gathered}
$$

we have $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; \beta\right)$.
Next, consider

$$
\begin{gathered}
\overline{\mathscr{O}}_{m \times n}=\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathscr{O}_{n}^{m} \times \mathscr{O}_{m} \mid j \beta=(j+1) \beta\right. \text { implies } \\
\left.n \alpha_{j} \leq 1 \alpha_{j+1}, \text { for all } j \in\{1, \ldots, m-1\}\right\} .
\end{gathered}
$$

Notice that, if $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathscr{O}}_{m \times n}$ and $1 \leq i<j \leq m$ are such that $i \beta=j \beta$, then $n \alpha_{i} \leq$ $1 \alpha_{j}$.

Proposition 2.1. [15] The set $\overline{\mathscr{O}}_{m \times n}$ is a submonoid of $\mathscr{T}_{n} 乙 \mathscr{T}_{m}$ (and of $\mathscr{O}_{n} 2 \mathscr{O}_{m}$) isomorphic to $\mathscr{O}_{m \times n}$.

On the other hand, since

$$
\overline{\mathscr{O}}_{m \times n}^{+}=\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathscr{O}_{n}^{m-1} \times \mathscr{O}_{n}^{+} \times \mathscr{O}_{m}^{+} \mid j \beta=(j+1) \beta \text { implies } n \alpha_{j} \leq 1 \alpha_{j+1}\right. \text { and }
$$

$$
\left.j \beta=j \text { implies } \alpha_{j} \in \mathscr{O}_{n}^{+}, \text {for all } j \in\{1, \ldots, m-1\}\right\}
$$

and

$$
\begin{gathered}
\overline{\mathscr{O}}_{m \times n}^{-}=\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathscr{O}_{n}^{-} \times \mathscr{O}_{n}^{m-1} \times \mathscr{O}_{m}^{-} \mid(j-1) \beta=j \beta \text { implies } n \alpha_{j-1} \leq 1 \alpha_{j}\right. \text { and } \\
\left.j \beta=j \text { implies } \alpha_{j} \in \mathscr{O}_{n}^{-}, \text {for all } j \in\{2, \ldots, m\}\right\},
\end{gathered}
$$

we have:
Proposition 2.2. [15] The set $\overline{\mathscr{O}}_{m \times n}^{+}\left[\right.$resp. $\overline{\mathscr{O}}_{m \times n}^{-}$] is a submonoid of $\mathscr{T}_{n}\left\langle\mathscr{T}_{m}\right.$ (and of $\mathscr{O}_{n}\left\langle\mathscr{O}_{m}\right.$) isomorphic to $\mathscr{O}_{m \times n}^{+}\left[\right.$resp. $\left.\mathscr{O}_{m \times n}^{-}\right]$.

A description of $\mathscr{O} \mathscr{P}_{m \times n}$ in terms of wreath products is more elaborate. In fact, considering addition modulo m (in particular, $m+1=1$), we have:

Proposition 2.3. [16] A ($m+1$)-tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} ; \beta\right)$ of $\mathscr{T}_{n}^{m} \times \mathscr{T}_{m}$ belongs to $\mathscr{O} \mathscr{P}_{m \times n} \psi$ if and only if it satisfies one of the following conditions:
(1) (a) β is a non-constant transformation of $\mathscr{O P} \mathscr{P}_{m}$,
(b) for all $i \in\{1, \ldots, m\}, \alpha_{i} \in \mathscr{O}_{n}$ and,
(c) for all $j \in\{1, \ldots, m\}, j \beta=(j+1) \beta$ implies $n \alpha_{j} \leq 1 \alpha_{j+1}$;
(2) (a) β is a constant transformation,
(b) for all $i \in\{1, \ldots, m\}, \alpha_{i} \in \mathscr{O}_{n}$ and
(c) there exists at most one index $j \in\{1, \ldots, m\}$ such that $n \alpha_{j}>1 \alpha_{j+1}$;
(3) (a) β is a constant transformation,
(b) there exists one index $i \in\{1, \ldots, m\}$ such that $\alpha_{i} \in \mathscr{O} \mathscr{P}_{n} \backslash \mathscr{O}_{n}$ and, for all $j \in\{1, \ldots, m\} \backslash\{i\}, \alpha_{j} \in \mathscr{O}_{n}$
(c) and, for all $j \in\{1, \ldots, m\}, n \alpha_{j} \leq 1 \alpha_{j+1}$.

Let $\alpha \in \mathscr{O} \mathscr{P}_{m \times n}$. We say that α is of type i if $\alpha \psi$ satisfies the condition (i) of the previous proposition, for $i \in\{1,2,3\}$.

3. The cardinals

In this section we use the previous bijections to obtain formulas for the number of elements of the monoids $\mathscr{O}_{m \times n}, \mathscr{O}_{m \times n}^{+}, \mathscr{O}_{m \times n}^{-}, \mathscr{O} \mathscr{D}_{m \times n}, \mathscr{O} \mathscr{P}_{m \times n}$ and $\mathscr{O} \mathscr{R}_{m \times n}$. In order to count the elements of $\mathscr{O}_{m \times n}$, on one hand, for each transformation $\beta \in \mathscr{O}_{m}$, we determine the number of sequences $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathscr{O}_{n}^{m}$ such that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathscr{\mathscr { O }}_{m \times n}$ and, on the other hand, we notice that this last number just depends of the kernel of β (and not of β itself).

With this purpose, let $\beta \in \mathscr{O}_{m}$. Suppose that $\operatorname{Im}(\beta)=\left\{b_{1}<b_{2}<\cdots<b_{t}\right\}$, for some $1 \leq$ $t \leq m$, and define $k_{i}=\left|b_{i} \beta^{-1}\right|$, for $i=1, \ldots, t$. Being β an order-preserving transformation, the sequence $\left(k_{1}, \ldots, k_{t}\right)$ determines the kernel of β : we have $\left\{k_{1}+\cdots+k_{i-1}+1, \ldots, k_{1}+\right.$ $\left.\cdots+k_{i}\right\} \beta=\left\{b_{i}\right\}$, for $i=1, \ldots, t$ (considering $k_{1}+\cdots+k_{i-1}+1=1$, with $i=1$). We define the kernel type of β as being the sequence $\left(k_{1}, \ldots, k_{t}\right)$. Notice that $1 \leq k_{i} \leq m$, for $i=1, \ldots, t$, and $k_{1}+k_{2}+\cdots+k_{t}=m$. Now, recall that the number of non-decreasing sequences of length k whose terms are taken from a chain with n elements is equal to $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$,
i.e. the number of k-combinations with repetitions from a set with n elements (see [20], for example). Therefore, since $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathscr{O}_{n}^{k}$ satisfies the condition $n \alpha_{j} \leq 1 \alpha_{j+1}$, for all $1 \leq j \leq k-1$, if and only if the sequence obtained by concatenating the sequences of images of $\alpha_{1}, \ldots, \alpha_{k}$ (by this order) is non-decreasing, it follows that the set $\left\{\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in\right.$ $\mathscr{O}_{n}^{k} \mid n \alpha_{j} \leq 1 \alpha_{j+1}$, for all $\left.1 \leq j \leq k-1\right\}$ has size $\binom{n+k n-1}{n-1}$.

Since $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathscr{O}}_{m \times n}$ if and only if, for all $1 \leq i \leq t, \alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}$ are k_{i} order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence, then we have $\prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}$ elements in $\overline{\mathscr{O}}_{m \times n}$ whose $(m+1)$-component is β.

Finally it is clear that if β and β^{\prime} are two elements of \mathscr{O}_{m} with the same kernel type then $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathscr{O}}_{m \times n}$ if and only if $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta^{\prime}\right) \in \overline{\mathscr{O}}_{m \times n}$. Thus, as the number of transformations $\beta \in \mathscr{O}_{m}$ with kernel type of length $t(1 \leq t \leq m)$ coincides with the number of t-combinations (without repetition) from a set with m elements, it follows:

Theorem 3.1. $\left|\mathscr{O}_{m \times n}\right|=\sum_{\substack{1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\ldots+t=m \\ 1 \leq t \leq m}}\binom{m}{t} \prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}$.
The table below shows the size of the monoid $\mathscr{O}_{m \times n}$ for several values of m and n. These calculations were performed by using GAP [17].

$m \backslash n$	1	2	3	4	5	6
1	1	3	10	35	126	462
2	3	19	156	1555	17878	225820
3	10	138	2845	78890	2768760	115865211
4	35	1059	55268	4284451	454664910	61824611940
5	126	8378	1109880	241505530	77543615751	34003513468232
6	462	67582	22752795	13924561150	13556873588212	19134117191404027

In view of Theorem 3.1, finding the cardinal of $\mathscr{O} \mathscr{D}_{m \times n}$ is not difficult. Indeed, consider the reflexion permutation $h=\left(\begin{array}{cccc}1 & 2 & \ldots m n-1 & m n \\ m n & m n-1 & \ldots & 2 \\ 1\end{array}\right)$. Observe that $h \in \mathscr{O} \mathscr{D}_{m \times n}$ and, given $\alpha \in \mathscr{T}_{m \times n}$, we have $\alpha \in \mathscr{O} \mathscr{D}_{m \times n}$ if and only if $\alpha \in \mathscr{O}_{m \times n}$ or $h \alpha \in \mathscr{O}_{m \times n}$. On the other hand, as clearly $\left|\mathscr{O}_{m \times n}\right|=\left|h \mathscr{O}_{m \times n}\right|$ and $\left|\mathscr{O}_{m \times n} \cap h \mathscr{O}_{m \times n}\right|=\left|\left\{\alpha \in \mathscr{O}_{m \times n}| | \operatorname{Im}(\alpha) \mid=1\right\}\right|=m n$, it follows immediately that

Theorem 3.2. $\left|\mathscr{O} \mathscr{D}_{m \times n}\right|=2\left|\mathscr{O}_{m \times n}\right|-m n=2 \sum_{\substack{1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\ldots+k_{t}=m \\ 1 \leq t \leq m}}\binom{m}{t} \prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}-m n$.
Next, we describe a process to count the number of elements of $\mathscr{O}_{m \times n}^{+}$. First, recall that the cardinal of \mathscr{O}_{n}^{+}is the $n^{\text {th }}$-Catalan number, i.e. $\left|\mathscr{O}_{n}^{+}\right|=\frac{1}{n+1}\binom{2 n}{n}$. See [33]. It is also useful to consider the following numbers: $\theta(n, i)=\left|\left\{\alpha \in \mathscr{O}_{n}^{+} \mid 1 \alpha=i\right\}\right|$, for $1 \leq i \leq n$. Clearly, we have $\left|\mathscr{O}_{n}^{+}\right|=\sum_{i=1}^{n} \theta(n, i)$. Moreover, for $2 \leq i \leq n-1$, we have $\theta(n, i)=\theta(n, i+$ 1) $+\theta(n-1, i-1)$. In fact, $\left\{\alpha \in \mathscr{O}_{n}^{+} \mid 1 \alpha=i\right\}=\left\{\alpha \in \mathscr{O}_{n}^{+} \mid 1 \alpha=i<2 \alpha\right\} \dot{\cup}\left\{\alpha \in \mathscr{O}_{n}^{+} \mid\right.$ $1 \alpha=2 \alpha=i\}$ and it is easy to show that the function which maps each transformation $\beta \in\left\{\alpha \in \mathscr{O}_{n}^{+} \mid 1 \alpha=i<2 \alpha\right\}$ into the transformation

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
i+1 & 2 \beta & \ldots & n \beta
\end{array}\right) \in\left\{\alpha \in \mathscr{O}_{n}^{+} \mid 1 \alpha=i+1\right\}
$$

and the function which maps each transformation $\beta \in\left\{\alpha \in \mathscr{O}_{n-1}^{+} \mid 1 \alpha=i-1\right\}$ into the transformation

$$
\left(\begin{array}{cccccc}
1 & 2 & 3 & \ldots & n-1 & n \\
i & i & 2 \beta+1 & \ldots & (n-2) \beta+1 & (n-1) \beta+1
\end{array}\right) \in\left\{\alpha \in \mathscr{O}_{n}^{+} \mid 1 \alpha=2 \alpha=i\right\}
$$

are bijections. Thus

$$
\begin{aligned}
\theta(n, i) & =\left|\left\{\alpha \in \mathscr{O}_{n}^{+} \mid 1 \alpha=i<2 \alpha\right\}\right|+\left|\left\{\alpha \in \mathscr{O}_{n}^{+} \mid 1 \alpha=2 \alpha=i\right\}\right| \\
& =\left|\left\{\alpha \in \mathscr{O}_{n}^{+} \mid 1 \alpha=i+1\right\}\right|+\left|\left\{\alpha \in \mathscr{O}_{n-1}^{+} \mid 1 \alpha=i-1\right\}\right| \\
& =\theta(n, i+1)+\theta(n-1, i-1) .
\end{aligned}
$$

Also, it is not hard to prove that $\theta(n, 2)=\theta(n, 1)=\sum_{i=1}^{n-1} \theta(n-1, i)=\left|\mathscr{O}_{n-1}^{+}\right|$.
Now, we can prove:
Lemma 3.1. For all $1 \leq i \leq n$,

$$
\theta(n, i)=\frac{i}{n}\binom{2 n-i-1}{n-i}=\frac{i}{n}\binom{2 n-i-1}{n-1} .
$$

Proof. We prove the lemma by induction on n. For $n=1$, it is clear that $\theta(1,1)=1=$ $\frac{1}{1}\binom{2-1-1}{1-1}$. Let $n \geq 2$ and suppose that the formula is valid for $n-1$. Next, we prove the formula for n by induction on i. For $i=1$, as observed above, we have

$$
\theta(n, 1)=\left|\mathscr{O}_{n-1}^{+}\right|=\frac{1}{n}\binom{2 n-2}{n-1}
$$

For $i=2$, we have

$$
\begin{aligned}
\theta(n, 2) & =\theta(n, 1)=\frac{1}{n}\binom{2 n-2}{n-1}=\frac{2}{n} \frac{(2 n-2)!}{(n-1)!(n-1)!} \frac{n-1}{2 n-2} \\
& =\frac{2}{n} \frac{(2 n-3)!}{(n-1)!(n-2)!}=\frac{2}{n}\binom{2 n-3}{n-1} .
\end{aligned}
$$

Now, suppose that the formula is valid for $i-1$, with $3 \leq i \leq n$. Then, using both induction hypotheses on i and on n in the second equality, we have

$$
\begin{aligned}
\theta(n, i) & =\theta(n, i-1)-\theta(n-1, i-2)=\frac{i-1}{n}\binom{2 n-i}{n-1}-\frac{i-2}{n-1}\binom{2 n-i-1}{n-2} \\
& =\frac{i-1}{n} \frac{(2 n-i)!}{(n-1)!(n-i+1)!}-\frac{i-2}{n-1} \frac{(2 n-i-1)!}{(n-2)!(n-i+1)!} \\
& =\frac{i(n-i+1)}{n(2 n-i)} \frac{(2 n-i)!}{(n-1)!(n-i+1)!}=\frac{i}{n}\binom{2 n-i-1}{n-1}
\end{aligned}
$$

as required.
Recall that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathscr{O}}_{m \times n}^{+}$if and only if $\beta \in \mathscr{O}_{m}^{+}, \alpha_{m} \in \mathscr{O}_{n}^{+}, \alpha_{1}, \ldots, \alpha_{m-1} \in \mathscr{O}_{n}$ and, for all $j \in\{1, \ldots, m-1\}, j \beta=(j+1) \beta$ implies $n \alpha_{j} \leq 1 \alpha_{j+1}$ and $j \beta=j$ implies $\alpha_{j} \in \mathscr{O}_{n}^{+}$. Let $\beta \in \mathscr{O}_{m}^{+}$. As for the monoid $\mathscr{O}_{m \times n}$, we aim to count the number of sequences $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathscr{O}_{n}^{m}$ such that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathscr{O}}_{m \times n}^{+}$. Let $\left(k_{1}, \ldots, k_{t}\right)$ be the kernel type of β. Let $K_{i}=\left\{k_{1}+\cdots+k_{i-1}+1, \ldots, k_{1}+\cdots+k_{i}\right\}$, for $i=1, \ldots, t$. Then, β fixes a point in K_{i} if and only if it fixes $k_{1}+\cdots+k_{i}$, for $i=1, \ldots, t$. It follows that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathscr{O}}_{m \times n}^{+}$ if and only if, for all $1 \leq i \leq t$:
(1) If β does not fix a point in K_{i}, then $\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}$ are k_{i} order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence (in this case, we have $\binom{k_{i} n+n-1}{n-1}$ subsequences $\left(\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}\right)$ allowed);
(2) If β fixes a point in K_{i}, then $\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}-1}$ are $k_{i}-1$ order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence, $n \alpha_{k_{1}+\cdots+k_{i}-1} \leq 1 \alpha_{k_{1}+\cdots+k_{i}}$ and $\alpha_{k_{1}+\cdots+k_{i}} \in \mathscr{O}_{n}^{+}$ (in this case, we have $\sum_{j=1}^{n}\binom{\left(k_{i}-1\right) n+j-1}{j-1} \theta(n, j)$ subsequences $\left(\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots\right.$, $\alpha_{k_{1}+\cdots+k_{i}}$) allowed).
Define
for all $1 \leq i \leq t$. Thus, we have
Proposition 3.1. $\left|\mathscr{O}_{m \times n}^{+}\right|=\sum_{\beta \in \mathscr{O}_{m}^{+}} \prod_{i=1}^{t} \mathfrak{d}(\beta, i)$.
Next, we obtain a formula for $\left|\mathscr{O}_{m \times n}^{+}\right|$which does not depend on $\beta \in \mathscr{O}_{m}^{+}$. Let β be an element of \mathscr{O}_{m}^{+}with kernel type $\left(k_{1}, \ldots, k_{t}\right)$. Define $s_{\beta}=\left(s_{1}, \ldots, s_{t}\right) \in\{0,1\}^{t-1} \times\{1\}$ by $s_{i}=1$ if and only if $\left(k_{1}+\cdots+k_{i}\right) \beta=k_{1}+\cdots+k_{i}$, for all $1 \leq i \leq t-1$. Let $1 \leq t, k_{1}, \ldots, k_{t} \leq$ m be such that $k_{1}+\cdots+k_{t}=m$ and let $\left(s_{1}, \ldots, s_{t}\right) \in\{0,1\}^{t-1} \times\{1\}$. Let $k=\left(k_{1}, \ldots, k_{t}\right)$ and $s=\left(s_{1}, \ldots, s_{t}\right)$. Define $\Delta(k, s)=\mid\left\{\beta \in \mathscr{O}_{m}^{+} \mid \beta\right.$ has kernel type k and $\left.s_{\beta}=s\right\} \mid$.

In order to get a formula for $\Delta(k, s)$, we count the number of distinct restrictions to unions of partition classes of the kernel of transformations β of \mathscr{O}_{m}^{+}with kernel type k and $s_{\beta}=s$ corresponding to maximal subsequences of consecutive zeros of s. Let β be an element of \mathscr{O}_{m}^{+}with kernel type k and $s_{\beta}=s$. First, notice that, given $i \in\{1, \ldots, t\}$, if $s_{i}=1$ then $K_{i} \beta=\left\{k_{1}+\cdots+k_{i}\right\}$ and if $s_{i}=0$ then the (unique) element of $K_{i} \beta$ belongs to K_{j}, for some $i<j \leq t$.

Next, let $i \in\{1, \ldots, t\}$ and $r \in\{1, \ldots, t-i\}$ be such that $s_{j}=0$, for all $j \in\{i, \ldots, i+$ $r-1\}, s_{i+r}=1$ and, if $i>1, s_{i-1}=1$ (i.e. $\left(s_{i}, \ldots, s_{i+r-1}\right)$ is a maximal subsequence of consecutive zeros of s). Then

$$
\left(K_{i} \cup \cdots \cup K_{i+r-2} \cup K_{i+r-1}\right) \beta \subseteq K_{i+1} \cup \cdots \cup K_{i+r-1} \cup\left(K_{i+r} \backslash\left\{k_{1}+\cdots+k_{i+r}\right\}\right)
$$

Let $\ell_{j}=\left|K_{i+j} \cap\left(K_{i} \cup \cdots \cup K_{i+r-1}\right) \beta\right|$, for $1 \leq j \leq r$. Hence, we have $\ell_{1}, \ldots, \ell_{r-1} \geq 0, \ell_{r} \geq 1$, $\ell_{1}+\cdots+\ell_{r}=r$ and $0 \leq \ell_{1}+\cdots+\ell_{j} \leq j$, for all $1 \leq j \leq r-1$.

On the other hand, given $\ell_{1}, \ldots, \ell_{r}$ such that $\ell_{1}, \ldots, \ell_{r-1} \geq 0, \ell_{r} \geq 1, \ell_{1}+\cdots+\ell_{r}=r$ and $0 \leq \ell_{1}+\cdots+\ell_{j} \leq j$, for all $1 \leq j \leq r-1$, we have precisely

$$
\binom{k_{i+1}}{\ell_{1}}\binom{k_{i+2}}{\ell_{2}} \ldots\binom{k_{i+r-1}}{\ell_{r-1}}\binom{k_{i+r}-1}{\ell_{r}}=\binom{k_{i+r}-1}{\ell_{r}} \prod_{j=1}^{r-1}\binom{k_{i+j}}{\ell_{j}}
$$

distinct restrictions to $K_{i} \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathscr{O}_{m}^{+}, with kernel type k and $s_{\beta}=s$, such that $\ell_{j}=\left|K_{i+j} \cap\left(K_{i} \cup \cdots \cup K_{i+r-1}\right) \beta\right|$, for $1 \leq j \leq r$. It follows that the number of distinct restrictions to $K_{i} \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathscr{O}_{m}^{+}with kernel type k
and $s_{\beta}=s$ is

$$
\sum_{\substack{\ell_{1}+\cdots+\ell_{r}=r \\ 0 \leq \ell_{1}+\cdots+\ell_{j} \leq j, 1 \leq j \leq r-1 \\ \ell_{1}, \ldots, \ell_{r-1} \geq 0, \ell_{r} \geq 1}}\binom{k_{i+r}-1}{\ell_{r}} \prod_{j=1}^{r-1}\binom{k_{i+j}}{\ell_{j}} .
$$

Now, let p be the number of distinct maximal subsequences of consecutive zeros of s. Clearly, if $p=0$ then $\Delta(k, s)=1$. Hence, suppose that $p \geq 1$ and let $1 \leq u_{1}<v_{1}<u_{2}<$ $v_{2}<\cdots<u_{p}<v_{p} \leq t$ be such that

$$
\left\{j \in\{1, \ldots, t\} \mid s_{j}=0\right\}=\bigcup_{i=1}^{p}\left\{u_{i}, \ldots, v_{i}-1\right\}
$$

(i.e. $\left(s_{u_{i}}, \ldots, s_{v_{i}-1}\right)$, with $1 \leq i \leq p$, are the p distinct maximal subsequences of consecutive zeros of s). Then, being $r_{i}=v_{i}-u_{i}$, for $1 \leq i \leq p$, we have

$$
\Delta(k, s)=\prod_{i=1}^{p} \sum_{\substack{\ell_{1}+\cdots+\ell_{r_{i}}=r_{i} \\ 0 \leq \ell_{1}+\cdots+\ell_{j} \leq j \leq j \leq r_{i}-1}}\binom{k_{u_{i}+r_{i}}-1}{\ell_{1}, \ldots, \ell_{r_{i}-1} \geq 0, \ell_{r_{i}} \geq 1} ~ \prod_{j=1}^{r_{i}-1}\binom{k_{u_{i}+j}}{\ell_{j}} .
$$

Finally, notice that, if β and β^{\prime} are two elements of \mathscr{O}_{m}^{+}with kernel type $k=\left(k_{1}, \ldots, k_{t}\right)$ such that $s_{\beta^{\prime}}=s_{\beta}$, then $\mathfrak{d}(\beta, i)=\mathfrak{d}\left(\beta^{\prime}, i\right)$, for all $1 \leq i \leq t$. Thus, defining $\Lambda(k, s)=$ $\prod_{i=1}^{t} \mathfrak{d}(\beta, i)$, where β is any transformation of \mathscr{O}_{m}^{+}with kernel type k and $s_{\beta}=s$, we have:

Theorem 3.3.

$$
\left|\mathscr{O}_{m \times n}^{+}\right|=\left|\mathscr{O}_{m \times n}^{-}\right|=\sum_{\substack{k=\left(k_{1}, \ldots, k_{t}\right) \\ 1 \leq k_{t}, \ldots, k_{t} \leq m \\ k_{1}+\ldots+k_{t}=m \\ 1 \leq t \leq m}} \sum_{\substack{ \\1 \leq\{0,1\}^{t-1} \times\{1\}}} \Delta(k, s) \Lambda(k, s) .
$$

The next table gives the size of the monoid $\mathscr{O}_{m \times n}^{+}\left(\right.$or $\left.\mathscr{O}_{m \times n}^{-}\right)$for several values of m and n.

$m \backslash n$	1	2	3	4	5	6
1	1	2	5	14	42	132
2	2	8	35	306	2401	21232
3	5	42	569	10024	210765	5089370
4	14	252	8482	410994	25366480	1847511492
5	42	1636	138348	18795636	3547275837	83918166624
6	132	11188	2388624	913768388	531098927994	415847258403464

Despite the unpleasant appearance, the previous formula allows us to calculate the cardinal of $\mathscr{O}_{m \times n}^{+}$, even for larger m and n. For instance, we have

$$
\left|\mathscr{O}_{10 \times 10}^{+}\right|=47016758951069862896388976221392645550606752244 .
$$

All these calculations were performed by using GAP [17].
In order to count the number of elements of the monoid $\mathscr{O} \mathscr{P}_{m \times n}$, we begin by recalling that, for $k \in \mathbb{N}$, being g_{k} the k-cycle $\left(\begin{array}{ccccc}1 & 2 & \cdots & k-1 & k \\ 2 & 3 & \cdots & k & 1\end{array}\right) \in \mathscr{O} \mathscr{P}_{k}$, each element $\alpha \in \mathscr{O} \mathscr{P}_{k}$ admits a factorization $\alpha=g_{k}^{j} \gamma$, with $0 \leq j \leq k-1$ and $\gamma \in \mathscr{O}_{k}$, which is unique unless α is constant [6].

Next, consider the permutations (of $\{1, \ldots, m n\}$)

$$
g=g_{m n}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & m n-1 & m n \\
2 & 3 & \cdots & m n & 1
\end{array}\right) \in \mathscr{O} \mathscr{P}_{m n}
$$

and
$f=g^{n}=\left(\begin{array}{ccc|ccc|ccc}1 & \cdots & n & n+1 & \cdots & m n-n & m n-n+1 & \cdots & m n \\ n+1 & \cdots & 2 n & 2 n+1 & \cdots & m n & 1 & \cdots & n\end{array}\right) \in \mathscr{O} \mathscr{P}_{m \times n}$.
Being α an element of $\mathscr{O} \mathscr{P}_{m \times n} \backslash \mathscr{O}_{m \times n}$ of type 1 or 2 (see Proposition 2.3) and $j \in$ $\{1, \ldots, m-1\}$ such that $(j n) \alpha>(j n+1) \alpha$, as $(j n+1) \alpha \leq \cdots \leq(m n) \alpha \leq 1 \alpha \leq \cdots \leq$ $(j n) \alpha$, it is clear that $f^{j} \alpha \in \mathscr{O}_{m \times n}$. Thus, each element α of $\mathscr{O} \mathscr{P}_{m \times n}$ of type 1 or 2 admits a factorization $\alpha=f^{j} \gamma$, with $0 \leq j \leq m-1$ and $\gamma \in \mathscr{O}_{m \times n}$, which is unique unless α is constant. Notice that, this uniqueness follows immediately from Catarino and Higgins's result mentioned above. Therefore we have precisely $m\left(\left|\mathscr{O}_{m \times n}\right|-m n\right)$ non-constant transformations of $\mathscr{O} \mathscr{P}_{m \times n}$ of types 1 and 2 and $m n$ constant transformations (which are elements of type 2 of $\mathscr{O} \mathscr{P}_{m \times n}$).

Now, let α be a transformation of $\mathscr{O} \mathscr{P}_{m \times n}$ of type 3 . As α is not constant, it can be factorized in a unique way as $g^{r} \gamma$, for some $r \in\{0, \ldots, m n-1\} \backslash\{j n \mid 0 \leq j \leq m-1\}$ and some non-constant order-preserving transformation γ from $\{1, \ldots, m n\}$ to A_{i}, for some $1 \leq i \leq m$. Since only elements of $\mathscr{O} \mathscr{P}_{m \times n}$ of type 3 have factorizations of this form and the number of non-constant and non-decreasing sequences of length $m n$ from a chain with n elements is equal to $\binom{m n+n-1}{n-1}-n$, we have precisely $\left.m(m n-m)\binom{m n+n-1}{n-1}-n\right)$ elements of type 3 in $\mathscr{O} \mathscr{P}_{m \times n}$. Thus $\left|\mathscr{O} \mathscr{P}_{m \times n}\right|=m\left|\mathscr{O}_{m \times n}\right|+m^{2}(n-1)\binom{m n+n-1}{n-1}-m n(m n-1)$ and so we obtain:
Theorem 3.4. $\left|\mathscr{O} \mathscr{P}_{m \times n}\right|=m \sum_{\substack{1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\ldots+k_{t}=m \\ 1 \leq t \leq m}}\binom{m}{t} \prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}+m^{2}(n-1)\binom{m n+n-1}{n-1}-m n(m n-1)$.
It follows a table with the sizes of the monoids $\mathscr{O} \mathscr{P}_{m \times n}$ for some values of m and n. Again, these calculations were performed by using GAP [17].

$m \backslash n$	1	2	3	4	5	6
1	1	4	24	128	610	2742
2	4	46	506	5034	51682	575268
3	24	447	9453	248823	8445606	349109532
4	128	4324	223852	17184076	1819339324	247307947608
5	610	42075	5555990	1207660095	387720453255	170017607919290
6	2742	405828	136530144	83547682248	81341248206546	114804703283314542

We finish this paper computing the cardinal of the monoid $\mathscr{O} \mathscr{R}_{m \times n}$. Notice that, as for $\mathscr{O} \mathscr{D}_{m \times n}$ and $\mathscr{O}_{m \times n}$, we have a similar relationship between $\mathscr{O} \mathscr{R}_{m \times n}$ and $\mathscr{O} \mathscr{P}_{m \times n}$. In fact, $\alpha \in \mathscr{O} \mathscr{R}_{m \times n}$ if and only if $\alpha \in \mathscr{O} \mathscr{P}_{m \times n}$ or $h \alpha \in \mathscr{O} \mathscr{P}_{m \times n}$. Hence, since $\left|\mathscr{O} \mathscr{P}_{m \times n}\right|=$ $\left|h \mathscr{O} \mathscr{P}_{m \times n}\right|$ and $\mathscr{O} \mathscr{P}_{m \times n} \cap h \mathscr{O} \mathscr{P}_{m \times n}=\left\{\alpha \in \mathscr{O} \mathscr{P}_{m \times n}| | \operatorname{Im}(\alpha) \mid \leq 2\right\}$, we obtain $\left|\mathscr{O} \mathscr{R}_{m \times n}\right|=$ $2\left|\mathscr{O} \mathscr{P}_{m \times n}\right|-\left|\left\{\alpha \in \mathscr{O} \mathscr{P}_{m \times n}| | \operatorname{Im}(\alpha) \mid=2\right\}\right|-m n$.

It remains to calculate the number of elements of $A=\left\{\alpha \in \mathscr{O} \mathscr{P}_{m \times n}| | \operatorname{Im}(\alpha) \mid=2\right\}$. First, we count the number of elements of A of types 2 and 3 . Let α be such a transformation. Then, there exists $k \in\{1, \ldots, m\}$ such that $|\operatorname{Im}(\alpha)| \subseteq A_{k}$. Clearly, in this case, the number
of distinct kernels allowed for α coincides with the number of distinct kernels allowed for transformations of $\mathscr{O} \mathscr{P}_{m n}$ of rank 2, which is $\binom{m n}{2}$ (see [6]). On the other hand, it is easy to check that we have $m\binom{n}{2}$ distinct images for α. Furthermore, for each such possible kernel and image, we have two distinct transformations of A. Hence, the total number of elements of A of types 2 and 3 is precisely $2 m\binom{n}{2}\binom{m n}{2}$.

Finally, we determine the number of elements of A of type 1 . Let $\alpha \in A$ be of type 1 and suppose that $\alpha \psi=\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right)$. Then β must have rank 2 and so, as $\beta \in \mathscr{O} \mathscr{P}_{m}$, we have $2\binom{m}{2}^{2}$ distinct possibilities for β (see [6]). Moreover, for each $1 \leq i \leq m, \alpha_{i}$ must be a constant transformation of \mathscr{O}_{n} and, for $1 \leq i, j \leq m$, if $i \beta=j \beta$ then $\alpha_{i}=\alpha_{j}$. Thus, for a fixed β, since β as rank 2 , we have precisely n^{2} sequences $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right)$ allowed. Hence, A has $2 n^{2}\binom{m}{2}^{2}$ distinct elements of type 1 . Therefore,

$$
\begin{aligned}
& \left|\mathscr{O} \mathscr{R}_{m \times n}\right|=2\left|\mathscr{O} \mathscr{P}_{m \times n}\right|-2 m\binom{n}{2}\binom{m n}{2}-2 n^{2}\binom{m}{2}^{2}-m n \\
& =2 m\left|\mathscr{O}_{m \times n}\right|+2 m^{2}(n-1)\binom{m n+n-1}{n-1}-2 m\binom{n}{2}\binom{m n}{2}-2 n^{2}\binom{m}{2}^{2}-m n(2 m n-1)
\end{aligned}
$$

and so we get:

Theorem 3.5.

$$
\begin{aligned}
\left|O \mathscr{R}_{m \times n}\right|= & 2 m \sum_{\substack{1 \leq k_{1}, \ldots, k_{t} \leq m \\
k_{1}+\ldots+k_{t}=m \\
1 \leq t \leq m}}\binom{m}{t} \prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}+2 m^{2}(n-1)\binom{m n+n-1}{n-1} \\
& -2 m\binom{n}{2}\binom{m n}{2}-2 n^{2}\binom{m}{2}^{2}-m n(2 m n-1) .
\end{aligned}
$$

Acknowledgement. The first author gratefully acknowledges support of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL. The second author gratefully acknowledges support of ISEL and of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL.

References

[1] A. Ja. Aĭzenštat, On homomorphisms of semigroups of endomorphisms of ordered sets, Leningrad. Gos. Ped. Inst. Učen. Zap. 238 (1962), 38-48.
[2] A. Ja. Aı̆zenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sibirsk. Mat. Z̆. 3 (1962), 161-169.
[3] J. Almeida and M. V. Volkov, The gap between partial and full, Internat. J. Algebra Comput. 8 (1998), no. 3, 399-430.
[4] J. Araújo and C. Schneider, The rank of the endomorphism monoid of a uniform partition, Semigroup Forum 78 (2009), no. 3, 498-510.
[5] R. E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math. 24 (2000), no. 1, 1-7.
[6] P. M. Catarino and P. M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), no. 2, 190-206
[7] V. H. Fernandes, Semigroups of order preserving mappings on a finite chain: a new class of divisors, Semigroup Forum 54 (1997), no. 2, 230-236.
[8] V. H. Fernandes, The monoid of all injective orientation preserving partial transformations on a finite chain, Comm. Algebra 28 (2000), no. 7, 3401-3426.
[9] V. U. Fernandesh, A new class of divisors of semigroups of isotone mappings of finite chains, Izv. Vyssh. Uchebn. Zaved. Mat. 2002, no. 3, 51-59; translation in Russian Math. (Iz. VUZ) 46 (2002), no. 3, 47-55.
[10] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, Presentations for some monoids of injective partial transformations on a finite chain, Southeast Asian Bull. Math. 28 (2004), no. 5, 903-918.
[11] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, Congruences on monoids of order-preserving or orderreversing transformations on a finite chain, Glasg. Math. J. 47 (2005), no. 2, 413-424.
[12] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, Congruences on monoids of transformations preserving the orientation of a finite chain, J. Algebra 321 (2009), no. 3, 743-757.
[13] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, The cardinal and the idempotent number of various monoids of transformations on a finite chain, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 79-85.
[14] V. H. Fernandes and T. M. Quinteiro, Bilateral semidirect product decompositions of transformation monoids, Semigroup Forum 82 (2011), no. 2, 271-287.
[15] V. H. Fernandes and T. M. Quinteiro, On the monoids of transformations that preserve the order and a uniform partition, Comm. Algebra 39 (2011), no. 8, 2798-2815.
[16] V. H. Fernandes and T. M. Quinteiro, On the ranks of certain monoids of transformation that preserve a uniform partition, preprint.
[17] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12; 2008, (http://www.gapsystem.org).
[18] G. U. Garba, Nilpotents in semigroups of partial one-to-one order-preserving mappings, Semigroup Forum 48 (1994), no. 1, 37-49.
[19] G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), no. 3, 272-282
[20] J. M. Harris, J. L. Hirst and M. J. Mossinghoff, Combinatorics and Graph Theory, Undergraduate Texts in Mathematics, Springer, New York, 2000.
[21] P. M. Higgins, Divisors of semigroups of order-preserving mappings on a finite chain, Internat. J. Algebra Comput. 5 (1995), no. 6, 725-742.
[22] J. M. Howie, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. (2) $\mathbf{1 7}$ (1970/71), 223-236.
[23] P. Huisheng, On the rank of the semigroup $T_{E}(X)$, Semigroup Forum 70 (2005), no. 1, 107-117.
[24] H. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra 33 (2005), no. 1, 109-118.
[25] P. Huisheng and Z. Dingyu, Green's equivalences on semigroups of transformations preserving order and an equivalence relation, Semigroup Forum 71 (2005), no. 2, 241-251.
[26] M. Kunze, Bilateral semidirect products of transformation semigroups, Semigroup Forum 45 (1992), no. 2, 166-182.
[27] M. Kunze, Standard automata and semidirect products of transformation semigroups, Theoret. Comput. Sci. 108 (1993), no. 1, 151-171.
[28] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, J. Algebra 278 (2004), no. 1, 342-359.
[29] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), no. 1, 51-62.
[30] D. B. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra 26 (1998), no. 2, 515-547.
[31] J.-E. Pin, Varieties of Formal Languages, translated from the French by A. Howie, Foundations of Computer Science, Plenum, New York, 1986.
[32] V. B. Repnitskiĭ and M. V. Volkov, The finite basis problem for pseudovariety \mathscr{O}, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 3, 661-669.
[33] A. Solomon, Catalan monoids, monoids of local endomorphisms, and their presentations, Semigroup Forum 53 (1996), no. 3, 351-368.
[34] L. Sun, H. Pei and Z. Cheng, Regularity and Green's relations for semigroups of transformations preserving orientation and an equivalence, Semigroup Forum 74 (2007), no. 3, 473-486.
[35] A. S. Vernitskiĭ and M. V. Volkov, A proof and generalization of the Higgins theorem on divisors of semigroups of isotonic transformations, Izv. Vyssh. Uchebn. Zaved. Mat. 1995, no. 1, 38-44; translation in Russian Math. (Iz. VUZ) 39 (1995), no. 1, 34-39.

[^0]: Communicated by Rosihan M. Ali, Dato'.
 Received: August 6, 2010; Revised: November 10, 2010.

