BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

The Cardinal of Various Monoids of Transformations That Preserve a Uniform Partition

¹Vítor H. Fernandes and ²Teresa M. Quinteiro

¹Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal ¹Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal ²Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1950-062 Lisboa, Portugal ¹vhf@fct.unl.pt, ²tmelo@dec.isel.ipl.pt

Abstract. In this paper we give formulas for the number of elements of the monoids $\mathscr{O}\mathscr{R}_{m\times n}$ of all full transformations on a finite chain with *mn* elements that preserve a uniform *m*-partition and preserve or reverse the orientation and for its submonoids $\mathscr{O}\mathscr{D}_{m\times n}$ of all order-preserving or order-reversing elements, $\mathscr{O}\mathscr{P}_{m\times n}$ of all orientation-preserving elements, $\mathscr{O}\mathscr{P}_{m\times n}$ of all order-preserving elements, $\mathscr{O}\mathscr{P}_{m\times n}$ of all extensive order-preserving elements and $\mathscr{O}_{m\times n}^-$ of all co-extensive order-preserving elements.

2010 Mathematics Subject Classification: 20M20, 05A10

Keywords and phrases: Order-preserving/reversing, orientation-preserving/reversing, extensive, equivalence-preserving, transformations.

1. Introduction and preliminaries

For $n \in \mathbb{N}$, let $X_n = \{1, 2, ..., n\}$. Following the standard notation, we denote by \mathscr{PT}_n the monoid (under composition) of all partial transformations on X_n and by \mathscr{T}_n and \mathscr{I}_n its submonoids of all full transformations and of all injective partial transformations, respectively. Now, consider the usual linear order on X_n , i.e. $X_n = \{1 < 2 < \cdots < n\}$. A transformation $\alpha \in \mathscr{PT}_n$ is said to be *extensive* [resp., *co-extensive*] if $x \le x\alpha$ [resp., $x\alpha \le x$], for all $x \in \text{Dom}(\alpha)$. We denote by \mathscr{T}_n^+ [resp., \mathscr{T}_n^-] the submonoid of \mathscr{T}_n of all extensive [resp., co-extensive] transformations.

A transformation $\alpha \in \mathscr{PT}_n$ is said to be *order-preserving* [resp., *order-reversing*] if $x \leq y$ implies $x\alpha \leq y\alpha$ [resp., $y\alpha \leq x\alpha$], for all $x, y \in \text{Dom}(\alpha)$. We denote by \mathscr{PO}_n the submonoid of \mathscr{PT}_n of all order-preserving partial transformations. As usual, we denote by \mathscr{O}_n the monoid $\mathscr{PO}_n \cap \mathscr{T}_n$ of all full transformations that preserve the order. This monoid has been extensively studied since the sixties (e.g. see [1, 2, 3, 7, 9, 21, 32, 35]). In particular, in 1971, Howie [22] showed that the cardinal of \mathscr{O}_n is $\binom{2n-1}{n-1}$ and in [19], jointly with

Communicated by Rosihan M. Ali, Dato'.

Received: August 6, 2010; Revised: November 10, 2010.

Gomes, they proved that

$$|\mathscr{PO}_n| = \sum_{i=1}^n \binom{n}{i} \binom{n+i-1}{i} + 1.$$

See also Laradji and Umar [28, 29].

Next, denote by \mathcal{O}_n^+ [resp., by \mathcal{O}_n^-] the monoid $\mathcal{T}_n^+ \cap \mathcal{O}_n$ [resp., $\mathcal{T}_n^- \cap \mathcal{O}_n$] of all extensive [resp., co-extensive] order-preserving full transformations. The monoids \mathcal{O}_n^+ and \mathcal{O}_n^- are isomorphic and their cardinal is the *n*th-Catalan number, i.e.

$$|\mathcal{O}_n^+| = |\mathcal{O}_n^-| = \frac{1}{n+1} \binom{2n}{n}$$

(see [33]). Moreover, the family $\{\mathcal{O}_n^+ \mid n \in \mathbb{N}\}$ generates the pseudovariety of \mathscr{J} -trivial monoids. Notice that, this pseudovariety is also generated by the syntactic monoids of the piecewise testable languages (see e.g. [31]). Regarding the injective counterpart of \mathcal{O}_n , i.e. the inverse monoid $\mathscr{POI}_n = \mathscr{PO}_n \cap \mathscr{I}_n$ of all injective order-preserving partial transformations, we have $|\mathscr{POI}_n| = \binom{2n}{n}$. This result was first presented by Garba in [18] (see also [7]).

Now, being \mathscr{POD}_n the submonoid of \mathscr{PT}_n of all partial transformations that preserve or reverse the order, $\mathscr{OD}_n = \mathscr{POD}_n \cap \mathscr{T}_n$ and $\mathscr{PODI}_n = \mathscr{POD}_n \cap \mathscr{I}_n$ (the full and partial injective counterparts of \mathscr{POD}_n , respectively), Fernandes *et al.* [10, 11] proved that

$$|\mathscr{POD}_n| = \sum_{i=1}^n \binom{n}{i} \left(2\binom{n+i-1}{i} - n \right) + 1, \quad |\mathscr{OD}_n| = 2\binom{2n-1}{n-1} - n$$

and

$$|\mathscr{PODI}_n| = 2\binom{2n}{n} - n^2 - 1.$$

Wider classes of monoids are obtained when we consider transformations that either preserve or reverse the orientation. Let $a = (a_1, a_2, ..., a_t)$ be a sequence of $t, t \ge 0$, elements from the chain X_n . We say that a is *cyclic* [resp., *anti-cyclic*] if there exists no more than one index $i \in \{1, ..., t\}$ such that $a_i > a_{i+1}$ [resp., $a_i < a_{i+1}$], where a_{t+1} denotes a_1 . Let $\alpha \in \mathcal{T}_n$ and suppose that $Dom(\alpha) = \{a_1, ..., a_t\}$, with $t \ge 0$ and $a_1 < \cdots < a_t$. We say that α is *orientation-preserving* [resp., *orientation-reversing*] if the sequence of its images $(a_1\alpha, a_2\alpha, ..., a_t\alpha)$ is cyclic [resp., anti-cyclic]. This notions were introduced by McAlister in [30] and independently by Catarino and Higgins in [6].

Denote by \mathscr{POP}_n [resp., \mathscr{POR}_n] the submonoid of \mathscr{PT}_n of all orientation-preserving [resp., orientation-preserving or orientation-reversing] transformations. The cardinalities of \mathscr{POP}_n and \mathscr{POR}_n were calculated by Fernandes *et al.* [12] and are $1 + (2^n - 1)n + \sum_{k=2}^n k{n \choose k}^2 2^{n-k}$ and $1 + (2^n - 1)n + 2{n \choose 2}^2 2^{n-2} + \sum_{k=3}^n 2k{n \choose k}^2 2^{n-k}$, respectively. As usual, \mathscr{OP}_n denotes the monoid $\mathscr{POP}_n \cap \mathscr{T}_n$ of all full transformations that preserve the orientation, \mathscr{OR}_n denotes the monoid $\mathscr{POPI}_n \cap \mathscr{T}_n$ of all full transformations that preserve or reserve the orientation and \mathscr{POPI}_n and \mathscr{PORI}_n denote the submonoids of \mathscr{POP}_n and \mathscr{POR}_n , respectively, whose elements are the injective transformations. McAlister in [30], and independently Catarino and Higgins in [6], proved that

$$|\mathscr{OP}_n| = n \binom{2n-1}{n-1} - n(n-1)$$
 and $|\mathscr{OR}_n| = n \binom{2n}{n} - \frac{n^2}{2}(n^2 - 2n + 5) + n.$

886

The monoids \mathscr{OP}_n and \mathscr{OR}_n were also studied by Arthur and Ruškuc in [5]. Regarding their injective counterparts, in [8], Fernandes established that $|\mathscr{POPI}_n| = 1 + \frac{n}{2} \binom{2n}{n}$ and, in [10], Fernandes *et al.* showed that

$$|\mathscr{PORI}_n| = 1 + n \binom{2n}{n} - \frac{n^2}{2}(n^2 - 2n + 3).$$

All these results are summarized in [13].

Now, let *X* be a set and denote by $\mathscr{T}(X)$ the monoid (under composition) of all full transformations on *X*. Let ρ be an equivalence relation on *X* and denote by $\mathscr{T}_{\rho}(X)$ the submonoid of $\mathscr{T}(X)$ of all transformations that preserve the equivalence relation ρ , i.e. $\mathscr{T}_{\rho}(X) = \{\alpha \in \mathscr{T}(X) \mid (\alpha\alpha, b\alpha) \in \rho$, for all $(a, b) \in \rho\}$. This monoid was studied by Huisheng in [24] who determined its regular elements and described its Green's relations.

Let $m, n \in \mathbb{N}$. Of particular interest is the submonoid $\mathscr{T}_{m \times n} = \mathscr{T}_{\rho}(X_{mn})$ of \mathscr{T}_{mn} , with ρ the equivalence relation on X_{mn} defined by $\rho = (A_1 \times A_1) \cup (A_2 \times A_2) \cup \cdots \cup (A_m \times A_m)$, where $A_i = \{(i-1)n+1, \ldots, in\}$, for $i \in \{1, \ldots, m\}$. Notice that the ρ -classes A_i , with $1 \le i \le m$, form a uniform *m*-partition of X_{mn} . Regarding the rank of $\mathscr{T}_{m \times n}$, first, Huisheng [23] proved that it is at most 6 and, later, Araújo and Schneider [4] improved this result by showing that, for $m \ge 2$ and $n \ge 2$, the rank of $\mathscr{T}_{m \times n}$ is precisely 4.

Finally, denote by $\mathscr{O}_{m \times n}$ the submonoid of $\mathscr{T}_{m \times n}$ of all orientation-preserving or orientation-reversing transformations, i.e. $\mathscr{O}_{m \times n} = \mathscr{T}_{m \times n} \cap \mathscr{O}_{m m}$. Similarly, let $\mathscr{O}_{m \times n} = \mathscr{T}_{m \times n} \cap \mathscr{O}_{m m}$, $\mathscr{O}_{m \times n} = \mathscr{T}_{m \times n} \cap \mathscr{O}_{m m}$ and $\mathscr{O}_{m \times n} = \mathscr{T}_{m \times n} \cap \mathscr{O}_{m m}$. Consider also the submonoids $\mathscr{O}_{m \times n}^+ = \mathscr{O}_{m \times n} \cap \mathscr{O}_{m n}^+$ and $\mathscr{O}_{m \times n}^- = \mathscr{O}_{m \times n} \cap \mathscr{O}_{m n}^-$ of $\mathscr{O}_{m \times n}$ whose elements are the extensive transformations and the co-extensive transformations, respectively.

Example 1.1. Consider the following transformations of \mathcal{T}_{12} :

Then, we have: $\alpha_1 \in \mathcal{T}_{3\times 4}$, but $\alpha_1 \notin \mathcal{OR}_{3\times 4}$; $\alpha_2 \in \mathcal{OR}_{3\times 4}$, but $\alpha_2 \notin \mathcal{OP}_{3\times 4}$; $\alpha_3 \in \mathcal{OP}_{3\times 4}$, but $\alpha_3 \notin \mathcal{O}_{3\times 4}$; $\alpha_4 \in \mathcal{OP}_{3\times 4}$, but $\alpha_4 \notin \mathcal{O}_{3\times 4}$; $\alpha_5 \in \mathcal{O}_{3\times 4}$, but $\alpha_5 \notin \mathcal{O}_{3\times 4}^+$ and $\alpha_5 \notin \mathcal{O}_{3\times 4}^-$; $\alpha_6 \in \mathcal{O}_{3\times 4}^+$; $\alpha_7 \in \mathcal{O}_{3\times 4}^-$; and, finally, $\alpha_8 \notin \mathcal{T}_{3\times 4}$. V. H. Fernandes and T. M. Quinteiro

Observe that, as happens with \mathcal{O}_n^- and \mathcal{O}_n^+ , the monoids $\mathcal{O}_{m\times n}^-$ and $\mathcal{O}_{m\times n}^+$ are isomorphic [15]. Recall that in [26] Kunze proved that the monoid \mathcal{O}_n is a quotient of a bilateral semidirect product of its subsemigroups \mathcal{O}_n^- and \mathcal{O}_n^+ . This result was generalized by the authors [15] by showing that $\mathcal{O}_{m\times n}$ is also a quotient of a bilateral semidirect product of its subsemigroups \mathcal{O}_n^- and \mathcal{O}_n^+ . This result was generalized by the authors [15] by showing that $\mathcal{O}_{m\times n}$ is also a quotient of a bilateral semidirect product of its subsemigroups $\mathcal{O}_{m\times n}^-$ and $\mathcal{O}_{m\times n}^+$. See also [27, 14]. In [25] Huisheng and Dingyu described the regular elements and the Green relations of $\mathcal{O}_{m\times n}$. On the other hand, the ranks of the monoids $\mathcal{O}_{m\times n}$, $\mathcal{O}_{m\times n}^+$ and $\mathcal{O}_{m\times n}^-$ were calculated by the authors in [15]. Regarding $\mathcal{O}\mathcal{P}_{m\times n}$, a description of the regular elements and a characterization of the Green relations were given by Sun *et al.* in [34]. Its rank was determined by the authors in [16], who also computed in the same paper the ranks of the monoids $\mathcal{O}\mathcal{P}_{m\times n}$ and $\mathcal{O}\mathcal{R}_{m\times n}$.

In this paper we calculate the cardinals of the monoids $\mathcal{OR}_{m\times n}$, $\mathcal{OP}_{m\times n}$, $\mathcal{OD}_{m\times n}$, $\mathcal{Om}_{m\times n}$, $\mathcal{Om}_{m\times n}$, $\mathcal{Om}_{m\times n}$, $\mathcal{Om}_{m\times n}$. In order to achieve this goal we use a wreath product description of $\mathcal{T}_{m\times n}$, due to Araújo and Schneider [4], that we recall in Section 2.

2. Wreath products of transformation semigroups

In [4] Araújo and Schneider proved that the rank of $\mathscr{T}_{m \times n}$ is 4, by using the concept of wreath product of transformation semigroups. This approach will also be very useful in this paper. Next, we recall some facts from [4, 15, 16]. First, we define the wreath product $\mathscr{T}_n \wr \mathscr{T}_m$ of \mathscr{T}_n and \mathscr{T}_m as being the monoid with underlying set $\mathscr{T}_n^m \times \mathscr{T}_m$ and multiplication defined by $(\alpha_1, \ldots, \alpha_m; \beta)(\alpha'_1, \ldots, \alpha'_m; \beta') = (\alpha_1 \alpha'_{1\beta}, \ldots, \alpha_m \alpha'_{m\beta}; \beta\beta')$, for all $(\alpha_1, \ldots, \alpha_m; \beta), (\alpha'_1, \ldots, \alpha'_m; \beta') \in \mathscr{T}_n^m \times \mathscr{T}_m$. Now, let $\alpha \in \mathscr{T}_{m \times n}$ and let $\beta = \alpha / \rho \in \mathscr{T}_m$ be the *quotient* map of α by ρ , i.e. for all $j \in \{1, \ldots, m\}$, we have $A_j \alpha \subseteq A_{j\beta}$. For each $j \in \{1, \ldots, m\}$, define $\alpha_j \in \mathscr{T}_n$ by $k\alpha_j = ((j-1)n+k)\alpha - (j\beta - 1)n$, for all $k \in \{1, \ldots, n\}$. Let $\overline{\alpha} = (\alpha_1, \alpha_2, \ldots, \alpha_m; \beta) \in \mathscr{T}_n^m \times \mathscr{T}_m$. With these notations, the function $\psi : \mathscr{T}_{m \times n} \longrightarrow \mathscr{T}_n \wr \mathscr{T}_m$, $\alpha \longmapsto \overline{\alpha}$, is an isomorphism (see [4, Lemma 2.1]).

Observe that, from this fact, we can immediately conclude that the cardinal of $\mathscr{T}_{m \times n}$ is $n^{nm}m^m$.

Example 2.1. Consider the transformation

Since

$$\beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ \alpha_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 2 \end{pmatrix},$$
$$\alpha_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 4 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \end{pmatrix},$$

we have $\overline{\alpha} = (\alpha_1, \alpha_2, \alpha_3; \beta)$.

Next, consider

$$\overline{\mathscr{O}}_{m \times n} = \{ (\alpha_1, \dots, \alpha_m; \beta) \in \mathscr{O}_n^m \times \mathscr{O}_m \mid j\beta = (j+1)\beta \text{ implies} \\ n\alpha_j \le 1\alpha_{j+1}, \text{ for all } j \in \{1, \dots, m-1\} \}.$$

Notice that, if $(\alpha_1, ..., \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}$ and $1 \le i < j \le m$ are such that $i\beta = j\beta$, then $n\alpha_i \le 1\alpha_j$.

Proposition 2.1. [15] The set $\overline{\mathcal{O}}_{m \times n}$ is a submonoid of $\mathcal{T}_n \wr \mathcal{T}_m$ (and of $\mathcal{O}_n \wr \mathcal{O}_m$) isomorphic to $\mathcal{O}_{m \times n}$.

On the other hand, since

$$\overline{\mathscr{O}}_{m\times n}^{+} = \{(\alpha_{1}, \dots, \alpha_{m}; \beta) \in \mathscr{O}_{n}^{m-1} \times \mathscr{O}_{n}^{+} \times \mathscr{O}_{m}^{+} \mid j\beta = (j+1)\beta \text{ implies } n\alpha_{j} \leq 1\alpha_{j+1} \text{ and} \\ j\beta = j \text{ implies } \alpha_{j} \in \mathscr{O}_{n}^{+}, \text{ for all } j \in \{1, \dots, m-1\}\}$$

and

$$\overline{\mathscr{O}}_{m\times n}^{-} = \{(\alpha_1, \dots, \alpha_m; \beta) \in \mathscr{O}_n^{-} \times \mathscr{O}_n^{m-1} \times \mathscr{O}_m^{-} \mid (j-1)\beta = j\beta \text{ implies } n\alpha_{j-1} \le 1\alpha_j \text{ and} \\ j\beta = j \text{ implies } \alpha_j \in \mathscr{O}_n^{-}, \text{ for all } j \in \{2, \dots, m\}\},$$

we have:

Proposition 2.2. [15] The set $\overline{\mathcal{O}}_{m \times n}^+$ [resp. $\overline{\mathcal{O}}_{m \times n}^-$] is a submonoid of $\mathcal{T}_n \wr \mathcal{T}_m$ (and of $\mathcal{O}_n \wr \mathcal{O}_m$) isomorphic to $\mathcal{O}_{m \times n}^+$ [resp. $\mathcal{O}_{m \times n}^-$].

A description of $\mathscr{OP}_{m \times n}$ in terms of wreath products is more elaborate. In fact, considering addition modulo *m* (in particular, m + 1 = 1), we have:

Proposition 2.3. [16] A(m+1)-tuple $(\alpha_1, \alpha_2, ..., \alpha_m; \beta)$ of $\mathscr{T}_n^m \times \mathscr{T}_m$ belongs to $\mathscr{OP}_{m \times n} \psi$ if and only if it satisfies one of the following conditions:

- (1) (a) β is a non-constant transformation of \mathscr{OP}_m , (b) for all $i \in \{1, ..., m\}$, $\alpha_i \in \mathscr{O}_n$ and, (c) for all $i \in \{1, ..., m\}$, $\alpha_i \in (i + 1)\beta$ implies $\alpha_i \in \{1, ..., m\}$.
 - (c) for all $j \in \{1, ..., m\}$, $j\beta = (j+1)\beta$ implies $n\alpha_j \leq 1\alpha_{j+1}$;
- (2) (a) β is a constant transformation, (b) for all $i \in \{1, ..., m\}$, $\alpha_i \in \mathcal{O}_n$ and
 - (c) there exists at most one index $j \in \{1, ..., m\}$ such that $n\alpha_j > 1\alpha_{j+1}$;
- (3) (a) β is a constant transformation,
 - (b) there exists one index $i \in \{1, ..., m\}$ such that $\alpha_i \in \mathcal{OP}_n \setminus \mathcal{O}_n$ and, for all $j \in \{1, ..., m\} \setminus \{i\}, \alpha_j \in \mathcal{O}_n$
 - (c) and, for all $j \in \{1, ..., m\}$, $n\alpha_j \le 1\alpha_{j+1}$.

Let $\alpha \in \mathscr{OP}_{m \times n}$. We say that α is of *type i* if $\alpha \psi$ satisfies the condition (*i*) of the previous proposition, for $i \in \{1, 2, 3\}$.

3. The cardinals

In this section we use the previous bijections to obtain formulas for the number of elements of the monoids $\mathscr{O}_{m \times n}$, $\mathscr{O}_{m \times n}^+$, $\mathscr{O}_{m \times n}^-$, $\mathscr{O}_{m \times n}$, $\mathscr{O}_{m \times n}$ and $\mathscr{O}_{m \times n}$. In order to count the elements of $\mathscr{O}_{m \times n}$, on one hand, for each transformation $\beta \in \mathscr{O}_m$, we determine the number of sequences $(\alpha_1, \ldots, \alpha_m) \in \mathscr{O}_n^m$ such that $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathscr{O}}_{m \times n}$ and, on the other hand, we notice that this last number just depends of the kernel of β (and not of β itself).

With this purpose, let $\beta \in \mathcal{O}_m$. Suppose that $\text{Im}(\beta) = \{b_1 < b_2 < \cdots < b_t\}$, for some $1 \le t \le m$, and define $k_i = |b_i\beta^{-1}|$, for $i = 1, \ldots, t$. Being β an order-preserving transformation, the sequence (k_1, \ldots, k_t) determines the kernel of β : we have $\{k_1 + \cdots + k_{i-1} + 1, \ldots, k_1 + \cdots + k_i\}\beta = \{b_i\}$, for $i = 1, \ldots, t$ (considering $k_1 + \cdots + k_{i-1} + 1 = 1$, with i = 1). We define the *kernel type* of β as being the sequence (k_1, \ldots, k_t) . Notice that $1 \le k_i \le m$, for $i = 1, \ldots, t$, and $k_1 + k_2 + \cdots + k_t = m$. Now, recall that the number of non-decreasing sequences of length k whose terms are taken from a chain with n elements is equal to $\binom{n+k-1}{k} = \binom{n+k-1}{n-1}$,

i.e. the number of *k*-combinations with repetitions from a set with *n* elements (see [20], for example). Therefore, since $(\alpha_1, ..., \alpha_k) \in \mathcal{O}_n^k$ satisfies the condition $n\alpha_j \leq 1\alpha_{j+1}$, for all $1 \leq j \leq k-1$, if and only if the sequence obtained by concatenating the sequences of images of $\alpha_1, ..., \alpha_k$ (by this order) is non-decreasing, it follows that the set $\{(\alpha_1, ..., \alpha_k) \in \mathcal{O}_n^k \mid n\alpha_j \leq 1\alpha_{j+1}, \text{ for all } 1 \leq j \leq k-1\}$ has size $\binom{n+kn-1}{n-1}$.

Since $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}$ if and only if, for all $1 \le i \le t$, $\alpha_{k_1 + \cdots + k_{i-1} + 1}, \ldots, \alpha_{k_1 + \cdots + k_i}$ are k_i order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence, then we have $\prod_{i=1}^{t} {k_i n + n - 1 \choose n-1}$ elements in $\overline{\mathcal{O}}_{m \times n}$ whose (m+1)-component is β .

Finally it is clear that if β and β' are two elements of \mathcal{O}_m with the same kernel type then $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}$ if and only if $(\alpha_1, \ldots, \alpha_m; \beta') \in \overline{\mathcal{O}}_{m \times n}$. Thus, as the number of transformations $\beta \in \mathcal{O}_m$ with kernel type of length t $(1 \le t \le m)$ coincides with the number of *t*-combinations (without repetition) from a set with *m* elements, it follows:

Theorem 3.1.
$$|\mathcal{O}_{m \times n}| = \sum_{\substack{1 \le k_1, \dots, k_t \le m \\ k_1 + \dots + k_t = m \\ 1 \le t \le m}} {\binom{m}{t}} \prod_{i=1}^{t} {\binom{k_i n + n - 1}{n-1}}.$$

The table below shows the size of the monoid $\mathcal{O}_{m \times n}$ for several values of *m* and *n*. These calculations were performed by using GAP [17].

$m \setminus n$	1	2	3	4	5	6
1	1	3	10	35	126	462
2	3	19	156	1555	17878	225820
3	10	138	2845	78890	2768760	115865211
4	35	1059	55268	4284451	454664910	61824611940
5	126	8378	1109880	241505530	77543615751	34003513468232
6	462	67582	22752795	13924561150	13556873588212	19134117191404027

In view of Theorem 3.1, finding the cardinal of $\mathscr{O}_{m \times n}$ is not difficult. Indeed, consider the reflexion permutation $h = \begin{pmatrix} 1 & 2 & \cdots & mn-1 & mn \\ mn & mn-1 & \cdots & 2 & 1 \end{pmatrix}$. Observe that $h \in \mathscr{O}_{\mathcal{D}_{m \times n}}$ and, given $\alpha \in \mathscr{T}_{m \times n}$, we have $\alpha \in \mathscr{O}_{\mathcal{D}_{m \times n}}$ if and only if $\alpha \in \mathscr{O}_{m \times n}$ or $h\alpha \in \mathscr{O}_{m \times n}$. On the other hand, as clearly $|\mathscr{O}_{m \times n}| = |h\mathscr{O}_{m \times n}|$ and $|\mathscr{O}_{m \times n} \cap h\mathscr{O}_{m \times n}| = |\{\alpha \in \mathscr{O}_{m \times n} \mid |\operatorname{Im}(\alpha)| = 1\}| = mn$, it follows immediately that

Theorem 3.2.
$$|\mathscr{OD}_{m \times n}| = 2|\mathscr{O}_{m \times n}| - mn = 2 \sum_{\substack{1 \le k_1, \dots, k_l \le m \\ k_1 + \dots + k_l = m \\ 1 \le l \le m}} {\binom{m}{l}} \prod_{i=1}^{l} {\binom{k_i n + n - 1}{n-1}} - mn.$$

Next, we describe a process to count the number of elements of $\mathcal{O}_{m\times n}^+$. First, recall that the cardinal of \mathcal{O}_n^+ is the *n*th-Catalan number, i.e. $|\mathcal{O}_n^+| = \frac{1}{n+1} {\binom{2n}{n}}$. See [33]. It is also useful to consider the following numbers: $\theta(n,i) = |\{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i\}|$, for $1 \le i \le n$. Clearly, we have $|\mathcal{O}_n^+| = \sum_{i=1}^n \theta(n,i)$. Moreover, for $2 \le i \le n-1$, we have $\theta(n,i) = \theta(n,i+1) + \theta(n-1,i-1)$. In fact, $\{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i\} = \{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i < 2\alpha\} \cup \{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = 2\alpha = i\}$ and it is easy to show that the function which maps each transformation $\beta \in \{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i < 2\alpha\}$ into the transformation

$$\left(\begin{array}{cccc}1&2&\ldots&n\\i+1&2\beta&\ldots&n\beta\end{array}\right)\in\{\alpha\in\mathscr{O}_n^+\mid 1\alpha=i+1\}$$

and the function which maps each transformation $\beta \in \{\alpha \in \mathcal{O}_{n-1}^+ \mid 1\alpha = i-1\}$ into the transformation

$$\left(\begin{array}{cccc}1&2&3&\ldots&n-1&n\\i&i&2\beta+1&\ldots&(n-2)\beta+1&(n-1)\beta+1\end{array}\right)\in\{\alpha\in\mathscr{O}_n^+\mid 1\alpha=2\alpha=i\}$$

are bijections. Thus

$$\begin{split} \theta(n,i) &= |\{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i < 2\alpha\}| + |\{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = 2\alpha = i\}| \\ &= |\{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i+1\}| + |\{\alpha \in \mathcal{O}_{n-1}^+ \mid 1\alpha = i-1\}| \\ &= \theta(n,i+1) + \theta(n-1,i-1). \end{split}$$

Also, it is not hard to prove that $\theta(n,2) = \theta(n,1) = \sum_{i=1}^{n-1} \theta(n-1,i) = |\mathcal{O}_{n-1}^+|$. Now, we can prove:

Lemma 3.1. For all $1 \le i \le n$,

$$\theta(n,i) = \frac{i}{n} \binom{2n-i-1}{n-i} = \frac{i}{n} \binom{2n-i-1}{n-1}.$$

Proof. We prove the lemma by induction on *n*. For n = 1, it is clear that $\theta(1,1) = 1 = \frac{1}{1} \binom{2-1-1}{1-1}$. Let $n \ge 2$ and suppose that the formula is valid for n-1. Next, we prove the formula for *n* by induction on *i*. For i = 1, as observed above, we have

$$\theta(n,1) = |\mathcal{O}_{n-1}^+| = \frac{1}{n} \binom{2n-2}{n-1}.$$

For i = 2, we have

$$\begin{aligned} \theta(n,2) &= \theta(n,1) = \frac{1}{n} \binom{2n-2}{n-1} = \frac{2}{n} \frac{(2n-2)!}{(n-1)!(n-1)!} \frac{n-1}{2n-2} \\ &= \frac{2}{n} \frac{(2n-3)!}{(n-1)!(n-2)!} = \frac{2}{n} \binom{2n-3}{n-1}. \end{aligned}$$

Now, suppose that the formula is valid for i - 1, with $3 \le i \le n$. Then, using both induction hypotheses on *i* and on *n* in the second equality, we have

$$\begin{split} \theta(n,i) &= \theta(n,i-1) - \theta(n-1,i-2) = \frac{i-1}{n} \binom{2n-i}{n-1} - \frac{i-2}{n-1} \binom{2n-i-1}{n-2} \\ &= \frac{i-1}{n} \frac{(2n-i)!}{(n-1)!(n-i+1)!} - \frac{i-2}{n-1} \frac{(2n-i-1)!}{(n-2)!(n-i+1)!} \\ &= \frac{i(n-i+1)}{n(2n-i)} \frac{(2n-i)!}{(n-1)!(n-i+1)!} = \frac{i}{n} \binom{2n-i-1}{n-1}, \end{split}$$

as required.

Recall that $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}^+$ if and only if $\beta \in \mathcal{O}_m^+$, $\alpha_m \in \mathcal{O}_n^+$, $\alpha_1, \ldots, \alpha_{m-1} \in \mathcal{O}_n$ and, for all $j \in \{1, \ldots, m-1\}$, $j\beta = (j+1)\beta$ implies $n\alpha_j \leq 1\alpha_{j+1}$ and $j\beta = j$ implies $\alpha_j \in \mathcal{O}_n^+$. Let $\beta \in \mathcal{O}_m^+$. As for the monoid $\mathcal{O}_{m \times n}$, we aim to count the number of sequences $(\alpha_1, \ldots, \alpha_m) \in \mathcal{O}_n^m$ such that $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}^+$. Let (k_1, \ldots, k_t) be the kernel type of β . Let $K_i = \{k_1 + \cdots + k_{i-1} + 1, \ldots, k_1 + \cdots + k_i\}$, for $i = 1, \ldots, t$. Then, β fixes a point in K_i if and only if it fixes $k_1 + \cdots + k_i$, for $i = 1, \ldots, t$. It follows that $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}^+$ if and only if, for all $1 \leq i \leq t$:

I

- If β does not fix a point in K_i, then α_{k1+···+ki-1}+1,..., α_{k1+···+ki} are k_i order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence (in this case, we have ^(kin+n-1)_{n-1}) subsequences (α_{k1+···+ki-1}+1,..., α_{k1+···+ki}) allowed);
- (2) If β fixes a point in K_i , then $\alpha_{k_1+\dots+k_{i-1}+1}, \dots, \alpha_{k_1+\dots+k_i-1}$ are $k_i 1$ order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence, $n\alpha_{k_1+\dots+k_i-1} \leq 1\alpha_{k_1+\dots+k_i}$ and $\alpha_{k_1+\dots+k_i} \in \mathcal{O}_n^+$ (in this case, we have $\sum_{j=1}^n {\binom{(k_i-1)n+j-1}{j-1}} \theta(n,j)$ subsequences $(\alpha_{k_1+\dots+k_{i-1}+1},\dots,\alpha_{k_1+\dots+k_i})$ allowed).

Define

$$\mathfrak{d}(\boldsymbol{\beta}, i) = \begin{cases} \binom{k_i n + n - 1}{n - 1}, & \text{if } (k_1 + \dots + k_i)\boldsymbol{\beta} \neq k_1 + \dots + k_i \\ \sum_{j=1}^{n} \frac{j}{n} \binom{2n - j - 1}{n - 1} \binom{(k_i - 1)n + j - 1}{j - 1}, & \text{if } (k_1 + \dots + k_i)\boldsymbol{\beta} = k_1 + \dots + k_i, \end{cases}$$

for all $1 \le i \le t$. Thus, we have

Proposition 3.1.
$$|\mathscr{O}_{m\times n}^+| = \sum_{\beta\in\mathscr{O}_m^+} \prod_{i=1}^{l} \mathfrak{d}(\beta, i).$$

Next, we obtain a formula for $|\mathcal{O}_{m\times n}^+|$ which does not depend on $\beta \in \mathcal{O}_m^+$. Let β be an element of \mathcal{O}_m^+ with kernel type (k_1, \ldots, k_t) . Define $s_\beta = (s_1, \ldots, s_t) \in \{0, 1\}^{t-1} \times \{1\}$ by $s_i = 1$ if and only if $(k_1 + \cdots + k_i)\beta = k_1 + \cdots + k_i$, for all $1 \le i \le t - 1$. Let $1 \le t, k_1, \ldots, k_t \le m$ be such that $k_1 + \cdots + k_t = m$ and let $(s_1, \ldots, s_t) \in \{0, 1\}^{t-1} \times \{1\}$. Let $k = (k_1, \ldots, k_t)$ and $s = (s_1, \ldots, s_t)$. Define $\Delta(k, s) = |\{\beta \in \mathcal{O}_m^+ \mid \beta$ has kernel type k and $s_\beta = s\}|$.

In order to get a formula for $\Delta(k, s)$, we count the number of distinct restrictions to unions of partition classes of the kernel of transformations β of \mathcal{O}_m^+ with kernel type k and $s_\beta = s$ corresponding to maximal subsequences of consecutive zeros of s. Let β be an element of \mathcal{O}_m^+ with kernel type k and $s_\beta = s$. First, notice that, given $i \in \{1, ..., t\}$, if $s_i = 1$ then $K_i\beta = \{k_1 + \cdots + k_i\}$ and if $s_i = 0$ then the (unique) element of $K_i\beta$ belongs to K_j , for some $i < j \leq t$.

Next, let $i \in \{1, ..., t\}$ and $r \in \{1, ..., t-i\}$ be such that $s_j = 0$, for all $j \in \{i, ..., i+r-1\}$, $s_{i+r} = 1$ and, if i > 1, $s_{i-1} = 1$ (i.e. $(s_i, ..., s_{i+r-1})$) is a maximal subsequence of consecutive zeros of s). Then

$$(K_i\cup\cdots\cup K_{i+r-2}\cup K_{i+r-1})\beta\subseteq K_{i+1}\cup\cdots\cup K_{i+r-1}\cup (K_{i+r}\setminus\{k_1+\cdots+k_{i+r}\}).$$

Let $\ell_j = |K_{i+j} \cap (K_i \cup \cdots \cup K_{i+r-1})\beta|$, for $1 \le j \le r$. Hence, we have $\ell_1, \ldots, \ell_{r-1} \ge 0, \ell_r \ge 1$, $\ell_1 + \cdots + \ell_r = r$ and $0 \le \ell_1 + \cdots + \ell_j \le j$, for all $1 \le j \le r-1$.

On the other hand, given ℓ_1, \ldots, ℓ_r such that $\ell_1, \ldots, \ell_{r-1} \ge 0$, $\ell_r \ge 1$, $\ell_1 + \cdots + \ell_r = r$ and $0 \le \ell_1 + \cdots + \ell_j \le j$, for all $1 \le j \le r-1$, we have precisely

$$\binom{k_{i+1}}{\ell_1}\binom{k_{i+2}}{\ell_2}\cdots\binom{k_{i+r-1}}{\ell_{r-1}}\binom{k_{i+r}-1}{\ell_r} = \binom{k_{i+r}-1}{\ell_r}\prod_{j=1}^{r-1}\binom{k_{i+j}}{\ell_j}$$

distinct restrictions to $K_i \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathscr{O}_m^+ , with kernel type k and $s_\beta = s$, such that $\ell_j = |K_{i+j} \cap (K_i \cup \cdots \cup K_{i+r-1})\beta|$, for $1 \le j \le r$. It follows that the number of distinct restrictions to $K_i \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathscr{O}_m^+ with kernel type k

892

and $s_{\beta} = s$ is

$$\sum_{\substack{\ell_1+\dots+\ell_r=r\\ 0\leq\ell_1+\dots+\ell_j\leq j,\ 1\leq j\leq r-1\\ \ell_1,\dots,\ell_{r-1}\geq 0,\ \ell_r\geq 1}} \binom{k_{i+r}-1}{\ell_r} \prod_{j=1}^{r-1} \binom{k_{i+j}}{\ell_j}$$

Now, let *p* be the number of distinct maximal subsequences of consecutive zeros of *s*. Clearly, if p = 0 then $\Delta(k,s) = 1$. Hence, suppose that $p \ge 1$ and let $1 \le u_1 < v_1 < u_2 < v_2 < \cdots < u_p < v_p \le t$ be such that

$$\{j \in \{1, \dots, t\} \mid s_j = 0\} = \bigcup_{i=1}^p \{u_i, \dots, v_i - 1\}$$

(i.e. $(s_{u_i}, \ldots, s_{v_i-1})$, with $1 \le i \le p$, are the *p* distinct maximal subsequences of consecutive zeros of *s*). Then, being $r_i = v_i - u_i$, for $1 \le i \le p$, we have

$$\Delta(k,s) = \prod_{i=1}^{p} \sum_{\substack{\ell_1 + \dots + \ell_{r_i} = r_i \\ \ell_1 + \dots + \ell_j \le j}} \binom{k_{u_i + r_i} - 1}{\ell_{r_i}} \prod_{j=1}^{r_i - 1} \binom{k_{u_i + j}}{\ell_j}.$$

Finally, notice that, if β and β' are two elements of \mathscr{O}_m^+ with kernel type $k = (k_1, \ldots, k_t)$ such that $s_{\beta'} = s_{\beta}$, then $\mathfrak{d}(\beta, i) = \mathfrak{d}(\beta', i)$, for all $1 \le i \le t$. Thus, defining $\Lambda(k, s) = \prod_{i=1}^t \mathfrak{d}(\beta, i)$, where β is any transformation of \mathscr{O}_m^+ with kernel type k and $s_{\beta} = s$, we have:

Theorem 3.3. $|\mathscr{O}_{m \times n}^+| = |\mathscr{O}_{m \times n}^-| = \sum_{\substack{k = (k_1, \dots, k_l) \\ 1 \le k_1, \dots, k_l \le m \\ 1 \le t \le m}} \sum_{\substack{s \in \{0, 1\}^{l-1} \times \{1\} \\ s \in \{0, 1\}^{l-1} \times \{1\}}} \Delta(k, s) \Lambda(k, s).$

The next table gives the size of the monoid $\mathscr{O}_{m \times n}^+$ (or $\mathscr{O}_{m \times n}^-$) for several values of *m* and *n*.

$m \setminus n$	1	2	3	4	5	6
1	1	2	5	14	42	132
2	2	8	35	306	2401	21232
3	5	42	569	10024	210765	5089370
4	14	252	8482	410994	25366480	1847511492
5	42	1636	138348	18795636	3547275837	839181666224
6	132	11188	2388624	913768388	531098927994	415847258403464

Despite the unpleasant appearance, the previous formula allows us to calculate the cardinal of $\mathscr{O}_{m \times n}^+$, even for larger *m* and *n*. For instance, we have

$$|\mathcal{O}^+_{10\times 10}| = 47016758951069862896388976221392645550606752244.$$

All these calculations were performed by using GAP [17].

In order to count the number of elements of the monoid $\mathscr{OP}_{m \times n}$, we begin by recalling that, for $k \in \mathbb{N}$, being g_k the k-cycle $\begin{pmatrix} 1 & 2 & \cdots & k-1 & k \\ 2 & 3 & \cdots & k & 1 \end{pmatrix} \in \mathscr{OP}_k$, each element $\alpha \in \mathscr{OP}_k$ admits a factorization $\alpha = g_k^j \gamma$, with $0 \le j \le k-1$ and $\gamma \in \mathscr{O}_k$, which is unique unless α is constant [6].

Next, consider the permutations (of $\{1, ..., mn\}$)

$$g = g_{mn} = \begin{pmatrix} 1 & 2 & \cdots & mn-1 & mn \\ 2 & 3 & \cdots & mn & 1 \end{pmatrix} \in \mathscr{OP}_{mn}$$

and

$$f = g^n = \begin{pmatrix} 1 & \cdots & n & n+1 & \cdots & mn-n & mn-n+1 & \cdots & mn \\ n+1 & \cdots & 2n & 2n+1 & \cdots & mn & 1 & \cdots & n \end{pmatrix} \in \mathscr{OP}_{m \times n}.$$

Being α an element of $\mathscr{OP}_{m \times n} \setminus \mathscr{O}_{m \times n}$ of type 1 or 2 (see Proposition 2.3) and $j \in \{1, \ldots, m-1\}$ such that $(jn)\alpha > (jn+1)\alpha$, as $(jn+1)\alpha \leq \cdots \leq (mn)\alpha \leq 1\alpha \leq \cdots \leq (jn)\alpha$, it is clear that $f^j\alpha \in \mathscr{O}_{m \times n}$. Thus, each element α of $\mathscr{OP}_{m \times n}$ of type 1 or 2 admits a factorization $\alpha = f^j\gamma$, with $0 \leq j \leq m-1$ and $\gamma \in \mathscr{O}_{m \times n}$, which is unique unless α is constant. Notice that, this uniqueness follows immediately from Catarino and Higgins's result mentioned above. Therefore we have precisely $m(|\mathscr{O}_{m \times n}| - mn)$ non-constant transformations of $\mathscr{OP}_{m \times n}$ of types 1 and 2 and mn constant transformations (which are elements of type 2 of $\mathscr{OP}_{m \times n}$).

Now, let α be a transformation of $\mathscr{OP}_{m \times n}$ of type 3. As α is not constant, it can be factorized in a unique way as $g^r \gamma$, for some $r \in \{0, \ldots, mn-1\} \setminus \{jn \mid 0 \le j \le m-1\}$ and some non-constant order-preserving transformation γ from $\{1, \ldots, mn\}$ to A_i , for some $1 \le i \le m$. Since only elements of $\mathscr{OP}_{m \times n}$ of type 3 have factorizations of this form and the number of non-constant and non-decreasing sequences of length mn from a chain with n elements is equal to $\binom{mn+n-1}{n-1} - n$, we have precisely $m(mn-m)\left(\binom{mn+n-1}{n-1} - n\right)$ elements of type 3 in $\mathscr{OP}_{m \times n}$. Thus $|\mathscr{OP}_{m \times n}| = m|\mathscr{O}_{m \times n}| + m^2(n-1)\binom{mn+n-1}{n-1} - mn(mn-1)$ and so we obtain:

Theorem 3.4.
$$|\mathscr{OP}_{m \times n}| = m \sum_{\substack{1 \le k_1, \dots, k_l \le m \\ k_1 + \dots + k_l = m \\ 1 \le l \le m}} {\binom{m}{t}} \prod_{i=1}^{t} {\binom{k_i n + n - 1}{n-1}} + m^2(n-1) {\binom{mn+n-1}{n-1}} - mn(mn-1).$$

It follows a table with the sizes of the monoids $\mathscr{OP}_{m \times n}$ for some values of *m* and *n*. Again, these calculations were performed by using GAP [17].

$m \setminus n$	1	2	3	4	5	6
1	1	4	24	128	610	2742
2	4	46	506	5034	51682	575268
3	24	447	9453	248823	8445606	349109532
4	128	4324	223852	17184076	1819339324	247307947608
5	610	42075	5555990	1207660095	387720453255	170017607919290
6	2742	405828	136530144	83547682248	81341248206546	114804703283314542

We finish this paper computing the cardinal of the monoid $\mathcal{O}\mathcal{R}_{m\times n}$. Notice that, as for $\mathcal{O}\mathcal{D}_{m\times n}$ and $\mathcal{O}_{m\times n}$, we have a similar relationship between $\mathcal{O}\mathcal{R}_{m\times n}$ and $\mathcal{O}\mathcal{P}_{m\times n}$. In fact, $\alpha \in \mathcal{O}\mathcal{R}_{m\times n}$ if and only if $\alpha \in \mathcal{O}\mathcal{P}_{m\times n}$ or $h\alpha \in \mathcal{O}\mathcal{P}_{m\times n}$. Hence, since $|\mathcal{O}\mathcal{P}_{m\times n}| =$ $|h\mathcal{O}\mathcal{P}_{m\times n}|$ and $\mathcal{O}\mathcal{P}_{m\times n} \cap h\mathcal{O}\mathcal{P}_{m\times n} = \{\alpha \in \mathcal{O}\mathcal{P}_{m\times n} \mid |\operatorname{Im}(\alpha)| \le 2\}$, we obtain $|\mathcal{O}\mathcal{R}_{m\times n}| =$ $2|\mathcal{O}\mathcal{P}_{m\times n}| - |\{\alpha \in \mathcal{O}\mathcal{P}_{m\times n} \mid |\operatorname{Im}(\alpha)| = 2\}| - mn$.

It remains to calculate the number of elements of $A = \{\alpha \in \mathscr{OP}_{m \times n} \mid |\operatorname{Im}(\alpha)| = 2\}$. First, we count the number of elements of *A* of types 2 and 3. Let α be such a transformation. Then, there exists $k \in \{1, ..., m\}$ such that $|\operatorname{Im}(\alpha)| \subseteq A_k$. Clearly, in this case, the number

894

of distinct kernels allowed for α coincides with the number of distinct kernels allowed for transformations of \mathscr{OP}_{mn} of rank 2, which is $\binom{mn}{2}$ (see [6]). On the other hand, it is easy to check that we have $m\binom{n}{2}$ distinct images for α . Furthermore, for each such possible kernel and image, we have two distinct transformations of *A*. Hence, the total number of elements of *A* of types 2 and 3 is precisely $2m\binom{n}{2}\binom{mn}{2}$.

Finally, we determine the number of elements of *A* of type 1. Let $\alpha \in A$ be of type 1 and suppose that $\alpha \psi = (\alpha_1, ..., \alpha_m; \beta)$. Then β must have rank 2 and so, as $\beta \in \mathscr{OP}_m$, we have $2\binom{m}{2}^2$ distinct possibilities for β (see [6]). Moreover, for each $1 \leq i \leq m$, α_i must be a constant transformation of \mathscr{O}_n and, for $1 \leq i, j \leq m$, if $i\beta = j\beta$ then $\alpha_i = \alpha_j$. Thus, for a fixed β , since β as rank 2, we have precisely n^2 sequences $(\alpha_1, ..., \alpha_m; \beta)$ allowed. Hence, *A* has $2n^2\binom{m}{2}^2$ distinct elements of type 1. Therefore,

$$\begin{aligned} |\mathscr{OR}_{m \times n}| &= 2|\mathscr{OP}_{m \times n}| - 2m\binom{n}{2}\binom{mn}{2} - 2n^2\binom{m}{2}^2 - mn \\ &= 2m|\mathscr{O}_{m \times n}| + 2m^2(n-1)\binom{mn+n-1}{n-1} - 2m\binom{n}{2}\binom{mn}{2} - 2n^2\binom{m}{2}^2 - mn(2mn-1) \end{aligned}$$

and so we get:

Theorem 3.5.

$$\begin{aligned} |\mathscr{OR}_{m \times n}| &= 2m \sum_{\substack{1 \le k_1, \dots, k_t \le m \\ k_1 + \dots + k_t = m \\ 1 \le t \le m}} \binom{m}{t} \prod_{i=1}^t \binom{k_i n + n - 1}{n - 1} + 2m^2 (n - 1) \binom{mn + n - 1}{n - 1} \\ &- 2m \binom{n}{2} \binom{mn}{2} - 2n^2 \binom{m}{2}^2 - mn(2mn - 1). \end{aligned}$$

Acknowledgement. The first author gratefully acknowledges support of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL. The second author gratefully acknowledges support of ISEL and of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL.

References

- A. Ja. Aĭzenštat, On homomorphisms of semigroups of endomorphisms of ordered sets, *Leningrad. Gos. Ped. Inst. Učen. Zap.* 238 (1962), 38–48.
- [2] A. Ja. Aĭzenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sibirsk. Mat. Ž. 3 (1962), 161–169.
- [3] J. Almeida and M. V. Volkov, The gap between partial and full, *Internat. J. Algebra Comput.* 8 (1998), no. 3, 399–430.
- [4] J. Araújo and C. Schneider, The rank of the endomorphism monoid of a uniform partition, *Semigroup Forum* 78 (2009), no. 3, 498–510.
- [5] R. E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, *Southeast Asian Bull. Math.* 24 (2000), no. 1, 1–7.
- [6] P. M. Catarino and P. M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), no. 2, 190–206
- [7] V. H. Fernandes, Semigroups of order preserving mappings on a finite chain: a new class of divisors, *Semi-group Forum* 54 (1997), no. 2, 230–236.
- [8] V. H. Fernandes, The monoid of all injective orientation preserving partial transformations on a finite chain, *Comm. Algebra* 28 (2000), no. 7, 3401–3426.

- [9] V. U. Fernandesh, A new class of divisors of semigroups of isotone mappings of finite chains, *Izv. Vyssh. Uchebn. Zaved. Mat.* 2002, no. 3, 51–59; translation in *Russian Math. (Iz. VUZ)* 46 (2002), no. 3, 47–55.
- [10] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, Presentations for some monoids of injective partial transformations on a finite chain, *Southeast Asian Bull. Math.* 28 (2004), no. 5, 903–918.
- [11] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, Congruences on monoids of order-preserving or orderreversing transformations on a finite chain, *Glasg. Math. J.* 47 (2005), no. 2, 413–424.
- [12] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, Congruences on monoids of transformations preserving the orientation of a finite chain, J. Algebra 321 (2009), no. 3, 743–757.
- [13] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, The cardinal and the idempotent number of various monoids of transformations on a finite chain, *Bull. Malays. Math. Sci. Soc.* (2) 34 (2011), no. 1, 79–85.
- [14] V. H. Fernandes and T. M. Quinteiro, Bilateral semidirect product decompositions of transformation monoids, Semigroup Forum 82 (2011), no. 2, 271–287.
- [15] V. H. Fernandes and T. M. Quinteiro, On the monoids of transformations that preserve the order and a uniform partition, *Comm. Algebra* 39 (2011), no. 8, 2798–2815.
- [16] V. H. Fernandes and T. M. Quinteiro, On the ranks of certain monoids of transformation that preserve a uniform partition, preprint.
- [17] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.4.12; 2008, (http://www.gapsystem.org).
- [18] G. U. Garba, Nilpotents in semigroups of partial one-to-one order-preserving mappings, *Semigroup Forum* 48 (1994), no. 1, 37–49.
- [19] G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), no. 3, 272–282
- [20] J. M. Harris, J. L. Hirst and M. J. Mossinghoff, *Combinatorics and Graph Theory*, Undergraduate Texts in Mathematics, Springer, New York, 2000.
- [21] P. M. Higgins, Divisors of semigroups of order-preserving mappings on a finite chain, Internat. J. Algebra Comput. 5 (1995), no. 6, 725–742.
- [22] J. M. Howie, Products of idempotents in certain semigroups of transformations, *Proc. Edinburgh Math. Soc.* (2) 17 (1970/71), 223–236.
- [23] P. Huisheng, On the rank of the semigroup $T_E(X)$, Semigroup Forum 70 (2005), no. 1, 107–117.
- [24] H. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, *Comm. Algebra* 33 (2005), no. 1, 109–118.
- [25] P. Huisheng and Z. Dingyu, Green's equivalences on semigroups of transformations preserving order and an equivalence relation, *Semigroup Forum* 71 (2005), no. 2, 241–251.
- [26] M. Kunze, Bilateral semidirect products of transformation semigroups, Semigroup Forum 45 (1992), no. 2, 166–182.
- [27] M. Kunze, Standard automata and semidirect products of transformation semigroups, *Theoret. Comput. Sci.* 108 (1993), no. 1, 151–171.
- [28] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, J. Algebra 278 (2004), no. 1, 342–359.
- [29] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), no. 1, 51–62.
- [30] D. B. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra 26 (1998), no. 2, 515–547.
- [31] J.-E. Pin, Varieties of Formal Languages, translated from the French by A. Howie, Foundations of Computer Science, Plenum, New York, 1986.
- [32] V. B. Repnitskiĭ and M. V. Volkov, The finite basis problem for pseudovariety Ø, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 3, 661–669.
- [33] A. Solomon, Catalan monoids, monoids of local endomorphisms, and their presentations, *Semigroup Forum* 53 (1996), no. 3, 351–368.
- [34] L. Sun, H. Pei and Z. Cheng, Regularity and Green's relations for semigroups of transformations preserving orientation and an equivalence, *Semigroup Forum* 74 (2007), no. 3, 473–486.
- [35] A. S. Vernitskiĭ and M. V. Volkov, A proof and generalization of the Higgins theorem on divisors of semigroups of isotonic transformations, *Izv. Vyssh. Uchebn. Zaved. Mat.* 1995, no. 1, 38–44; translation in *Russian Math. (Iz. VUZ)* 39 (1995), no. 1, 34–39.