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Abstract. Some well known results on the bivariate beta distribution have been reviewed.
Corrected product moments are derived. These moments will be important for studying
further characteristics of the distribution. The distribution of the ratio of two correlated beta
variables has been derived and used to obtain a new reliability expression. Other interesting
distributions stemming from the correlated beta variables are also derived.
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1. Introduction

The bivariate beta distribution has applications in areas such as voting analysis of political
issues of two competing candidates and research on soil strength (see Hutchinson and Lai
[2]). In this paper we derive some centered moments that are important in studying further
properties of the distribution. We also review some well known results. In addition, we
derive some new results for which some applications are offered.

The beta distribution is given by

(1.1) f (x) =
1

B(m,n)
xm−1(1− x)n−1,

where m,n > 0, 0≤ x≤ 1 and B(m,n) = Γ(m)Γ(n)/Γ(m+n). A distribution is said to be a
beta distribution of a second kind BetaII(m,n) if its density function is given by

(1.2) f (y) =
1

B(m,n)
ym−1

(1+ y)m+n ,

where m,n > 0, 0 ≤ y < ∞. A transformation Z = 1/(1 +Y ) of the random variable Y in
(1.2) will result in a Beta(m,n) distribution. It is interesting to note that if m = n, the density
function in (1.2) is also the density function of an F(2m,2m) distribution.
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The product moments of order a and b for two random variables X and Y are defined
by µ ′a,b = E

(
XaY b

)
while the centered product moments (sometimes called central product

moments, corrected moments or central mixed moments) are defined by

µa,b = E
[
(X−E(X))a(Y −E(Y ))b

]
.

The former moments µ ′a,b are often called product moments of order zero or raw product
moments. Evidently µ ′a,0 = E (Xa) is the a-th moment of X , and µ ′0,b = E

(
Y b
)

is the b-th
moment of Y . In case X and Y are independent µ ′a,b = E

(
Xa)E(Y b

)
= µ ′a,0µ ′0,b. Interested

readers may go through Johnson et al. [4, p. 46].
The correlation coefficient ρ (−1 < ρ < 1) between X and Y is denoted by

(1.3) ρX ,Y =
µ1,1√

µ2,0µ0,2
.

Note that µ2,0 = E (X−E(X))2 = σ20 which is popularly denoted by σ2
1 while the central

product moment, µ1,1 = E [(X−E(X))(Y −E(Y ))] denoted popularly by σ12, is in fact the
covariance between X and Y .

The importance of evaluating central moments of a bivariate distribution cannot be over-
looked. In a series of papers, Mardia [7–11] defined and discussed the properties of mo-
ments based on Mahalanobis distance. As it is difficult to derive distribution of Mahalanobis
distance for many distributions, bivariate or multivariate, and calculate moments thereof,
Joarder [3] derived Mahalanobis moments (or simply, standardized moments) in terms of
central product moments. He showed that the central moments can be used as an alternative
way to describe further important characteristics of a bivariate distribution, for example,
bivariate kurtosis coefficient.

It should be mentioned that the central moments derived in Section 4 is a formidable task
requiring meticulous calculation. Some discusssions on the product moment correlation is
given in Section 5. In Section 6, the distribution of the ratio of two correlated beta variables
has been derived and used to obtain a new reliability expression. In addition, some other
interesting distributions are also derived.

2. Review of some distributional properties of the bivariate beta distribution

The bivariate beta is a natural extension of a univariate beta distribution. The probability
density function of the bivariate beta distribution is given by

(2.1) f (x,y) =
Γ(m+n+ p)

Γ(m)Γ(n)Γ(p)
xm−1yn−1(1− x− y)p−1,

where m,n, p > 0, x ≥ 0, y ≥ 0, and x + y ≤ 1. A natural extension of this bivariate beta
distribution is the multivariate Dirichlet distribution (see Fang and Zhang [1]). Figure 1
provides a surface graph of the pdf in (2.1) for different values of m, n and p. The following
theorem is due to Lee [6].

Theorem 2.1. Let X and Y have the joint pdf given by (2.1). Then the marginal probability
density functions of the bivariate beta distribution with pdf in (2.1) are given by:

(2.2) X ∼ Beta(m,n+ p), Y ∼ Beta(n,m+ p).
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Figure 1. Bivariate Beta probability density function for various values of m,n, and p.

Proof. The marginal pdf of Y follows from the substitution of u(1− y) = x in the following
integral

g(y) =
∫ 1−y

0

Γ(m+n+ p)
Γ(m)Γ(n)Γ(p)

xm−1yn−1(1− x− y)p−1dx.

Thus Y follows Beta(n,m+ p). Similarly, X follows Beta(m,n+ p).
We note that the mean and variance of Y are given by E(Y ) = n/(m+n+ p), and V (Y ) =

(n(m+ p))/((t +1)t2) respectively, where t = m+n+ p. The mean and variance of X are
given by E(X) = m/(m+n+ p), and V (X) = (m(n+ p))/((t +1)t2) respectively.
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Theorem 2.2. Let X and Y have the joint pdf given by (2.1). Then the conditional pdf of Y
given X = x is given by

(2.3) k(y|x) =
(1− x)
B(n, p)

(
y

1− x

)n−1(
1− y

1− x

)p−1

, 0 < y < 1− x, 0 < x < 1.

Proof. The conditional pdf of Y given X = x is defined as

f (x,y)/h(x) =
Γ(m+n+ p)

Γ(m)Γ(n)Γ(p)
xm−1yn−1(1− x− y)p−1

(
1

B(m,n+ p)
xm−1(1− x)n+p−1

)−1

=
Γ(m+n+ p)B(m,n+ p)

Γ(m)Γ(n)Γ(p)
yn−1(1− x− y)p−1/(1− x)n+p−1

which can be written as (2.3).
Thus, from (2.3), it can be seen that the conditional distribution of Y/(1−X) given X = x

is Beta(n, p) which implies that E(Y |X = x) = (1− x)n/(n+ p) which can also be written
as

(2.4) E(Y | X = x) =− n
n+ p

x+
n

n+ p
in the regular regression format. Thus, the regression of Y on X is linear. Also Var (Y |
X = x) = (1− x)2np/((n + p)2(n + p + 1)) which is not free from x. This means that the
conditional variance for the linear regression of Y on X is not homoscedastic. The linear
regression also suggests that Y is not independent of X . Lee [6] also proved that E(Xk |Y =
y) = (1− y)k and E(Y k | X = x) = (1− x)k.

Theorem 2.3. Let X and Y have the joint pdf given by (2.1). Then Y/(1−X) and X are
independent.

Proof. Let u = y/(1− x) and v = x with Jacobian J(x,y→ u,v) = −(1− v). The support
region is mapped into the region

{(u,v) : v > 0,u(1− v) > 0,v+u(1− v) < 1}= {(u,v) : 0 < u < 1,0 < v < 1} .
Then from (2.1),the joint pdf of U and V is given by

g(u,v) =
1

B(n, p)B(m,n+ p)
un−1vm−1(1− v)n ((1−u)(1− v))p−1 .

That is, U ∼ Beta(n, p) and V ∼ Beta(m,n+ p) and they are independently distributed.

Theorem 2.4. Let (X ,Y ) follow the bivariate beta distribution with pdf given by (2.1).
Also let U = X +Y and V = X/(X +Y ). Then U ∼ Beta(m + n, p) is independent of V ∼
Beta(m,n).

Proof. Let us make the transformation u = x+y and uv = x . The support region is mapped
onto the region {(u,v) : uv > 0, u(1−v) > 0, u < 1}= {(u,v) : 0 < u < 1, 0 < v < 1} with
Jacobian J(x,y→ u,v) =−u. The theorem then follows in a straightforward manner.

In what follows we will define

(2.5) µa,b = E
[
(X−ξ )a(Y −θ)b

]
where ξ = E(X) and θ = E(Y ).

Provost and Cheong [14] discussed the distribution of linear combinations of the compo-
nents of a Dirichlet random vector. The distribution of ax+by is a special case of that.
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3. Raw product moments

For any non-negative integer a, Pochhammer factorials are defined as c{a} = c(c + 1)(c +
2) · · ·(c+a−1) and c{a} = c(c−1)(c−2) · · ·(c−a+1), with c{0} = 1, c{0} = 1. Also, the
(a,b)th raw product moment of X and Y of the bivariate beta distribution is given by

(3.1) E(XaY b) =
∫ 1

0

∫ 1−y

0
xayb f (x,y)dxdy.

Lemma 3.1. Let X and Y have the joint pdf given by (2.1). Then
(1) the marginal density function of X ∼ Beta(m,n + p), has an expected value of

E(Xa) = m{a}/t{a},
(2) the marginal density function of Y ∼ Beta(n,m + p), has an expected value of

E(Y b) = n{b}/t{b},
(3) and the raw product moment of order (a,b) is E(XaY b) = m{a}n{b}/t{a+b}, where

t = m+n+ p.

The above lemma gives rise to some useful raw moments that will be used further in this
article.

4. Centered moments

The centered product moments of a bivariate beta distribution, µa,b can be obtained by
directly evaluating the following integral:

E
[
(X1−E(X1))

a (X2−E(X2))
b
]
=
∫ 1

0

∫ 1−x2

0
(X1−E(X1))

a (X2−E(X2))
b f (x1,x2)dx1dx2.

For illustration, we derive the central moment µ1,2 below.

µ1,2 = E
[
(X−E(X))1 (Y −E(Y ))2

]
=
∫ 1

0

∫ 1−y

0

(
x− m

t

)(
y− n

t

)2
f (x,y)dxdy

=
∫ 1

0

∫ 1−y

0

(
xy2−2xy

n
t

+ x
(n

t

)2
− y2 m

t
+2y

n
t

m
t
−
(n

t

)2 m
t

)
f (x,y)dxdy

=
∫ 1

0

∫ 1−y

0
xy2 f (x,y)dxdy−2

n
t

∫ 1

0

∫ 1−y

0
xy f (x,y)dxdy

+
(n

t

)2 ∫ 1

0

∫ 1−y

0
x f (x,y)dxdy− m

t

∫ 1

0

∫ 1−y

0
y2 f (x,y)dxdy

+2
mn
t2

∫ 1

0

∫ 1−y

0
y f (x,y)dxdy− n2m

t3

∫ 1

0

∫ 1−y

0
f (x,y)dxdy

=
mn(n+1)

t(t +1)(t +2)
−2
(n

t

) mn
t(t +1)

+
(n

t

)2(m
t

)
−
(m

t

) n(n+1)
t(t +1)

+2
(m

t

)(n
t

)2
− n2m

t3

=
mn(n+1)

t(t +1)(t +2)
−2

mn2

t2(t +1)
+

mn2

t3 −
mn(n+1)
t2(t +1)

+2
mn2

t3 −
mn2

t3
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=− 2(t−2n)mn
(t +1)(t +2) t3 .

The higher order moments generally require more meticulous integration and cross-
checking of calculations. More details of these centered moments can be found in Omar
and Joarder [13]. Some centered product moments of order a + b = 2,3,4,5,6 are given
below:

µ0,2 =
(t−n)n
(t +1) t2 ,

µ0,3 = 2
(t−2n)(t−n)n
(t +1)(t +2) t3 ,

µ0,4 = 3(t−n)n
t2 (n+2)−n(n+6) t +6n2

(t +1)(t +2)(t +3) t4 ,

µ0,5 = 4(t−2n)(t−n)n
t2 (5n+6)−n(5n+12) t +12n2

(t +1)(t +2)(t +3)(t +4) t5 ,

µ0,6 =
5(t−n)n

(t +1)(t +2)(t +3)(t +4)(t +5) t6

× [t4 (3n2 +26n+24
)
−2n

(
3n2 +56n+60

)
t3

+n2 (3n2 +172n+240
)

t2−2n3 (43n+120) t +120n4],

µ1,1 =− nm
(t +1) t2 ,

µ1,2 =−2
(t−2n)mn

(t +1)(t +2) t3 ,

µ1,3 = 3
mn

t4 (t +1)(t +2)(t +3)
(−(n+2) t2 +n(n+6) t−6n2),

µ1,4 =−4
mn(t−2n)

t5 (t +1)(t +2)(t +3)(t +4)
(
12n2− (12+5n)nt +(6+5n)t2) ,

µ1,5 =−5
mn

t6 (t +1)(t +2)(t +3)(t +4)(t +5)

× [
(
3n2 +26n+24

)
t4−2n

(
3n2 +56n+60

)
t3

+n2 (3n2 +172n+240
)

t2−2n3 (43n+120) t +120n4],

µ2,2 = mn
t3− (m+n) t2 +3(2m+2n+mn) t−18mn

(t +1)(t +2)(t +3) t4 ,

µ2,3 = 2mn
t4− t3 (m+6n)+

(
12m+15mn+5n2

)
t2−4n(9m+3n+5mn) t +48mn2

(t +1)(t +2)(t +3)(t +4) t5 ,

µ2,4 =
mn

t6 (t +1)(t +2)(t +3)(t +4)(t +5)

× [t5 (3n+6)+ t4 (−6m−40n−3mn−6n2)
+ t3 (120m+164mn+120n2 +3n3 +18mn2)
+ t2 (−480mn−86n3−516mn2−15mn3)
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+ t
(
120n3 +720mn2 +430mn3)−600mn3],

µ3,3 =
mn

(t +1)(t +2)(t +3)(t +4)(t +5) t

×
[

4−3
10m+10n+3mn

t
+

(
26n2 +m2 (9n+26)+9mn(n+20)

)
t2

−3
2n2 (43m+20)+m2

(
86n+5n2 +40

)
t3

+10
mn(36m+36n+43mn)

t4 −600
m2n2

t5

]
Similar expressions for moments µ(b,a) = E

[
(X−ξ )b(Y −θ)a

]
are provided below.

µ2,0 =
(t−m)m
(t +1) t2 ,

µ3,0 = 2
(t−2m)(t−m)m
(t +1)(t +2) t3 ,

µ4,0 = 3(t−m)m
t2 (m+2)−m(m+6) t +6m2

(t +1)(t +2)(t +3) t4 ,

µ5,0 = 4(t−m)(t−2m)m
t2 (5m+6)−m(5m+12) t +12m2

(t +1)(t +2)(t +3)(t +4) t5 ,

µ6,0 =
5(t−m)m

(t +1)(t +2)(t +3)(t +4)(t +5) t6

× [
(
3m2 +26m+24

)
t4−2m

(
3m2 +56m+60

)
t3

+m2 (3m2 +172m+240
)

t2−2m3 (43m+120) t +120m4],

µ2,1 =−2
mn(t−2m)

t3 (t +1)(t +2)
,

µ3,1 = 3mn
−(m+2) t2 +m(m+6) t−6m2

(t +1)(t +2)(t +3) t4 ,

µ4,1 =−4(t−2m)mn
(5m+6) t2−

(
12m+5m2

)
t +12m2

(t +1)(t +2)(t +3)(t +4) t5 ,

µ5,1 =−5
mn

t6 (t +1)(t +2)(t +3)(t +4)(t +5)

× [(3m2 +26m+24)t4−2m
(
3m2 +56m+60

)
t3

+m2 (3m2 +172m+240
)

t2−2m3 (43m+120) t +120m4],

µ3,2 = 2mn
t4− t3 (6m+n)+(12n+5m(m+3n)) t2−4m(m(5n+3)+9n) t +48m2n

(t +1)(t +2)(t +3)(t +4) t5 ,

µ4,2 =
mn

t6 (t +1)(t +2)(t +3)(t +4)(t +5)

× [(3m+6) t5− (6m2 +m(3n+40)+6n)t4

+(3m3 +6(3n+20)m2 +4n(41m+30))t3−m(m2 (15n+86)+12n(43m+40))t2
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+10m2 (12m+72n+43mn) t−600m3n].

5. Correlation Coefficient for the Bivariate Beta Distribution

Theorem 5.1. Let X and Y have the joint pdf given by (2.1). Then the product moment
correlation coefficient between X and Y is given by

(5.1) ρ =−
√

mn
(n+ p)(m+ p)

.

Proof. Substituting the moments from Section 4 in ρ
√

µ2,0µ0,2 = µ1,1 we have (5.1).
Figure 2 provides graphs of values of the correlation coefficient for different values of p.

Mainly, the correlation coefficient reaches the limiting value of−1 when p is small as either
m or n increases. For a special case of a bivariate beta distribution defined in (2.1) where m =
n, that is (t = 2m+ p), then the product moment correlation coefficient is ρ =−m/(m+ p).
Note that where m = n, the two bivariate marginal probability density functions are identical.
Another special case of a bivariate beta distribution defined in (2.1) occurs when m = n = p,
that is t = 3m. In this case, the product moment correlation coefficient ρ =−1/2. Note that
here we have a special case of (5.1) where the two bivariate marginal pdfs are identical with
m = n = p.

Alternatively, it is also easy to check that

Cov(X ,Y ) = E(XY )−E(X)E(Y ) =
−mn

(t +1)t2

since

E(XY ) = E(XE(Y |X)) = E
(

X
(1−X)n

n+ p

)
=

mn
t(t +1)

.

The above shows that the product moment correlation coefficient ρ between X and Y is also
given by what we have (5.1).

6. Some new distribution of functions of correlated beta variables and their applica-
tions to reliability

Theorem 6.1. Let (X ,Y ) follow the bivariate beta distribution with pdf given by (2.1). Then
the pdf of W = Y/X is given by

(6.1) g(w) =
wn−1

B(m,n)(w+1)m+n , 0≤ w < ∞.

Proof. By Theorem 2.4, V = X/(X +Y ) ∼ Beta(m,n).With the transformation W = (1−
V )/V , the support region for bivariate beta distribution is mapped onto the region {w : 0 <
w < ∞} with absolute value of Jacobian |J(v→ w)| = (w + 1)−2. Then (6.1) follows in a
straightforward manner.
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Figure 2. Product moment correlation values for various values of m,n, and p.

Krishnamoorthy et al. [5] discussed a special reliability function defined as R = P(X >
Y ). This type of reliability function is interesting when one wishes to assess the proportion
of time the random strength variable X of a component exceeds the random stress variable
Y which the component is subjected to. If X ≤ Y , then either the component fails or the
system the component supports malfunctions. The same reliability function R can also
be used to estimate the probability that one of the two devices, X and Y , fails before the
other. Krishnamoorthy et al. [5] also discussed inference on reliability in a stress-strength
relationship that follows a two-parameter exponential model.
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Theorem 6.1 can immediately be applied to the situations where reliability of a compo-
nent in a stress-strength relationship follows a bivariate beta distribution. In this situation,
the following Theorem can be used.

Theorem 6.2. Let (X ,Y ) follow the bivariate beta distribution with pdf given by (2.1). And
let the pdf of W = Y/X is given by

g(w) =
wn−1

B(m,n)(w+1)m+n , 0 < w < ∞

Then, the reliability R = P(X > Y ) defined in Krishnamoorthy et al. [5] is given by

(6.2) R = I1/2(m,n),

where

Ia(m,n) =
∫ 1

a

(1− v)n−1vm−1

B(m,n)
dv.

Proof. From the definition we have R = P(X > Y ) = P(W < 1). But, W = Y/X ∼
BetaII(n,m+n), a Beta distribution of the second kind defined in (1.2). So,

R =
∫ 1

0

wn−1

B(m,n)(w+1)m+n dw

Letting

W = (1−V )/V, R =
∫ 1

1/2

(1− v)n−1vm−1

B(m,n)
dv

which is symbolically given in the above Theorem.
Theorem 6.2 provides an alternative simpler expression of reliability than what is re-

ported in Nadarajah [12]. Also, the evaluation of reliability is reduced to a univariate inte-
gral instead of a bivariate one.

It is also worth mentioning that with the appropriate transformation that the pdf of S =
W 2 = Y 2/X2 is given by

f (s) =
1

2B(m,n)
sn/2−1

(
1

s1/2 +1

)m+n

, 0 < s < ∞.

Theorem 6.3. Let (X ,Y ) follow the bivariate beta distribution with pdf given by (2.1). And
let X = R2 cos2 Θ and Y = R2 sin2

Θ. Then R2 ∼ Beta(m+n, p), sin2
Θ∼ Beta(n,m), where

Θ follows the distribution given by

h(θ) =
2

Beta(m,n)
(cosθ)2m−1 (sinθ)2n−1 .

Proof. Let X and Y follow the bivariate beta probability density function given by (2.1).
Also, let X = R2 cos2 Θ and Y = R2 sin2

Θ. With this transformation, the support region
is mapped onto the region {(r2,θ) : 0 < r2 < 1,0 < θ < π/2} with J(x,y → r2,θ) =
2r2 cosθ sinθ . Substitution into (2.1) gives the following

g(r2,θ) =
Γ(m+n+ p)
Γ(m+n)Γ(p)

(
1− r2)p−1 (

r2)m+n
2

Γ(m+n)
Γ(m)Γ(n)

(cosθ)2m−1 (sinθ)2n−1 .

That is, R2and Θ are independent random variables with distributions as mentioned in the
theorem.
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Now, let U = sin2
Θ. Hence with this transformation, the support region is mapped onto

the region {u : 0 ≤ u ≤ 1} with J(u→ θ) = 2[(1− sin2
θ)(sin2

θ)]1/2 = 2((1−u)u)1/2.
Substituting u into h(θ ) with the appropriate Jacobian provides the result that U = sin2

Θ∼
Beta(n,m).

Corollary 6.1. Let X and Y follow the bivariate beta probability density function given by
(2.1). Also, let X = R2 cos2 Θ and Y = R2 sin2

Θ. If m = n, then

R2 ∼Beta(2m, p), U = sin2
Θ∼Beta(m,m) and h(θ) =

2
Beta(m,m)

(
1
2

sin2θ

)2m−1

.

Proof. Substituting m = n into Theorem 6.3 provides results of Corollary 6.1.
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