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Abstract. In this paper, we introduce a new hybrid extragradient iteration method for find-
ing a common element of the set of fixed points of a nonexpansive mapping and the set
of solutions of equilibrium problems for pseudomonotone and Lipschitz-type continuous
bifunctions. The iterative process is based on two well-known methods: Hybrid and extra-
gradient. We show that the iterative sequences generated by this algorithm converge strongly
to the common element in a real Hilbert space.
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and f be a bifunction
from C x C to R. We consider the equilibrium problems given as:

Find x* € C such that f(x*,y) >0 VyeC. EP(f,C)

The set of solutions of EP(f,C) is denoted by Sol(f,C).
If f(x,y) = (F(x),y —x) for every x,y € C, where F is a mapping from C to H, then
Problem EP(f,C) becomes the following variational inequalities:

Find x* € C such that (F(x*),y —x") >0 Vy e C. VI(F,C)

We denote Sol(F,C) which is the set of solutions of VI(F,C).

In recent years, equilibrium problems become an attractive field for many researchers
both theory and applications [1, 2, 4, 11, 17]. There are myriad of literature related to
equilibrium problems and their applications in electricity market, transportation, economics
and network [3, 5].

For solving VI(F,C) in the Euclidean space R" under the assumption that a subset C C
R” is nonempty closed convex, F is monotone, L-Lipschitz continuous and Sol(F,C) # 0,
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Korpelevich in [7] introduced the following extragradient method:

Pec,
y' = Pr¢ (x” —kF(x")),
X =Pre (x” — ?LF(y”)),

for all n > 0, where A € (0,1). The author showed that the sequences {x"} and {y"}

converge to the same point z € Sol(F,C).

For each x,y € C, fo(x,y) := f(x,y) + @(y) — @(x), motivated by the results of Peng in
[11] introduced a new iterative scheme for finding a common element of the sets Sol(fy,C),
Sol(F,C) and Fix(T) in a real Hilbert space. Let sequences {x"},{y"},{t"} and {z"} be
defined by
e H,
foW",y) + Lly—u",u" —x") > 0 VyeC,
¥y :=Prc (u” — )L,,F(u”)),

1" :=Prc (u" — A,F (y")),

="+ (1—o,)T (1),

Coi={z€C: [ =2l < I — 2> = (1 — o) (e — &) |t = T (") |},
On:={z€eH: X" —z,x—x") >0},

Then, the author showed that under certain appropriate conditions imposed on { ¢, },{A,}
and &, the sequences {x"}, {u"},{t"},{)"} and {z"} converge strongly to Prq(x?), where
Q := Sol(fp,C) NSol(F,C) NFix(T).

Recently, iterative algorithms for finding a common element of the set of solutions of
equilibrium problems and the set of fixed points of a nonexpansive mapping in a real Hilbert
space have further developed by some authors (see [11, 12, 14, 17, 18]). At each iteration n
in all of these algorithms, it requires solving approximation auxiliary equilibrium problems.

In this paper, we introduce a new iterative algorithm for finding a common element of
the set of fixed points of a nonexpansive mapping and the set of solutions of equilibrium
problems for a pseudomonotone, Lipschitz-type continuous bifunction. This method can
be considered as an improvement of the iterative method in [11] via an improvement set of
extragradient methods in [1, 2]. At each iteration n, we only solve strongly convex problems
on C. We obtain a strong convergence theorem for four sequences generated by this process.

2. Preliminaries

Let H be a real Hilbert space with inner product {-,-) and norm || - ||, respectively. We list
some well known definitions and the projection which will be required in our following
analysis.

Definition 2.1. Let C be a closed convex subset in H, we denote the projection on C by
Prc(+), ie.,

Prc(x) = argmin{|ly —x||: y€ C} Vx€ H.
The bifunction f : C x C — R is said to be
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(1) 7y-strongly monotone on C if for each x,y € C, we have
FeY) 4+ F(0) < =vlbe =yl
(2) monotone on C if for each x,y € C, we have
fxy)+7(x) <0
(3) pseudomonotone on C if for each x,y € C, we have
fxy) 2 0= f(y,x) <0

(4) Lipschitz-type continuous on C with constants ¢y > 0 and ¢ > 0, if for each x,y € C,
we have

Fay) +f(2) > flx2) —arlle—y]* = ealy—2|*
The mapping F : C — H is said to be

(5) monotone on C if for each x,y € C, we have
(F(x) =F(y),x—y) =2 0;
(6) pseudomonotone on C if for each x,y € C, we have
(F(y),x=y) 20=(F(x),x—y) >0
(7) L-Lipschitz continuous on C if for each x,y € C, we have
[F(x) = F) < Lllx=y]-
If L =1, then F is nonexpansive on C.

Note that if F is L-Lipschitz on C, then for each x,y € C, f(x,y) = (F(x),y —x) is
Lipschitz-type continuous with constants c; = ¢ = % on C. Indeed,

2f(x,y) +f(»,2) — f(x,2)
= (F(x),y—x) +(F(y),z2—y) — (F(x),z—x)
=—(F(y)=F(x),y—2) > —[[F(x) = F)llly =zl = —Ll}x—y|l[ly —zll

L » L 2 2 2
2 =5 le=yI" =S lly =2l = —erllx=ylI" = c2lly —2]|".

Thus f is Lipschitz-type continuous on C.
In this paper, for finding a point of the set Sol(f,C) NFix(T), we assume that the bifunc-
tion f satisfies the following conditions:

(i) f is pseudomonotone on C;
(ii) f is Lipschitz-type continuous on C;
(iii) for each x € C, y — f(x,y) is convex and subdifferentiable on C;
(iv) Sol(f,C)NFix(T) # 0.
Now we are in a position to describe the extragradient algorithm for finding a common
of two sets Sol(f,C) and Fix(T).

Algorithm 2.1. Initialization. Choose x" € C, positive sequences {4, } and {a,} satisfy
the conditions

{Ax} C[a,b] forsome a,b € (O,min{i, i}),
{o,} € [0,c] forsome c € (0,1).
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Step 1. Solve the strongly convex problems:
y' = argmin{5|ly —x"|*+ 4, f(x",y) : y € C},
M= argmin{%”t—x"||2+/'l,nf(y",t) s teC}
M=o+ (1 — o) T (7).

Step 2. Set P, ={z€C: ||?"—z|| < ||¥"—z||} and Q, = {z € C: (x"— 7,2 —x") > 0}.
Compute X"t = Prp g, (x°). Increase k by 1 and go to Step 1.

In order to prove the main result in Section 3, we shall use the following lemma in the
sequel.

Lemma 2.1. [5] Let C be a convex subset of a real Hilbert space H and g : C — R be convex
and subdifferentiable on C. Then, x* is a solution to the following convex problem

min{g(x): x€C}
if and only if 0 € dg(x*) + Nc(x*), where dg(-) denotes the subdifferential of g and N¢(x*)
is the (outward) normal cone of C at x*.
3. Main results

In this section, we show a strong convergence theorem of sequences {x"},{y"},{z"} and
{t"} defined by Algorithm 2.1 based on the extragradient method which solves the problem
of finding a common element of two sets Sol(f,C) and Fix(T') for a monotone, Lipschitz-
type continuous bifunction f in a real Hilbert space H.

Lemma 3.1. Suppose that x* € Sol(f,C), f(x,-) is convex and subdifferentiable on C for
all x € C, and f is pseudomonotone on C. Then, we have

I =22 < " =22 = (1= 2Ane) 2" = 5" 7 = (1= 2Apc2) [ = y"|[* ¥n > 0.
Proof. Since f(x,-) is convex on C for each x € C and Lemma 2.1, we obtain
"= argmin{%||t—x”||2—&-l,,f(y”ﬁ) 1 teC}
if and only if
3.1 0 € h{Af(y" 1)+ %Hr —x"|2H(t") + Ne(2").

Since f(y",-) is subdifferentiable on C, by the well known Moreau-Rockafellar theorem [5],
there exists w € d, f(y",¢") such that

(3.2) FO") = ") = (wr—1") Yt eC.
With ¢t = x* € C, this inequality becomes
(3.3) FO"IX) = FO ) > (wxt —1").

It follows from (3.1) that
0=Aw+i"—xX"+w,
where w € dy f(y",t") and w € Nc ().
By the definition of the normal cone N¢ we have, from the latter equality, that

(3.4) (t"—=x" 0 —1") > Apy{w,t" —1) Vr e C.
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With t = x* € C we obtain

(3.5) (" = X" x" =1y > Ay (w1 — ).
It follows from (3.3) and (3.5) that
3.6) (" =x"x" = 1") = LA SO0 1) = fO" X))

Since x* € Sol(f,C), f(x*,y) > 0 for all y € C, and f is pseudomonotone on C, we have
F",x*) <0. Then, (3.6) implies that

3.7 (" =x" X" ="y > A f (Y1),
Now applying Lipschitzian of f with x =x",y =" and z =", we get
(3.8) FO"EY) = O = FO ") = ety =P = ol ="

Combinating (3.7) and (3.8), we have
B9 ("= ") 2 A {f () = FO) = ety =P el =P}

Similarly, since y" is the unique solution to the strongly convex problem

(1
min{ Ly P+ Aus ) ye )

we have

(3.10) n{f("y) = f(X"Y")} = O =2y —y) VyeC.
Asy=1t" € C, we have

(3.11) A{f (" 17) = (3" = O =y =),

From (3.9), (3.11) and
20" =2 2" = 1") = [ =P [l = [l -
it implies that
" =2 2 [ P~ [ 22
>2(y" — X"y — 1) — 2A,e1 || X" — |2 = 242 ||t — "
Hence, we have
" —x*[|?
S =[P = " =P = 20 =Y =) 22 X =[P 2Rl — 5"
=[P = " =) O =P =200 =y =)
+ 20t ¥ = Y"1 4 2ol ="
e L e [ [ Y e R St [Tl
=[P = (1= 2%en) [ = Y"1 = (1 = 2Anc2) [ly" — "%,
The lemma thus is proved. 1

Lemma 3.2. Suppose that Assumptions (i)-(iv) hold and T is nonexpansive on C. Then, we
have

(a) Sol(f,C)NFix(T) C P,NQy foralln > 0.

(0) lim 1 7] = lim ¢~ 21| = lim " — ]| = lim [l¢" — 7] = 0.
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() lim ||T(") — || =0.
n—oo

Proof. Since Lemma 3.1 and z" = 04,x" + (1 — o) T (¢"), for each x* € Sol(f,C) NFix(T)
we have

2" = x| =l egux” + (1 — ) T (") —x*|?
=log (6" —x*) + (1 = 06 {T (") ="}
<o |3 =7+ (1= o) | T (") = T ()|

<0 |3 =7 (1= o) |1 =22 < [l =72,

(3.12)

Hence ||z" —x*|| < || —x*|| for every n > 0 and x* € P,. So, we have
Sol(f,C)NFix(T) C P, Yn > 0.

Next, we show by mathematical induction that
Sol(f,C) NFix(T) € Q, Vn>0.

For n = 0 we have Qp = C, hence we have Sol(f,C) NFix(T) C Qyp. Now we suppose that
Sol(f,C) NFix(T) C O for some k > 0. From x*™ = Prp 9, (x?), it follows that

(K —x x0 —xk+l> >0 VxeP.NOk.
Using this and Sol(f,C) NFix(T) C Qy, we have
(K —x, x0 — XK1Y > 0 Wx e Sol(f,C) NFix(T)

and hence Sol(f,C) NFix(T) C Q1. This proves (a).
It follows from (a) and x"*! = Prp,rp, (x°) that

(3.13) 2! = X0 < || Prsoir.c)nmix(r) (£°) = x°|| ¥n > 0.
Hence, we get that {x"} is bounded. Otherwise, for each x € Q,,, we have
W —x, 2" =" >0,
and hence x" = Prg, (xo). Using this and "t eP,Nn0, C 0, we have
12" =20 < [l =x0|| Vn > 0.
Therefore, there exists
(3.14) A= lim [|x" — x|

n—oo
Since X" = Prg, (x°) and x"*! € Q,,, using
IPrg, (x) —x|* < [lx = y* = || Prg, (x) =yII* Vx € H.y € O,
we have
”xn—‘rl _xn||2 < Hxn-H —)COH2 _ ”xn —)CO||2 Vi > 0.
Combinating this and (3.14), we get
lim [|x"! —x"|| = 0.
Nn—o0
It proves the first apart of (b).

Since X"t = Prp g, (x°), we have X" € P,, ||z — x"*!|| < ||« —x"*!|| and hence

" = 2] < [l = =2 < 2| = 2| YR 0.
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From lim ||x"*! —x"|| = 0, we have
n—oo
lim ||x" —Z"|| = 0.
This proved the second apart of (b).
From (3.12) and Lemma 3.1, it implies that
12— x| <om [l —x|* + (1 — o) |¢" — x*|*
<00 " =22 (1= o) { " — x> = (1 = 2%c1) " — " ||
— (1 =2Mc2)[|e" =" |1}
<" = x|1P = (1= 00) (1 = 2201 | — "1

Therefore, we have

1
n_n2< x”_*2_ n 2
W =Y =g = ey U = I =11 =21
1 . ) * *
= ai=amey W == = D =+ =)
n n
! *
< " — 2 ([ = 2+ 112 =]

(1= oty) (1 =22c1)
Since lim [|x" —2"|| = 0 and the sequences {x"},{Z"} are bounded, we get
lim ||x" —y"|| = 0.
frare
This proves the third apart of (b).
By similar way, we also obtain that r}l_r)r; l£" — y"|| = 0. Then we have
lim [ — 7] < lim (b "] + " —"[) =0,
and hence lim ||x" —#"|| = 0. This proves the last part of (b).
Using (ZYand 7" = 0px" + (1 — 0,) T (¢"), we have
(L= T (") = "] <(1 =) T (") — "]
=[log (" =x") + (" ="
<" =X+ 2" =2,
S om)[[e" ="+ [|2" = "],

and hence lim || — T (t")|| = 0.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Sup-
pose that Assumptions (i)-(iv) hold and T is nonexpansive on C. Then, the sequences
{1 {0}, {Z"} and {t"} generated by Algorithm 2.1 converge strongly to the same point

x*, where
X" = Prsoi(£,0)nFix(T) (x°).

Proof. Since {x"} is bounded, there exists a subsequence {x"i} of {x"} such that {x"/}
converges weakly to some X as j — oo. Then, it follows from (b) of Lemma 3.2 that {#*/}
also converges weakly to some ¥ as j — co. We can obtain that X € Sol(f,C) NFix(T). First,
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we show x € Fix(T'). Assume that ¥ ¢ Fix(T). Since Opial’s condition in [6], i.e., for any
sequence {x, } with x,, — ¥ the inequality

liminf||x, — X|| < liminf ||x, — y||
n—oo n—oo
holds for every y € H with y # x, we have
liminf||#" — %|| <liminf||¢" — T (%)||
J—roo J—roo
<Timinf([|e" =T ()| + |7 («") = T ()]])
J*}O()
—liminf|IT (")~ T(3)|
Jj—oo
<liminf ||/ — %]|.
j*}l)()
This is contradiction. Thus, ¥ = T'(X).
From (b) of Lemma 3.2 and X"/ — ¥ as j — oo, it follows
Y —=x1" =% as j— oo,
Then, using (3.10), {A,} C [a,b] C (0,1) and assumptions of f, we have
ﬂ,nj {f(x”./"y) — f(x".i,y”i)} > <y”j —x" Yyt 7y> VyeC.
As j— oo, we get f(%,y) > 0 for all y € C. It means that ¥ € Sol(f,C). So, we have
x € Sol(f,C)NFix(T).

Since x* = Prgoy(7.c)rix(r) (x°), X € Sol(f,C) NFix(T) and (3.13), we have

(3.15) | =20 < [IF—2°|| < liminf |0 — x| < Timsup [[¢% —x°|| < [lx* =],
J—e j—roo
So, we get
fim [|"7 x| = [}£ 0]
J—o
0 0

Since x" — x° converges weakly to ¥ —x° as j — oo, we have x"/ —x° converges strongly to
¥ —x%as j— oo. By x" = Prg, (x°) and x* € Sol(f,C) NFix(T) C P,NQ, C Qy, we have

(= xM 20— x*) < (o = a0 — ) (=X X —a0) = —|]x — x|
As j — oo, we have
(=20 =) < —|x* — x|

Combinating this, ¥ € Sol(f,C) NFix(T), (x* —%,x° —x*) > 0 and x* = Prsoi(£,0)nFix(T) (x%),
we obtain £ = x*. This implies that lim ||x" —x*|| = 0. From (b) of Lemma 3.2, it follows
n—o0

lim ||y" —x*|| = 0 and lim ||f" —x*|| = 0. 1
n—o0 n—oo
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4. Applications

In this section, we discuss about two applications of Theorem 3.1 to find a common point
of the set of fixed points of a nonexpansive mapping and the set of solutions of variational
inequality problems for a monotone, Lipschitz continuous mapping.

Let C is a nonempty closed convex subset of a real Hilbert space H, for each pair x,y € C,

f(x,y) = (F(x),y—x},

where F': C — H.
In Algorithm 2.1, the subproblems needed to solve at Step 1 are of the form

y" = argmin{ 3|y —2"|[* + Ay (F (x"),y = x") : y € C},
t" = argmin{ 3|t — x"||> + A, (F ()"),t —y") : t € C}.

Hence, we have

Y= argmin{%Hy— (X" — l,,F(x")) |>: yeCl=Prc (x" —k,lF(x")),
t" = argmin{}[|t — (x" — A4, F (")) |?: t € C} =Prc (X" = L,F (y")).

Thus, in this case Algorithm 2.1 and its convergence become the following results:

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C — H be a monotone, L-Lipschitz continuous mapping and T : C — C be a nonexpan-
sive mapping such that Fix(T) N Sol(F,C) # 0. Let {x"},{y"} and {Z"} be the sequences
generated by

PLec,

' =Prc (¥ — L, F (")),

" = Prc (x”—l,,F(y )),

"= opxX"+ (1 — o) T (1),
Pi={zeC: ||2" —z|| < |Ix" =[]},
On={z€C: (x"—z,x"—x") >0},
X =Prp,ng, (1),

for every n > 0, where {A,} C [a,b] for some a,b € (0,1) and {a,} C [0,c] for some c €
[0,1). Then the sequences {x"},{y"} and {Z"} converge strongly to Prsyy(r.c)rFix() (x0).

Using Theorem 4.1, we prove the the following theorem proposed by Nakajo and Taka-
hashi.

Theorem 4.2. [9] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — C be a nonexpansive mapping such that Fix(T) # 0. Let {x"} and {y"} be the
sequences generated by

10 eC,

¥ = X" + (1 = 04) T{Prc(x") },
P={zeC: " —z|| < |x"—Z[[},
Op={zeC: (x"—z,x—x") >0},
X" =Prp,ng, (x7),
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Sor every n > 0, where {a,,} C [0,c] for some ¢ € [0,1). Then, the sequences {x"} and {y"}
converge strongly to Prgiy (1) (x9).

Proof. For f =0, by Theorem 4.1, we have the desired results. 1

References

[1]
[2]
[3]

[4]
[5]
[6]
[7]

[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

P. N. Anh, A logarithmic quadratic regularization method for pseudomonotone equilibrium problems, Acta
Math. Vietnam. 34 (2009), no. 2, 183-200.

P. N. Anh, An LQ regularization method for pseudomonotone equilibrium problems on polyhedra, Vietnam
J. Math. 36 (2008), no. 2, 209-228.

P.N. Anh, L. D. Muu, V. H. Nguyen and J. J. Strodiot, Using the Banach contraction principle to implement
the proximal point method for multivalued monotone variational inequalities, J. Optim. Theory Appl. 124
(2005), no. 2, 285-306.

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student
63 (1994), no. 1-4, 123-145.

P. Daniele, F. Giannessi and A. Maugeri, Equilibrium Problems and Variational Models, Nonconvex Opti-
mization and its Applications, 68, Kluwer Acad. Publ., Norwell, MA, 2003.

K. Geobel and W. A. Kirk, Topics on Metric Fixed Point Theory, Cambridge University Press, Cambridge,
England, 1990.

G. M. Korpelevi¢, An extragradient method for finding saddle points and for other problems, Ekonom. i Mat.
Metody 12 (1976), no. 4, 747-756.

N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive map-
pings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), no. 4, 1230-1241 (elec-
tronic).

K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive
semigroups, J. Math. Anal. Appl. 279 (2003), no. 2, 372-379.

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull.

Amer. Math. Soc. 73 (1967), 591-597.

J. W. Peng, Iterative algorithms for mixed equilibrium problems, strict pseudocontractions and monotone
mappings, J. Optim. Theory Appl. 144 (2010), no. 1, 107-119.

S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point
problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515.

W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone map-
pings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428.

S. Wang and B. Guo, New iterative scheme with nonexpansive mappings for equilibrium problems and vari-
ational inequality problems in Hilbert spaces, J. Comput. Appl. Math. 233 (2010), no. 10, 2620-2630.

H. K. Xu and T. H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J.
Optim. Theory Appl. 119 (2003), no. 1, 185-201.

Y. Yao, Y.-C. Liou and Y.-J. Wu, An extragradient method for mixed equilibrium problems and fixed point
problems, Fixed Point Theory Appl. 2009, Art. ID 632819, 15 pp.

Y. Yao, Y.-C. Liou and J.-C. Yao, An extragradient method for fixed point problems and variational inequality
problems, J. Inequal. Appl. 2007, Art. ID 38752, 12 pp.

L.-C. Zeng and J.-C. Yao, Strong convergence theorem by an extragradient method for fixed point problems
and variational inequality problems, Taiwanese J. Math. 10 (2006), no. 5, 1293-1303.



