A Hybrid Extragradient Method for Pseudomonotone Equilibrium Problems and Fixed Point Problems

Pham Ngoc Anh
Department of Scientific Fundamentals, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam anhpn@ptit.edu.vn

Abstract

In this paper, we introduce a new hybrid extragradient iteration method for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of equilibrium problems for pseudomonotone and Lipschitz-type continuous bifunctions. The iterative process is based on two well-known methods: Hybrid and extragradient. We show that the iterative sequences generated by this algorithm converge strongly to the common element in a real Hilbert space.

2010 Mathematics Subject Classification: 65K10, 65K15, 90C25, 90C33
Keywords and phrases: Equilibrium problems, pseudomonotone, Lipschitz-type continuous, strong convergence, nonexpansive mapping, extragradient method.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and f be a bifunction from $C \times C$ to \mathbb{R}. We consider the equilibrium problems given as:

$$
\text { Find } x^{*} \in C \text { such that } f\left(x^{*}, y\right) \geq 0 \quad \forall y \in C . \quad E P(f, C)
$$

The set of solutions of $E P(f, C)$ is denoted by $\operatorname{Sol}(f, C)$.
If $f(x, y)=\langle F(x), y-x\rangle$ for every $x, y \in C$, where F is a mapping from C to H, then Problem $E P(f, C)$ becomes the following variational inequalities:

$$
\text { Find } x^{*} \in C \text { such that }\left\langle F\left(x^{*}\right), y-x^{*}\right\rangle \geq 0 \quad \forall y \in C . \quad V I(F, C)
$$

We denote $\operatorname{Sol}(F, C)$ which is the set of solutions of $\operatorname{VI}(F, C)$.
In recent years, equilibrium problems become an attractive field for many researchers both theory and applications [1,2, 4, 11, 17]. There are myriad of literature related to equilibrium problems and their applications in electricity market, transportation, economics and network $[3,5]$.

For solving $\operatorname{VI}(F, C)$ in the Euclidean space \mathbb{R}^{n} under the assumption that a subset $C \subseteq$ \mathbb{R}^{n} is nonempty closed convex, F is monotone, L-Lipschitz continuous and $\operatorname{Sol}(F, C) \neq \emptyset$,

[^0]Korpelevich in [7] introduced the following extragradient method:

$$
\left\{\begin{array}{l}
x^{0} \in C \\
y^{n}=\operatorname{Pr}_{C}\left(x^{n}-\lambda F\left(x^{n}\right)\right), \\
x^{n+1}=\operatorname{Pr}_{C}\left(x^{n}-\lambda F\left(y^{n}\right)\right),
\end{array}\right.
$$

for all $n \geq 0$, where $\lambda \in\left(0, \frac{1}{L}\right)$. The author showed that the sequences $\left\{x^{n}\right\}$ and $\left\{y^{n}\right\}$ converge to the same point $z \in \operatorname{Sol}(F, C)$.

For each $x, y \in C, f_{\varphi}(x, y):=f(x, y)+\varphi(y)-\varphi(x)$, motivated by the results of Peng in [11] introduced a new iterative scheme for finding a common element of the sets $\operatorname{Sol}\left(f_{\varphi}, C\right)$, $\operatorname{Sol}(F, C)$ and $\operatorname{Fix}(T)$ in a real Hilbert space. Let sequences $\left\{x^{n}\right\},\left\{y^{n}\right\},\left\{t^{n}\right\}$ and $\left\{z^{n}\right\}$ be defined by

$$
\left\{\begin{array}{l}
x^{0} \in H, \\
f_{\varphi}\left(u^{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u^{n}, u^{n}-x^{n}\right\rangle \geq 0 \quad \forall y \in C, \\
y^{n}:=\operatorname{Pr}_{C}\left(u^{n}-\lambda_{n} F\left(u^{n}\right)\right), \\
t^{n}:=\operatorname{Pr}_{C}\left(u^{n}-\lambda_{n} F\left(y^{n}\right)\right), \\
z^{n}:=\alpha_{n} t^{n}+\left(1-\alpha_{n}\right) T\left(t^{n}\right), \\
C_{n}:=\left\{z \in C:\left\|z^{n}-z\right\|^{2} \leq\left\|x^{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t^{n}-T\left(t^{n}\right)\right\|\right\}, \\
Q_{n}:=\left\{z \in H:\left\langle x^{n}-z, x-x^{n}\right\rangle \geq 0\right\}, \\
x^{n+1}:=\operatorname{Pr}_{C_{n} \cap Q_{n}}\left(x^{0}\right) .
\end{array}\right.
$$

Then, the author showed that under certain appropriate conditions imposed on $\left\{\alpha_{n}\right\},\left\{\lambda_{n}\right\}$ and ε, the sequences $\left\{x^{n}\right\},\left\{u^{n}\right\},\left\{t^{n}\right\},\left\{y^{n}\right\}$ and $\left\{z^{n}\right\}$ converge strongly to $\operatorname{Pr}_{\Omega}\left(x^{0}\right)$, where $\Omega:=\operatorname{Sol}\left(f_{\varphi}, C\right) \cap \operatorname{Sol}(F, C) \cap \operatorname{Fix}(T)$.

Recently, iterative algorithms for finding a common element of the set of solutions of equilibrium problems and the set of fixed points of a nonexpansive mapping in a real Hilbert space have further developed by some authors (see [11, 12, 14, 17, 18]). At each iteration n in all of these algorithms, it requires solving approximation auxiliary equilibrium problems.

In this paper, we introduce a new iterative algorithm for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of equilibrium problems for a pseudomonotone, Lipschitz-type continuous bifunction. This method can be considered as an improvement of the iterative method in [11] via an improvement set of extragradient methods in [1, 2]. At each iteration n, we only solve strongly convex problems on C. We obtain a strong convergence theorem for four sequences generated by this process.

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively. We list some well known definitions and the projection which will be required in our following analysis.

Definition 2.1. Let C be a closed convex subset in H, we denote the projection on C by $\operatorname{Pr}_{C}(\cdot)$, i.e.,

$$
\operatorname{Pr}_{C}(x)=\operatorname{argmin}\{\|y-x\|: y \in C\} \quad \forall x \in H .
$$

The bifunction $f: C \times C \rightarrow \mathbb{R}$ is said to be
(1) γ-strongly monotone on C if for each $x, y \in C$, we have

$$
f(x, y)+f(y, x) \leq-\gamma\|x-y\|^{2}
$$

(2) monotone on C if for each $x, y \in C$, we have

$$
f(x, y)+f(y, x) \leq 0
$$

(3) pseudomonotone on C if for each $x, y \in C$, we have

$$
f(x, y) \geq 0 \Rightarrow f(y, x) \leq 0
$$

(4) Lipschitz-type continuous on C with constants $c_{1}>0$ and $c_{2}>0$, iffor each $x, y \in C$, we have

$$
f(x, y)+f(y, z) \geq f(x, z)-c_{1}\|x-y\|^{2}-c_{2}\|y-z\|^{2} .
$$

The mapping $F: C \rightarrow H$ is said to be
(5) monotone on C if for each $x, y \in C$, we have

$$
\langle F(x)-F(y), x-y\rangle \geq 0 ;
$$

(6) pseudomonotone on C if for each $x, y \in C$, we have

$$
\langle F(y), x-y\rangle \geq 0 \Rightarrow\langle F(x), x-y\rangle \geq 0 ;
$$

(7) L-Lipschitz continuous on C if for each $x, y \in C$, we have

$$
\|F(x)-F(y)\| \leq L\|x-y\| .
$$

If $L=1$, then F is nonexpansive on C.
Note that if F is L-Lipschitz on C, then for each $x, y \in C, f(x, y)=\langle F(x), y-x)$ is Lipschitz-type continuous with constants $c_{1}=c_{2}=\frac{L}{2}$ on C. Indeed,

$$
\begin{aligned}
& 2 f(x, y)+f(y, z)-f(x, z) \\
& \quad=\langle F(x), y-x\rangle+\langle F(y), z-y\rangle-\langle F(x), z-x\rangle \\
& \quad=-\langle F(y)-F(x), y-z\rangle \geq-\|F(x)-F(y)\|\|y-z\| \geq-L\|x-y\|\|y-z\| \\
& \geq-\frac{L}{2}\|x-y\|^{2}-\frac{L}{2}\|y-z\|^{2}=-c_{1}\|x-y\|^{2}-c_{2}\|y-z\|^{2} .
\end{aligned}
$$

Thus f is Lipschitz-type continuous on C.
In this paper, for finding a point of the set $\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T)$, we assume that the bifunction f satisfies the following conditions:
(i) f is pseudomonotone on C;
(ii) f is Lipschitz-type continuous on C;
(iii) for each $x \in C, y \mapsto f(x, y)$ is convex and subdifferentiable on C;
(iv) $\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) \neq \emptyset$.

Now we are in a position to describe the extragradient algorithm for finding a common of two sets $\operatorname{Sol}(f, C)$ and $\operatorname{Fix}(T)$.
Algorithm 2.1. Initialization. Choose $x^{0} \in C$, positive sequences $\left\{\lambda_{n}\right\}$ and $\left\{\alpha_{n}\right\}$ satisfy the conditions

$$
\left\{\begin{array}{l}
\left\{\lambda_{n}\right\} \subset[a, b] \text { for some } a, b \in\left(0, \min \left\{\frac{1}{2 c_{1}}, \frac{1}{2 c_{2}}\right\}\right) \\
\left\{\alpha_{n}\right\} \subset[0, c] \text { for some } c \in(0,1)
\end{array}\right.
$$

Step 1. Solve the strongly convex problems:

$$
\left\{\begin{array}{l}
y^{n}=\operatorname{argmin}\left\{\frac{1}{2}\left\|y-x^{n}\right\|^{2}+\lambda_{n} f\left(x^{n}, y\right): y \in C\right\}, \\
t^{n}=\operatorname{argmin}\left\{\frac{1}{2}\left\|t-x^{n}\right\|^{2}+\lambda_{n} f\left(y^{n}, t\right): t \in C\right\}, \\
z^{n}:=\alpha_{n} x^{n}+\left(1-\alpha_{n}\right) T\left(t^{n}\right) .
\end{array}\right.
$$

Step 2. Set $P_{n}=\left\{z \in C:\left\|z^{n}-z\right\| \leq\left\|x^{n}-z\right\|\right\}$ and $Q_{n}=\left\{z \in C:\left\langle x^{n}-z, x^{0}-x^{n}\right\rangle \geq 0\right\}$.
Compute $x^{n+1}=\operatorname{Pr}_{P_{n} \cap Q_{n}}\left(x^{0}\right)$. Increase k by 1 and go to Step 1 .
In order to prove the main result in Section 3, we shall use the following lemma in the sequel.

Lemma 2.1. [5] Let C be a convex subset of a real Hilbert space H and $g: C \rightarrow \mathbb{R}$ be convex and subdifferentiable on C. Then, x^{*} is a solution to the following convex problem

$$
\min \{g(x): x \in C\}
$$

if and only if $0 \in \partial g\left(x^{*}\right)+N_{C}\left(x^{*}\right)$, where $\partial g(\cdot)$ denotes the subdifferential of g and $N_{C}\left(x^{*}\right)$ is the (outward) normal cone of C at x^{*}.

3. Main results

In this section, we show a strong convergence theorem of sequences $\left\{x^{n}\right\},\left\{y^{n}\right\},\left\{z^{n}\right\}$ and $\left\{t^{n}\right\}$ defined by Algorithm 2.1 based on the extragradient method which solves the problem of finding a common element of two sets $\operatorname{Sol}(f, C)$ and $\operatorname{Fix}(T)$ for a monotone, Lipschitztype continuous bifunction f in a real Hilbert space H.

Lemma 3.1. Suppose that $x^{*} \in \operatorname{Sol}(f, C), f(x, \cdot)$ is convex and subdifferentiable on C for all $x \in C$, and f is pseudomonotone on C. Then, we have

$$
\left\|t^{n}-x^{*}\right\|^{2} \leq\left\|x^{n}-x^{*}\right\|^{2}-\left(1-2 \lambda_{n} c_{1}\right)\left\|x^{n}-y^{n}\right\|^{2}-\left(1-2 \lambda_{n} c_{2}\right)\left\|t^{n}-y^{n}\right\|^{2} \quad \forall n \geq 0 .
$$

Proof. Since $f(x, \cdot)$ is convex on C for each $x \in C$ and Lemma 2.1, we obtain

$$
t^{n}=\operatorname{argmin}\left\{\frac{1}{2}\left\|t-x^{n}\right\|^{2}+\lambda_{n} f\left(y^{n}, t\right): t \in C\right\}
$$

if and only if

$$
\begin{equation*}
0 \in \partial_{2}\left\{\lambda_{n} f\left(y^{n}, t\right)+\frac{1}{2}\left\|t-x^{n}\right\|^{2}\right\}\left(t^{n}\right)+N_{C}\left(t^{n}\right) . \tag{3.1}
\end{equation*}
$$

Since $f\left(y^{n}, \cdot\right)$ is subdifferentiable on C, by the well known Moreau-Rockafellar theorem [5], there exists $w \in \partial_{2} f\left(y^{n}, t^{n}\right)$ such that

$$
\begin{equation*}
f\left(y^{n}, t\right)-f\left(y^{n}, t^{n}\right) \geq\left\langle w, t-t^{n}\right\rangle \forall t \in C . \tag{3.2}
\end{equation*}
$$

With $t=x^{*} \in C$, this inequality becomes

$$
\begin{equation*}
f\left(y^{n}, x^{*}\right)-f\left(y^{n}, t^{n}\right) \geq\left\langle w, x^{*}-t^{n}\right\rangle . \tag{3.3}
\end{equation*}
$$

It follows from (3.1) that

$$
0=\lambda_{n} w+t^{n}-x^{n}+\bar{w},
$$

where $w \in \partial_{2} f\left(y^{n}, t^{n}\right)$ and $\bar{w} \in N_{C}\left(t^{n}\right)$.
By the definition of the normal cone N_{C} we have, from the latter equality, that

$$
\begin{equation*}
\left\langle t^{n}-x^{n}, t-t^{n}\right\rangle \geq \lambda_{n}\left\langle w, t^{n}-t\right\rangle \forall t \in C . \tag{3.4}
\end{equation*}
$$

With $t=x^{*} \in C$ we obtain

$$
\begin{equation*}
\left\langle t^{n}-x^{n}, x^{*}-t^{n}\right\rangle \geq \lambda_{n}\left\langle w, t^{n}-x^{*}\right\rangle . \tag{3.5}
\end{equation*}
$$

It follows from (3.3) and (3.5) that

$$
\begin{equation*}
\left\langle t^{n}-x^{n}, x^{*}-t^{n}\right\rangle \geq \lambda_{n}\left\{f\left(y^{n}, t^{n}\right)-f\left(y^{n}, x^{*}\right)\right\} . \tag{3.6}
\end{equation*}
$$

Since $x^{*} \in \operatorname{Sol}(f, C), f\left(x^{*}, y\right) \geq 0$ for all $y \in C$, and f is pseudomonotone on C, we have $f\left(y^{n}, x^{*}\right) \leq 0$. Then, (3.6) implies that

$$
\begin{equation*}
\left\langle t^{n}-x^{n}, x^{*}-t^{n}\right\rangle \geq \lambda_{n} f\left(y^{n}, t^{n}\right) \tag{3.7}
\end{equation*}
$$

Now applying Lipschitzian of f with $x=x^{n}, y=y^{n}$ and $z=t^{n}$, we get

$$
\begin{equation*}
f\left(y^{n}, t^{n}\right) \geq f\left(x^{n}, t^{n}\right)-f\left(x^{n}, y^{n}\right)-c_{1}\left\|y^{n}-x^{n}\right\|^{2}-c_{2}\left\|t^{n}-y^{n}\right\|^{2} . \tag{3.8}
\end{equation*}
$$

Combinating (3.7) and (3.8), we have

$$
\begin{equation*}
\left\langle t^{n}-x^{n}, x^{*}-t^{n}\right\rangle \geq \lambda_{n}\left\{f\left(x^{n}, t^{n}\right)-f\left(x^{n}, y^{n}\right)-c_{1}\left\|y^{n}-x^{n}\right\|^{2}-c_{2}\left\|t^{n}-y^{n}\right\|^{2}\right\} . \tag{3.9}
\end{equation*}
$$

Similarly, since y^{n} is the unique solution to the strongly convex problem

$$
\min \left\{\frac{1}{2}\left\|y-x^{n}\right\|^{2}+\lambda_{n} f\left(x^{n}, y\right): y \in C\right\}
$$

we have

$$
\begin{equation*}
\lambda_{n}\left\{f\left(x^{n}, y\right)-f\left(x^{n}, y^{n}\right)\right\} \geq\left\langle y^{n}-x^{n}, y^{n}-y\right\rangle \forall y \in C . \tag{3.10}
\end{equation*}
$$

As $y=t^{n} \in C$, we have

$$
\begin{equation*}
\lambda_{n}\left\{f\left(x^{n}, t^{n}\right)-f\left(x^{n}, y^{n}\right)\right\} \geq\left\langle y^{n}-x^{n}, y^{n}-t^{n}\right\rangle . \tag{3.11}
\end{equation*}
$$

From (3.9), (3.11) and

$$
2\left\langle t^{n}-x^{n}, x^{*}-t^{n}\right\rangle=\left\|x^{n}-x^{*}\right\|^{2}-\left\|t^{n}-x^{n}\right\|^{2}-\left\|t^{n}-x^{*}\right\|^{2},
$$

it implies that

$$
\begin{aligned}
\left\|x^{n}-x^{*}\right\|^{2} & -\left\|t^{n}-x^{n}\right\|^{2}-\left\|t^{n}-x^{*}\right\|^{2} \\
& \geq 2\left\langle y^{n}-x^{n}, y^{n}-t^{n}\right\rangle-2 \lambda_{n} c_{1}\left\|x^{n}-y^{n}\right\|^{2}-2 \lambda_{n} c_{2}\left\|t^{n}-y^{n}\right\|^{2}
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \left\|t^{n}-x^{*}\right\|^{2} \\
\leq & \left\|x^{n}-x^{*}\right\|^{2}-\left\|t^{n}-x^{n}\right\|^{2}-2\left\langle y^{n}-x^{n}, y^{n}-t^{n}\right\rangle+2 \lambda_{n} c_{1}\left\|x^{n}-y^{n}\right\|^{2}+2 \lambda_{n} c_{2}\left\|t^{n}-y^{n}\right\|^{2} \\
= & \left\|x^{n}-x^{*}\right\|^{2}-\left\|\left(t^{n}-y^{n}\right)+\left(y^{n}-x^{n}\right)\right\|^{2}-2\left\langle y^{n}-x^{n}, y^{n}-t^{n}\right\rangle \\
& +2 \lambda_{n} c_{1}\left\|x^{n}-y^{n}\right\|^{2}+2 \lambda_{n} c_{2}\left\|t^{n}-y^{n}\right\|^{2} \\
\leq & \left\|x^{n}-x^{*}\right\|^{2}-\left\|t^{n}-y^{n}\right\|^{2}-\left\|x^{n}-y^{n}\right\|^{2}+2 \lambda_{n} c_{1}\left\|x^{n}-y^{n}\right\|^{2}+2 \lambda_{n} c_{2}\left\|t^{n}-y^{n}\right\|^{2} \\
= & \left\|x^{n}-x^{*}\right\|^{2}-\left(1-2 \lambda_{n} c_{1}\right)\left\|x^{n}-y^{n}\right\|^{2}-\left(1-2 \lambda_{n} c_{2}\right)\left\|y^{n}-t^{n}\right\|^{2} .
\end{aligned}
$$

The lemma thus is proved.
Lemma 3.2. Suppose that Assumptions (i)-(iv) hold and T is nonexpansive on C. Then, we have
(a) $\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) \subseteq P_{n} \cap Q_{n}$ for all $n \geq 0$.
(b) $\lim _{n \rightarrow \infty}\left\|x^{n+1}-x^{n}\right\|=\lim _{n \rightarrow \infty}\left\|x^{n}-z^{n}\right\|=\lim _{n \rightarrow \infty}\left\|x^{n}-y^{n}\right\|=\lim _{n \rightarrow \infty}\left\|x^{n}-t^{n}\right\|=0$.
(c) $\lim _{n \rightarrow \infty}\left\|T\left(t^{n}\right)-t^{n}\right\|=0$.

Proof. Since Lemma 3.1 and $z^{n}=\alpha_{n} x^{n}+\left(1-\alpha_{n}\right) T\left(t^{n}\right)$, for each $x^{*} \in \operatorname{Sol}(f, C) \cap \operatorname{Fix}(T)$ we have

$$
\begin{align*}
\left\|z^{n}-x^{*}\right\|^{2} & =\left\|\alpha_{n} x^{n}+\left(1-\alpha_{n}\right) T\left(t^{n}\right)-x^{*}\right\|^{2} \\
& =\left\|\alpha_{n}\left(x^{n}-x^{*}\right)+\left(1-\alpha_{n}\right)\left\{T\left(t^{n}\right)-x^{*}\right\}\right\|^{2} \tag{3.12}\\
& \leq \alpha_{n}\left\|x^{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T\left(t^{n}\right)-T\left(x^{*}\right)\right\|^{2} \\
& \leq \alpha_{n}\left\|x^{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|t^{n}-x^{*}\right\|^{2} \leq\left\|x^{n}-x^{*}\right\|^{2} .
\end{align*}
$$

Hence $\left\|z^{n}-x^{*}\right\| \leq\left\|x^{n}-x^{*}\right\|$ for every $n \geq 0$ and $x^{*} \in P_{n}$. So, we have

$$
\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) \subseteq P_{n} \quad \forall n \geq 0
$$

Next, we show by mathematical induction that

$$
\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) \subseteq Q_{n} \forall n \geq 0
$$

For $n=0$ we have $Q_{0}=C$, hence we have $\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) \subseteq Q_{0}$. Now we suppose that $\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) \subseteq Q_{k}$ for some $k \geq 0$. From $x^{k+1}=\operatorname{Pr}_{P_{k} \cap Q_{k}}\left(x^{0}\right)$, it follows that

$$
\left\langle x^{k+1}-x, x^{0}-x^{k+1}\right\rangle \geq 0 \quad \forall x \in P_{k} \cap Q_{k} .
$$

Using this and $\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) \subseteq Q_{k}$, we have

$$
\left\langle x^{k+1}-x, x^{0}-x^{k+1}\right\rangle \geq 0 \quad \forall x \in \operatorname{Sol}(f, C) \cap \operatorname{Fix}(T)
$$

and hence $\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) \subseteq Q_{k+1}$. This proves (a).
It follows from (a) and $x^{n+1}=\operatorname{Pr}_{P_{n} \cap Q_{n}}\left(x^{0}\right)$ that

$$
\begin{equation*}
\left\|x^{n+1}-x^{0}\right\| \leq\left\|\operatorname{Pr} \operatorname{Pr}_{\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T)}\left(x^{0}\right)-x^{0}\right\| \quad \forall n \geq 0 . \tag{3.13}
\end{equation*}
$$

Hence, we get that $\left\{x^{n}\right\}$ is bounded. Otherwise, for each $x \in Q_{n}$, we have

$$
\left\langle x^{n}-x, x^{0}-x^{n}\right\rangle \geq 0,
$$

and hence $x^{n}=\operatorname{Pr}_{Q_{n}}\left(x^{0}\right)$. Using this and $x^{n+1} \in P_{n} \cap Q_{n} \subseteq Q_{n}$, we have

$$
\left\|x^{n}-x^{0}\right\| \leq\left\|x^{n+1}-x^{0}\right\| \quad \forall n \geq 0
$$

Therefore, there exists

$$
\begin{equation*}
A=\lim _{n \rightarrow \infty}\left\|x^{n}-x^{0}\right\| . \tag{3.14}
\end{equation*}
$$

Since $x^{n}=\operatorname{Pr}_{Q_{n}}\left(x^{0}\right)$ and $x^{n+1} \in Q_{n}$, using

$$
\left\|\operatorname{Pr}_{Q_{n}}(x)-x\right\|^{2} \leq\|x-y\|^{2}-\left\|\operatorname{Pr}_{Q_{n}}(x)-y\right\|^{2} \quad \forall x \in H, y \in Q_{n},
$$

we have

$$
\left\|x^{n+1}-x^{n}\right\|^{2} \leq\left\|x^{n+1}-x^{0}\right\|^{2}-\left\|x^{n}-x^{0}\right\|^{2} \quad \forall n \geq 0 .
$$

Combinating this and (3.14), we get

$$
\lim _{n \rightarrow \infty}\left\|x^{n+1}-x^{n}\right\|=0
$$

It proves the first apart of (b).
Since $x^{n+1}=\operatorname{Pr}_{P_{n} \cap Q_{n}}\left(x^{0}\right)$, we have $x^{n+1} \in P_{n},\left\|z^{n}-x^{n+1}\right\| \leq\left\|x^{n}-x^{n+1}\right\|$ and hence

$$
\left\|x^{n}-z^{n}\right\| \leq\left\|x^{n}-x^{n+1}\right\|+\left\|x^{n+1}-z^{n}\right\| \leq 2\left\|x^{n}-x^{n+1}\right\| \forall n \geq 0 .
$$

From $\lim _{n \rightarrow \infty}\left\|x^{n+1}-x^{n}\right\|=0$, we have

$$
\lim _{n \rightarrow \infty}\left\|x^{n}-z^{n}\right\|=0
$$

This proved the second apart of (b).
From (3.12) and Lemma 3.1, it implies that

$$
\begin{aligned}
\left\|z^{n}-x^{*}\right\|^{2} \leq & \alpha_{n}\left\|x^{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|t^{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|x^{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left\|x^{n}-x^{*}\right\|^{2}-\left(1-2 \lambda_{n} c_{1}\right)\left\|x^{n}-y^{n}\right\|^{2}\right. \\
& \left.-\left(1-2 \lambda_{n} c_{2}\right)\left\|t^{n}-y^{n}\right\|^{2}\right\} \\
\leq & \left\|x^{n}-x^{*}\right\|^{2}-\left(1-\alpha_{n}\right)\left(1-2 \lambda_{n} c_{1}\right)\left\|x^{n}-y^{n}\right\|^{2} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left\|x^{n}-y^{n}\right\|^{2} & \leq \frac{1}{\left(1-\alpha_{n}\right)\left(1-2 \lambda_{n} c_{1}\right)}\left\{\left\|x^{n}-x^{*}\right\|^{2}-\left\|z^{n}-x^{*}\right\|^{2}\right\} \\
& =\frac{1}{\left(1-\alpha_{n}\right)\left(1-2 \lambda_{n} c_{1}\right)}\left(\left\|x^{n}-x^{*}\right\|-\left\|z^{n}-x^{*}\right\|\right)\left(\left\|x^{n}-x^{*}\right\|+\left\|z^{n}-x^{*}\right\|\right) \\
& \leq \frac{1}{\left(1-\alpha_{n}\right)\left(1-2 \lambda_{n} c_{1}\right)}\left\|x^{n}-z^{n}\right\|\left(\left\|x^{n}-x^{*}\right\|+\left\|z^{n}-x^{*}\right\|\right)
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|x^{n}-z^{n}\right\|=0$ and the sequences $\left\{x^{n}\right\},\left\{z^{n}\right\}$ are bounded, we get

$$
\lim _{n \rightarrow \infty}\left\|x^{n}-y^{n}\right\|=0
$$

This proves the third apart of (b).
By similar way, we also obtain that $\lim _{n \rightarrow \infty}\left\|t^{n}-y^{n}\right\|=0$. Then we have

$$
\lim _{n \rightarrow \infty}\left\|x^{n}-t^{n}\right\| \leq \lim _{n \rightarrow \infty}\left(\left\|x^{n}-y^{n}\right\|+\left\|y^{n}-t^{n}\right\|\right)=0,
$$

and hence $\lim _{n \rightarrow \infty}\left\|x^{n}-t^{n}\right\|=0$. This proves the last part of (b).
Using (b) and $z^{n}=\alpha_{n} x^{n}+\left(1-\alpha_{n}\right) T\left(t^{n}\right)$, we have

$$
\begin{aligned}
(1-c)\left\|T\left(t^{n}\right)-t^{n}\right\| & \leq\left(1-\alpha_{n}\right)\left\|T\left(t^{n}\right)-t^{n}\right\| \\
& =\left\|\alpha_{n}\left(t^{n}-x^{n}\right)+\left(z^{n}-t^{n}\right)\right\| \\
& \leq \alpha_{n}\left\|t^{n}-x^{n}\right\|+\left\|z^{n}-t^{n}\right\|, \\
& \leq\left(1+\alpha_{n}\right)\left\|t^{n}-x^{n}\right\|+\left\|z^{n}-t^{n}\right\|,
\end{aligned}
$$

and hence $\lim _{n \rightarrow \infty}\left\|t^{n}-T\left(t^{n}\right)\right\|=0$.
Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Suppose that Assumptions (i)-(iv) hold and T is nonexpansive on C. Then, the sequences $\left\{x^{n}\right\},\left\{y^{n}\right\},\left\{z^{n}\right\}$ and $\left\{t^{n}\right\}$ generated by Algorithm 2.1 converge strongly to the same point x^{*}, where

$$
x^{*}=\operatorname{Pr}_{\operatorname{Sol}(f, C) \cap \operatorname{Fix}(T)}\left(x^{0}\right) .
$$

Proof. Since $\left\{x^{n}\right\}$ is bounded, there exists a subsequence $\left\{x^{n_{j}}\right\}$ of $\left\{x^{n}\right\}$ such that $\left\{x^{n_{j}}\right\}$ converges weakly to some \bar{x} as $j \rightarrow \infty$. Then, it follows from (b) of Lemma 3.2 that $\left\{t^{n_{j}}\right\}$ also converges weakly to some \bar{x} as $j \rightarrow \infty$. We can obtain that $\bar{x} \in \operatorname{Sol}(f, C) \cap \operatorname{Fix}(T)$. First,
we show $\bar{x} \in \operatorname{Fix}(T)$. Assume that $\bar{x} \notin \operatorname{Fix}(T)$. Since Opial's condition in [6], i.e., for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup \bar{x}$ the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in H$ with $y \neq \bar{x}$, we have

$$
\begin{aligned}
\liminf _{j \rightarrow \infty}\left\|t^{n_{j}}-\bar{x}\right\| & <\liminf _{j \rightarrow \infty}\left\|t^{n_{j}}-T(\bar{x})\right\| \\
& \leq \liminf _{j \rightarrow \infty}\left(\left\|t^{n_{j}}-T\left(t^{n_{j}}\right)\right\|+\left\|T\left(t^{n_{j}}\right)-T(\bar{x})\right\|\right) \\
& =\liminf _{j \rightarrow \infty}\left\|T\left(t^{n_{j}}\right)-T(\bar{x})\right\| \\
& \leq \liminf _{j \rightarrow \infty}\left\|t^{n_{j}}-\bar{x}\right\| .
\end{aligned}
$$

This is contradiction. Thus, $\bar{x}=T(\bar{x})$.
From (b) of Lemma 3.2 and $x^{n_{j}} \rightharpoonup \bar{x}$ as $j \rightarrow \infty$, it follows

$$
y^{n_{j}} \rightharpoonup \bar{x}, t^{n_{j}} \rightharpoonup \bar{x} \text { as } j \rightarrow \infty .
$$

Then, using (3.10), $\left\{\lambda_{n}\right\} \subset[a, b] \subset(0,1)$ and assumptions of f, we have

$$
\lambda_{n_{j}}\left\{f\left(x^{n_{j}}, y\right)-f\left(x^{n_{j}}, y^{n_{j}}\right)\right\} \geq\left\langle y^{n_{j}}-x^{n_{j}}, y^{n_{j}}-y\right\rangle \forall y \in C .
$$

As $j \rightarrow \infty$, we get $f(\bar{x}, y) \geq 0$ for all $y \in C$. It means that $\bar{x} \in \operatorname{Sol}(f, C)$. So, we have

$$
\bar{x} \in \operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) .
$$

Since $x^{*}=\operatorname{Pr}_{\text {Sol }(f, C) \cap \operatorname{Fix}(T)}\left(x^{0}\right), \bar{x} \in \operatorname{Sol}(f, C) \cap \operatorname{Fix}(T)$ and (3.13), we have

$$
\begin{equation*}
\left\|x^{*}-x^{0}\right\| \leq\left\|\bar{x}-x^{0}\right\| \leq \liminf _{j \rightarrow \infty}\left\|x^{n_{j}}-x^{0}\right\| \leq \limsup _{j \rightarrow \infty}\left\|x^{n_{j}}-x^{0}\right\| \leq\left\|x^{*}-x^{0}\right\| \tag{3.15}
\end{equation*}
$$

So, we get

$$
\lim _{j \rightarrow \infty}\left\|x^{n_{j}}-x^{0}\right\|=\left\|\bar{x}-x^{0}\right\| .
$$

Since $x^{n_{j}}-x^{0}$ converges weakly to $\bar{x}-x^{0}$ as $j \rightarrow \infty$, we have $x^{n_{j}}-x^{0}$ converges strongly to $\bar{x}-x^{0}$ as $j \rightarrow \infty$. By $x^{n}=\operatorname{Pr}_{Q_{n}}\left(x^{0}\right)$ and $x^{*} \in \operatorname{Sol}(f, C) \cap \operatorname{Fix}(T) \subset P_{n} \cap Q_{n} \subset Q_{n}$, we have

$$
\left\langle x^{*}-x^{n_{j}}, x^{0}-x^{*}\right\rangle \leq\left\langle x^{*}-x^{n_{j}}, x^{0}-x^{*}\right\rangle+\left\langle x^{*}-x^{n_{j}}, x^{n_{j}}-x^{0}\right\rangle=-\left\|x^{*}-x^{n_{j}}\right\|^{2} .
$$

As $j \rightarrow \infty$, we have

$$
\left\langle x^{*}-\bar{x}, x^{0}-x^{*}\right\rangle \leq-\left\|x^{*}-\bar{x}\right\|^{2} .
$$

Combinating this, $\bar{x} \in \operatorname{Sol}(f, C) \cap \operatorname{Fix}(T),\left\langle x^{*}-\bar{x}, x^{0}-x^{*}\right\rangle \geq 0$ and $x^{*}=\operatorname{Pr}_{\operatorname{Sol}(f, C) \cap \mathrm{Fix}(T)}\left(x^{0}\right)$, we obtain $\bar{x}=x^{*}$. This implies that $\lim _{n \rightarrow \infty}\left\|x^{n}-x^{*}\right\|=0$. From (b) of Lemma 3.2, it follows $\lim _{n \rightarrow \infty}\left\|y^{n}-x^{*}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|t^{n}-x^{*}\right\|=0$.

4. Applications

In this section, we discuss about two applications of Theorem 3.1 to find a common point of the set of fixed points of a nonexpansive mapping and the set of solutions of variational inequality problems for a monotone, Lipschitz continuous mapping.

Let C is a nonempty closed convex subset of a real Hilbert space H, for each pair $x, y \in C$,

$$
f(x, y):=\langle F(x), y-x\rangle,
$$

where $F: C \rightarrow H$.
In Algorithm 2.1, the subproblems needed to solve at Step 1 are of the form

$$
\left\{\begin{array}{l}
y^{n}=\operatorname{argmin}\left\{\frac{1}{2}\left\|y-x^{n}\right\|^{2}+\lambda_{n}\left\langle F\left(x^{n}\right), y-x^{n}\right\rangle: y \in C\right\}, \\
t^{n}=\operatorname{argmin}\left\{\frac{1}{2}\left\|t-x^{n}\right\|^{2}+\lambda_{n}\left\langle F\left(y^{n}\right), t-y^{n}\right\rangle: t \in C\right\} .
\end{array}\right.
$$

Hence, we have

$$
\left\{\begin{array}{l}
y^{n}=\operatorname{argmin}\left\{\frac{1}{2}\left\|y-\left(x^{n}-\lambda_{n} F\left(x^{n}\right)\right)\right\|^{2}: y \in C\right\}=\operatorname{Pr}_{C}\left(x^{n}-\lambda_{n} F\left(x^{n}\right)\right), \\
t^{n}=\operatorname{argmin}\left\{\frac{1}{2}\left\|t-\left(x^{n}-\lambda_{n} F\left(y^{n}\right)\right)\right\|^{2}: t \in C\right\}=\operatorname{Pr}_{C}\left(x^{n}-\lambda_{n} F\left(y^{n}\right)\right) .
\end{array}\right.
$$

Thus, in this case Algorithm 2.1 and its convergence become the following results:
Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F: C \rightarrow H$ be a monotone, L-Lipschitz continuous mapping and $T: C \rightarrow C$ be a nonexpansive mapping such that $\operatorname{Fix}(T) \cap \operatorname{Sol}(F, C) \neq \emptyset$. Let $\left\{x^{n}\right\},\left\{y^{n}\right\}$ and $\left\{z^{n}\right\}$ be the sequences generated by

$$
\left\{\begin{array}{l}
x^{0} \in C, \\
y^{n}=\operatorname{Pr}_{C}\left(x^{n}-\lambda_{n} F\left(x^{n}\right)\right), \\
t^{n}=\operatorname{Pr}_{C}\left(x^{n}-\lambda_{n} F\left(y^{n}\right)\right), \\
z^{n}=\alpha_{n} x^{n}+\left(1-\alpha_{n}\right) T\left(t^{n}\right), \\
P_{n}=\left\{z \in C:\left\|z^{n}-z\right\| \leq\left\|x^{n}-z\right\|\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x^{n}-z, x^{0}-x^{n}\right\rangle \geq 0\right\}, \\
x^{n+1}=\operatorname{Pr}_{P_{n} \cap Q_{n}}\left(x^{0}\right),
\end{array}\right.
$$

for every $n \geq 0$, where $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{L}\right)$ and $\left\{\alpha_{n}\right\} \subset[0, c]$ for some $c \in$ $[0,1)$. Then the sequences $\left\{x^{n}\right\},\left\{y^{n}\right\}$ and $\left\{z^{n}\right\}$ converge strongly to $\operatorname{Pr}_{\text {Sols }(F, C) \cap \operatorname{Fix}(T)}\left(x^{0}\right)$.

Using Theorem 4.1, we prove the the following theorem proposed by Nakajo and Takahashi.

Theorem 4.2. [9] Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T: C \rightarrow C$ be a nonexpansive mapping such that $\operatorname{Fix}(T) \neq \emptyset$. Let $\left\{x^{n}\right\}$ and $\left\{y^{n}\right\}$ be the sequences generated by

$$
\left\{\begin{array}{l}
x^{0} \in C, \\
y^{n}=\alpha_{n} x^{n}+\left(1-\alpha_{n}\right) T\left\{\operatorname{Pr}_{C}\left(x^{n}\right)\right\}, \\
P_{n}=\left\{z \in C:\left\|z^{n}-z\right\| \leq\left\|x^{n}-z\right\|\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x^{n}-z, x-x^{n}\right\rangle \geq 0\right\}, \\
x^{n+1}=\operatorname{Pr}_{P_{n} \cap Q_{n}}\left(x^{0}\right),
\end{array}\right.
$$

for every $n \geq 0$, where $\left\{\alpha_{n}\right\} \subset[0, c]$ for some $c \in[0,1)$. Then, the sequences $\left\{x^{n}\right\}$ and $\left\{y^{n}\right\}$ converge strongly to $\operatorname{Pr}_{\operatorname{Fix}(T)}\left(x^{0}\right)$.

Proof. For $f=0$, by Theorem 4.1, we have the desired results.

References

[1] P. N. Anh, A logarithmic quadratic regularization method for pseudomonotone equilibrium problems, Acta Math. Vietnam. 34 (2009), no. 2, 183-200.
[2] P. N. Anh, An LQ regularization method for pseudomonotone equilibrium problems on polyhedra, Vietnam J. Math. 36 (2008), no. 2, 209-228.
[3] P. N. Anh, L. D. Muu, V. H. Nguyen and J. J. Strodiot, Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities, J. Optim. Theory Appl. $\mathbf{1 2 4}$ (2005), no. 2, 285-306.
[4] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
[5] P. Daniele, F. Giannessi and A. Maugeri, Equilibrium Problems and Variational Models, Nonconvex Optimization and its Applications, 68, Kluwer Acad. Publ., Norwell, MA, 2003.
[6] K. Geobel and W. A. Kirk, Topics on Metric Fixed Point Theory, Cambridge University Press, Cambridge, England, 1990
[7] G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, Èkonom. i Mat. Metody 12 (1976), no. 4, 747-756.
[8] N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), no. 4, 1230-1241 (electronic).
[9] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), no. 2, 372-379.
[10] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[11] J. W. Peng, Iterative algorithms for mixed equilibrium problems, strict pseudocontractions and monotone mappings, J. Optim. Theory Appl. 144 (2010), no. 1, 107-119.
[12] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515.
[13] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428.
[14] S. Wang and B. Guo, New iterative scheme with nonexpansive mappings for equilibrium problems and variational inequality problems in Hilbert spaces, J. Comput. Appl. Math. 233 (2010), no. 10, 2620-2630.
[15] H. K. Xu and T. H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl. 119 (2003), no. 1, 185-201.
[16] Y. Yao, Y.-C. Liou and Y.-J. Wu, An extragradient method for mixed equilibrium problems and fixed point problems, Fixed Point Theory Appl. 2009, Art. ID 632819, 15 pp.
[17] Y. Yao, Y.-C. Liou and J.-C. Yao, An extragradient method for fixed point problems and variational inequality problems, J. Inequal. Appl. 2007, Art. ID 38752, 12 pp.
[18] L.-C. Zeng and J.-C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10 (2006), no. 5, 1293-1303.

[^0]: Communicated by Ahmad Izani Md. Ismail.
 Received: November 18, 2010; Revised: March 1, 2011.

