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Abstract. We study a nonlinear elliptic problem with Dirichlet boundary condition involv-
ing an anisotropic operator with variable exponents on a smooth bounded domain Ω⊂ RN .
For that equation we prove the existence of at least two nonnegative and nontrivial weak
solutions. Our main result is proved using as main tools the Mountain Pass Theorem and a
direct method in Calculus of Variation.
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1. Introduction

Equations involving variable exponent growth conditions have been extensively studied in
the last decade. The large number of papers studying problems involving variable exponent
growth conditions is motivated by the fact that this type of equations can serve as models in
the theory of electrorheological fluids (see, e.g. [15]), image processing (see, e.g. [3]), the
theory of elasticity (see, e.g. [18]) or biology (see, e.g. [10]). In this context, we just refer
to the survey paper [11] and the references therein.

Typical models of elliptic equations with variable exponent growth conditions appeal to
the so called p(x)-Laplace operator, that is

∆p(x)u := div(|∇u|p(x)−2
∇u) ,

where p(x) is a function satisfying p(x)> 1 for each x. Recently, Mihăilescu-Pucci-Rădulescu
extended in [13] the study involving the p(x)-Laplace operator to the case of anisotropic
equations with variable exponent growth conditions, where the differential operator consid-
ered has the form

(1.1)
N

∑
i=1

∂xi(|∂xiu|
pi(x)−2

∂xiu) ,
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with pi(x) functions satisfying infx pi(x) > 1 for each i ∈ {1, ...,N}. Undoubtedly, in the
particular case when pi(x) = p(x) for each i ∈ {1, ...,N} the above differential operator be-

comes
N
∑

i=1
∂xi(|∂xiu|p(x)−2∂xiu) and has similar properties with the p(x)-Laplace operator. On

the other hand, the anisotropic equations with variable exponent growth conditions enable
the study of equations with more complicated nonlinearities since the differential operator
(1.1) allows a distinct behavior for partial derivatives in various directions.

In this paper we study the existence of nontrivial solutions of an nonhomogeneous anisotropic
problem of type

(1.2)


−

N
∑

i=1
∂xi(|∂xiu|pi(x)−2∂xiu) = λ f (x,u), for x ∈Ω,

u = 0, for x ∈ ∂Ω,
u≥ 0, for x ∈Ω,

where Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth boundary, pi are continuous
functions on Ω such that 2≤ pi(x) for any x ∈Ω and i ∈ {1, ...,N}.

2. Preliminary results

Set
C+(Ω) = {h; h ∈C(Ω), h(x) > 1 for all x ∈Ω}.

For any h ∈C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈C+(Ω), we define the variable exponent Lebesgue space

Lp(·)(Ω) = {u; u is a measurable real-valued function such that
∫

Ω

|u(x)|p(x) dx < ∞}.

We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|p(·) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)

dx≤ 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects:
they are Banach spaces [12, Theorem 2.5], the Hölder inequality holds [12, Theorem 2.1],
they are reflexive if and only if 1 < p− ≤ p+ < ∞ [12, Corollary 2.7] and continuous func-
tions are dense if p+ < ∞ [12, Theorem 2.11]. The inclusion between Lebesgue spaces also
generalizes naturally [12, Theorem 2.8]: if 0 < |Ω|< ∞ and p1, p2 are variable exponents,
so that p1(x)≤ p2(x) almost everywhere in Ω, then there exists the continuous embedding
Lp2(·)(Ω) ↪→ Lp1(·)(Ω), whose norm does not exceed |Ω|+1.

We denote by Lq(·)(Ω) the conjugate space of Lp(·)(Ω), where 1/p(x)+ 1/q(x) = 1 for
any x ∈Ω. For any u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω) the Hölder type inequality

(2.1)
∣∣∣∣∫

Ω

uv dx
∣∣∣∣≤ ( 1

p−
+

1
q−

)
|u|p(·)|v|q(·)

holds true.
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An important role in manipulating the generalized Lebesgue-Sobolev spaces is played
by the modular of the Lp(·)(Ω) space, which is the mapping ρp(·) : Lp(·)(Ω)→R defined by

ρp(·)(u) =
∫

Ω

|u|p(x) dx.

If (un), u ∈ Lp(·)(Ω) and p+ < ∞ then the following relations hold true

(2.2) |u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρp(·)(u)≤ |u|p
+

p(·)

(2.3) |u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρp(·)(u)≤ |u|p
−

p(·)

(2.4) |un−u|p(·)→ 0 ⇔ ρp(·)(un−u)→ 0.

Spaces with p+ = ∞ have been studied by Edmunds, Lang and Nekvinda [4].
Next, we define W 1,p(·)

0 (Ω) as the closure of C∞
0 (Ω) under the norm

‖u‖= |∇u|p(·).

The space (W 1,p(·)
0 (Ω),‖ · ‖) is a separable and reflexive Banach space. We note that if

q ∈ C+(Ω) and q(x) < p?(x) for all x ∈ Ω then the embedding W 1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is

compact and continuous, where p?(x) = N p(x)/(N− p(x)) if p(x) < N or p?(x) = +∞ if
p(x)≥ N. We refer to [5, 6, 7, 8, 12] for further properties of variable exponent Lebesgue-
Sobolev spaces.

Finally, we introduce a natural generalization of the variable exponent Sobolev space
W 1,p(·)

0 (Ω) that will enable us to study with sufficient accuracy problem (1.2). For this
purpose, let us denote by−→p : Ω→RN the vectorial function−→p = (p1, ..., pN), where p1,...,
pN : Ω→ (1,∞) are continuous functions. We define W 1,−→p (·)

0 (Ω), the anisotropic variable
exponent Sobolev space, as the closure of C∞

0 (Ω) with respect to the norm

‖u‖−→p (·) =
N

∑
i=1
|∂xiu|pi(·).

W 1,−→p (·)
0 (Ω) endowed with the above norm is a reflexive Banach space (see [13]).

On the other hand, in order to facilitate the manipulation of the space W 1,−→p (·)
0 (Ω) we

introduced
−→
P +,
−→
P − in RN as

−→
P + = (p+

1 , ..., p+
N ),

−→
P − = (p−1 , ..., p−N ),

and P+
+ ,P+

− ,P−− ∈ R+ as

P+
+ = max{p+

1 , ..., p+
N}, P+

− = max{p−1 , ..., p−N}, P−− = min{p−1 , ..., p−N}.

Throughout this paper we assume that

(2.5)
N

∑
i=1

1
p−i

> 1
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and define P?
− ∈ R+ and P−,∞ ∈ R+ by

P?
− =

N
N
∑

i=1

1
p−i
−1

, P−,∞ = max{P+
− ,P?

−}.

Next, we recall Theorem 1 in [13], regarding a compactness embedding of W 1,−→p (·)
0 (Ω)

into variable exponent Lebesgue space:

Theorem 2.1. Assume that Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary.
Assume relation (2.5) is fulfilled. For any q ∈C(Ω) verifying

(2.6) 1 < q(x) < P−,∞ f or all x ∈Ω,

the embedding

W 1,−→p (·)
0 (Ω) ↪→ Lq(·)(Ω)

is continuous and compact.

3. The main result

In this paper we study problem (1.2) in the particular case

f (x, t) = tα(x)−1− tβ (x)−1, t ≥ 0, x ∈Ω,

where α : Ω→ R, β : Ω→ R are continuous functions such that

1 < β
− ≤ β (x)≤ α(x)≤ α

+ < P−− ≤ P+
+ < P−,∞ for x ∈Ω

and there exists x0 ∈Ω such that
β (x0) < α(x0).

More precisely, we consider the following problem

(3.1)


−

N
∑

i=1
∂xi(|∂xiu|pi(x)−2∂xiu) = λ (uα(x)−1−uβ (x)−1), for x ∈Ω,

u = 0, for x ∈ ∂Ω,
u≥ 0, for x ∈Ω.

We seek solutions for problem (3.1) belonging to the space W 1,−→p (·)
0 (Ω) in the sense below.

Definition 3.1. We say that u ∈W 1,−→p (·)
0 (Ω) is a weak solution for problem (3.1) if u ≥ 0

almost everywhere in Ω and∫
Ω

{
N

∑
i=1

(
|∂xiu|

pi(x)−2
∂xiu ∂xiv

)
−λ

(
uα(x)−1 v−uβ (x)−1 v

)}
dx = 0,

for all v ∈W 1,−→p (·)
0 (Ω).

The main result of this paper is given by the following theorem.

Theorem 3.1. There exists λ > 0 such that problem (3.1) has at least two distinct nonneg-
ative, nontrivial weak solutions for all λ ≥ λ .

Theorem 3.1 supplements [14] with the case of anisotropic spaces.
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4. Proof of Theorem 3.1

We start by introducing the energy functional corresponding to problem (3.1) which is de-
fined as Jλ : W 1,−→p (·)

0 (Ω)→ R,

(4.1) Jλ (u) =
∫

Ω

N

∑
i=1

|∂xiu|pi(x)

pi(x)
dx−λ

∫
Ω

uα(x)
+

α(x)
dx+λ

∫
Ω

uβ (x)
+

β (x)
dx,

where u+(x)= max{u(x),0} for each x∈Ω. Standard arguments assure that Jλ ∈C1(W 1,−→p (·)
0 (Ω),R)

and the Fréchet derivative is given by

(4.2) 〈J′
λ
(u),v〉=

∫
Ω

N

∑
i=1
|∂xiu|

pi(x)−2
∂xiu ∂xiv dx−λ

∫
Ω

uα(x)−1
+ v dx+λ

∫
Ω

uβ (x)−1
+ v dx,

for all u, v ∈W 1,−→p (·)
0 (Ω).

We prove some auxiliary results.

Lemma 4.1. If u ∈W 1,−→p (·)
0 (Ω) then u+,u− ∈W 1,−→p (·)

0 (Ω) and

∂ u+

∂xi
=

 0, if [u≤ 0],
∂ u
∂xi

, if [u > 0],
∂ u−
∂xi

=

 0, if [u≥ 0],
∂ u
∂xi

, if [u < 0],

where u±(x) = max{±u(x),0} for all x ∈Ω.

Proof. The proof of this lemma runs similarly with the proof of Lemma 3.3 in [14] without
any particular complication. Because of that fact we will omit it.

Lemma 4.2. If u is a critical point of functional Jλ then u≥ 0.

Proof. If u is a critical point of Jλ then using Lemma 4.1 we obtain

0 =〈J′
λ
(u),u−〉

=
∫

Ω

N

∑
i=1
|∂xi u|pi(x)−2

∂xiu ∂xiu− dx−λ

∫
Ω

uα(x)−1
+ u− dx+

λ

∫
Ω

uβ (x)−1
+ u− dx

=
∫

Ω

N

∑
i=1
|∂xi u|pi(x)−2

∂xiu ∂xiu− dx

=
∫

Ω

N

∑
i=1
|∂xi u−|pi(x)−2

∂xiu− ∂xiu− dx

=
∫

Ω

N

∑
i=1
|∂xi u−|pi(x) dx,

that is

(4.3)
∫

Ω

N

∑
i=1
|∂xi u−|pi(x) dx = 0.
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Applying Jensen’s inequality to the convex function g : [0,∞)→ [0,∞) defined by g(s) = sP−−

it follows that for all u ∈W 1,−→p (·)
0 (Ω) we have

(4.4)
‖u−‖

P−−−→p (·)

NP−−−1
= N


N
∑

i=1
|∂xiu−|pi(·)

N


P−−

≤
N

∑
i=1
|∂xiu−|

P−−
pi(·)

.

For each i ∈ {1, . . . ,N} we define

ξi =
{

P+
+ , if |∂xiu−|pi(·) < 1,

P−− , if |∂xiu−|pi(·) > 1.

Thus, using relation (2.2), (2.3) and (4.4) we get∫
Ω

N

∑
i=1
|∂xi u−|pi(x) dx≥

N

∑
i=1
|∂xi u−|ξi

pi(·)
.

By above pieces of information and relation (4.3) we deduce that ‖u−‖−→p (·) =
N

∑
i=1
|∂xiu−|pi(·) =

0 which means that u≥ 0.

We consider the functional I : W 1,−→p (·)
0 (Ω)→ R defined by

I(u) =
∫

Ω

N

∑
i=1

|∂xi u|pi(x)

pi(x)
dx

for every u ∈W 1,−→p (·)
0 (Ω). Standard arguments assure that I is well-defined on W 1,−→p (·)

0 (Ω),

I ∈C1(W 1,−→p (·)
0 (Ω),R) and the Fréchet derivative is given by

〈I′(u),v〉=
∫

Ω

N

∑
i=1
|∂xiu|

pi(x)−2
∂xiu ∂xiv dx

for all u,v ∈W 1,−→p (·)
0 (Ω).

Lemma 4.3. The functional I is weakly lower semicontinuous.

Proof. The conclusion of this lemma is obvious since we deal with a functional I which is
continuous and convex on the Banach space W 1,−→p (·)

0 (Ω).

Lemma 4.4. There exists a positive constant A such that
N

∑
i=1

∫
Ω

|∂xi u|pi(x)

pi(x)
dx≥A

∫
Ω

|u|P
−
− dx

for all u ∈ S := {v ∈W 1,−→p (·)
0 (Ω) : ‖v‖−→p (·) > N }.

Proof. We fix arbitrary u ∈ S. Since ‖u‖−→p (·) > N it follows that there exists j ∈ {1, ...,N}
such that |∂x j u|p j(·) > 1. Then we deduce that

(4.5)
∫

Ω

|∂x j u|p j(x)

p j(x)
dx≥ 1

P+
+
|∂x j u|

P−−
p j(·)

.
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On the other hand, since u∈W 1,−→p (·)
0 (Ω) we infer that ∂x j u∈ Lp j(·)(Ω). Since P−− ≤ p j(x) for

every x ∈ Ω we get that Lp j(·)(Ω) is continuously embedded in LP−− (Ω) and consequently,
there exists a positive constant, say C j > 0, such that

|∂x j u|P−− ≤C j|∂x j u|p j(·) ,

or

(4.6) |∂x j u|
P−−
p j(·)
≥ 1

C
P−−
j

∫
Ω

|∂x j u|
P−− dx .

Now, using similar arguments as those used in the proof of relation (11) in [9] we obtain the
existence of a positive constant, say D j > 0, such that

(4.7)
∫

Ω

|∂x j u|
P−− dx≥ D j

∫
Ω

|u|P
−
− dx .

Relations (4.5), (4.6) and (4.7) imply the existence of a positive constant

A := min
j∈{1,...,N}

D j

P+
+ C

P−−
j

for which the conclusion of Lemma 4.4 holds true.

Remark 4.1. By Lemma 4.4 we deduce that there exists λ ? > 0 such that

(4.8) λ
? = inf

u∈S

N

∑
i=1

∫
Ω

|∂xi u|pi(x)

pi(x)
dx∫

Ω

|u|P
−
− dx

where S := {v ∈W 1,−→p (·)
0 (Ω) : ‖v‖−→p (·) > N }.

Lemma 4.5.
1◦ The functional Jλ is coercive and bounded from below.
2◦ The functional Jλ is weakly lower semicontinuous.

Proof. 1◦. By relation 1 < β− ≤ β (x) ≤ α(x) ≤ α+ < P−− for every x ∈ Ω and β (x0) <
α(x0), we get that

lim
t→∞

1
α(x)

tα(x)− 1
β (x)

tβ (x)

tP−−
= 0

for every x ∈Ω. Then for any λ > 0 there exists a positive constant Cλ such that

λ

(
1

α(x)
tα(x)− 1

β (x)
tβ (x)

)
≤ λ ?

2
tP−− +Cλ

for all t ≥ 0 and x ∈Ω, where λ ? is given by relation (4.8).
The above inequality shows that for any u ∈W 1,−→p (·)

0 (Ω) with ‖u‖−→p (·) > N we obtain

Jλ (u) =
N

∑
i=1

∫
Ω

|∂xiu|pi(x)

pi(x)
dx−λ

∫
Ω

(
1

α(x)
uα(x)

+ − 1
β (x)

uβ (x)
+

)
dx
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≥
N

∑
i=1

∫
Ω

|∂xiu|pi(x)

pi(x)
dx−λ

∫
Ω

(
1

α(x)
|u|α(x) − 1

β (x)
uβ (x)

+

)
dx

≥
N

∑
i=1

∫
Ω

|∂xiu|pi(x)

pi(x)
dx− λ ?

2

∫
Ω

|u|P
−
− dx−Cλ · |Ω|

≥
N

∑
i=1

1
2

∫
Ω

|∂xiu|pi(x)

pi(x)
dx−Cλ · |Ω|

≥ 1
2P+

+

N

∑
i=1

∫
Ω

|∂xiu|
pi(x) dx−Cλ · |Ω|.

In order to go further, we define for each i ∈ {1, ...,N} and each u ∈ W 1,−→p (·)
0 (Ω) with

‖u‖−→p (·) > N

κi,u =
{

P+
+ , if |∂xiu|pi(·) < 1,

P−− , if |∂xiu|pi(·) > 1.

Using relations (2.2) and (2.3) we infer that for each u ∈W 1,−→p (·)
0 (Ω) with ‖u‖−→p (·) > N we

have
N

∑
i=1

∫
Ω

|∂xiu|
pi(x) dx≥

N

∑
i=1
|∂xiu|

κi,u
pi(·)

≥
N

∑
i=1
|∂xiu|

P−−
pi(·)
− ∑
{i: κi,u=P+

+ }
(|∂xiu|

P−−
pi(·)
−|∂xiu|

P+
+

pi(·)
)

≥ 1

NP−−
‖u‖P−−−→p (·)−N .

From the above pieces of information we find that for each u∈W 1,−→p (·)
0 (Ω) with ‖u‖−→p (·) > N

the following estimate holds true

Jλ (u)≥ 1

2P+
+ NP−−

‖u‖P−−−→p (·)−
N

2P+
+
−Cλ |Ω| .

This inequalities show that Jλ is coercive and bounded from below.
2◦. By Lemma 4.3 we have that the functional I : W 1,−→p (·)

0 (Ω)→ R defined by

I(u) =
∫

Ω

N

∑
i=1

|∂xi u|pi(x)

pi(x)
dx

for every u∈W 1,−→p (·)
0 (Ω) is weakly lower semicontinuous. Next, we prove that Jλ is weakly

lower semicontinuous. Let {un} ⊂W 1,−→p (·)
0 (Ω) be a sequence that converges weakly to u in

W 1,−→p (·)
0 (Ω). Since I is weakly lower semicontinuous we deduce that

(4.9) I(u)≤ liminf
n→∞

I(un).

On the other hand, as W 1,−→p (·)
0 (Ω) is continuously and compactly embedded in Lα(·)(Ω) and

Lβ (·)(Ω) (by Theorem 2.1) it follows that {(un)+} converges strongly to u+ in Lα(·)(Ω) and



Multiplicity of Solutions for a Nonlinear Degenerate Problem 125

Lβ (·)(Ω). This fact and relation (4.9) imply that

Jλ (u)≤ liminf
n→∞

Jλ (un),

that is the functional Jλ is weakly lower semicontinuous. The proof of Lemma 4.5 is com-
pleted.

By Lemma 4.5 and Theorem 1.2 in [16], we deduce that there exists v1 ∈W 1,−→p (·)
0 (Ω) a

global minimizer of Jλ , thus v1 ≥ 0 in Ω by Lemma 4.2.

Lemma 4.6. There exists λ > 0 such that inf
W 1,−→p (·)

0 (Ω)
Jλ < 0, for all λ ≥ λ .

Proof. Since β (x0) < α(x0) we can choose a small neighborhood Ω1 ⊂ Ω of x0 and we
deduce that there exists an element v0 ∈W 1,−→p (·)

0 (Ω1)⊂W 1,−→p (·)
0 (Ω) such that∫

Ω

(
vα(x)

0
α(x)

−
vβ (x)

0
β (x)

)
dx > 0.

Consequently, there exists λ > 0 such that Jλ (v0) < 0 for any λ ≥ λ .

Remark 4.2. By Lemma 4.6 and the fact that v1 is a global minimizer of Jλ it follows that
Jλ (v1) < 0 for any λ ≥ λ and thus, we find that v1 is a nontrivial weak solution of problem
(3.1) for λ > 0 large enough.

We fix λ ≥ λ and consider function h : Ω×R→ R defined by

h(x, t) =


0, if t < 0,

tα(x)−1− tβ (x)−1, if 0≤ t ≤ v1(x),
vα(x)−1

1 (x)− vβ (x)−1
1 (x), if t > v1(x)

and function H : Ω×R→ R,

H(x, t) =
∫ t

0
h(x,s) ds,

that is the primitive of function h with respect to the second variable.
Define the functional Kλ : W 1,−→p (·)

0 (Ω)→ R by

Kλ (v) =
∫

Ω

N

∑
i=1

|∂xi v|pi(x)

pi(x)
dx−λ

∫
Ω

H(x,v) dx.

Standard arguments assures that Kλ ∈C1(W 1,−→p (·)
0 (Ω),R) and its Frechét derivative is given

by

〈K′
λ
(v),w〉=

∫
Ω

N

∑
i=1
|∂xi v|pi(x)−2

∂xiv ∂xiw dx−λ

∫
Ω

h(x,v) w dx,

for all v,w ∈W 1,−→p (·)
0 (Ω).

Remark 4.3. We point out that if v ∈W 1,−→p (·)
0 (Ω) is a critical point of functional Kλ then

v≥ 0. The proof is similar with the one considered in the case of Jλ .

Lemma 4.7. If v is a critical point of functional Kλ then v≤ v1.
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Proof. We have

0 =〈K′
λ
(v),(v− v1)+〉−〈J′λ (v1),(v− v1)+〉

=
∫

Ω

N

∑
i=1

[
|∂xiv|

pi(x)−2
∂xiv−|∂xiv1|pi(x)−2

∂xiv1

]
∂xi(v− v1)+dx−

λ

∫
Ω

[
h(x,v)−

(
vα(x)−1

1 − vβ (x)−1
1

)]
(v− v1)+dx

=
∫

[v>v1]

N

∑
i=1

[
|∂xiv|

pi(x)−2
∂xiv−|∂xiv1|pi(x)−2

∂xiv1

]
∂xi(v− v1)dx,

that is

(4.10)
∫

[v>v1]

N

∑
i=1

[
|∂xiv|

pi(x)−2
∂xiv−|∂xiv1|pi(x)−2

∂xiv1

]
(∂xiv−∂xiv1)dx = 0.

Next, we recall that the following elementary inequality
(|η |t−2η−|ζ |t−2ζ )(η−ζ )≥ 2−t |η−ζ |t for all η ,ζ ∈ RN

which is valid for all t ≥ 2. By equality (4.10), applying the above inequality we get
N

∑
i=1

∫
[v>v1]

|∂xiv−∂xiv1|pi(x) dx = 0,

so ∂xi v(x) = ∂xi v1(x) for all i ∈ {1, . . . ,N} and x ∈Ω2 := {y ∈Ω : v(y) > v1(y)}.
Hence

N

∑
i=1

∫
Ω2

|∂xiv−∂xiv1|pi(x) dx = 0,

and thus,
N

∑
i=1

∫
Ω

|∂xi(v− v1)+|pi(x) dx = 0.

By relations (2.2) and (2.3) we obtain ‖(v− v1)+‖−→p (·) = 0. Since v− v1 ∈W 1,−→p (·)
0 (Ω)

by Lemma 4.1 we have that (v− v1)+ ∈W 1,−→p (·)
0 (Ω). Thus, we obtain that (v− v1)+ = 0 in

Ω which means that v≤ v1 in Ω.
Next, we will determinate a nontrivial critical point for functional Kλ using as a main

tool the Mountain Pass Theorem. In order to do this, we prove the following lemma.

Lemma 4.8. There exist two constants θ ∈ (0,‖v1‖−→p (·)) and a > 0 such that

Kλ (v)≥ a for all v ∈W 1,−→p (·)
0 (Ω) with ‖v‖−→p (·) = θ .

Proof. We fix v ∈W 1,−→p (·)
0 (Ω) arbitrary with ‖v‖−→p (·) < 1. Obviously we have that

1
α(x)

sα(x)− 1
β (x)

sβ (x) ≤ 0 for any s ∈ [0,1] and any x ∈Ω.

We define Ω3 :=
{

x ∈Ω : v(x) > min{1,v1(x)}
}

.
If x ∈Ω\Ω3 we have that v(x)≤ v1(x) and v(x)≤ 1 and we deduce that

H(x,v) =
1

α(x)
vα(x)
+ − 1

β (x)
vβ (x)
+ ≤ 0.
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If x ∈Ω3∩{x ∈Ω; v1(x) < v(x) < 1} we have that

H(x,v) =
1

α(x)
vα(x)

1 − 1
β (x)

vβ (x)
1 +(vα(x)−1

1 − vβ (x)−1
1 ) · (v− v1)≤ 0.

Therefore, we conclude that H(x,v)≤ 0 on (Ω\Ω3)∪ (Ω3∩{x ∈Ω; v1(x) < v(x) < 1}).
We define the set

Ω
′
3 := Ω3 \{x ∈Ω; v1(x) < v(x) < 1}.

By relation (2.3), for all w ∈W 1,−→p (·)
0 (Ω) with ‖w‖−→p (·) < 1, we obtain using Jensen’s in-

equality
(4.11)

‖w‖P+
+−→p (·)

NP+
+−1

= N


N
∑

i=1
|∂xiw|pi(·)

N


P+
+

≤
N

∑
i=1
|∂xiw|

P+
+

pi(·)
≤

N

∑
i=1
|∂xiw|

p+
i

pi(·)
≤

N

∑
i=1

∫
Ω

|∂xiw|
pi(x) dx.

Provided that ‖v‖−→p (·) < 1 by relation (4.11) we get

(4.12) Kλ (v)≥ 1
P+
+

‖v‖P+
+−→p (·)

NP+
+−1

−λ

∫
Ω′3

H(x,v) dx.

We choose a constant r such that 1 < P+
+ < r < P−,∞. By Theorem 2.1 it follows that

W 1,−→p (·)
0 (Ω) is continuously embedded in Lr(Ω) that means there exists a positive constant

C1 such that

(4.13) |v|Lr(Ω) ≤ C1 ‖v‖−→p (·) for all v ∈W 1,−→p (·)
0 (Ω).

Using the definition of functional H and (4.13) we have

λ

∫
Ω′3

H(x,v)dx =λ

∫
Ω′3∩ [v>v1]

(
vα(x)

1
α(x)

−
vβ (x)

1
β (x)

)
dx+

λ

∫
Ω′3∩ [v>v1]

(vα(x)−1
1 − vβ (x)−1

1 )(v− v1)dx+

λ

∫
Ω′3∩ [v<v1]

(
vα(x)
+

α(x)
−

vβ (x)
+

β (x)

)
dx

≤ λ

α−

∫
Ω′3∩ [v>v1]

vα(x)
1 dx+λ

∫
Ω′3∩[v>v1]

vα(x)−1
1 v dx+

λ

α−

∫
Ω′3∩ [v<v1]

vα(x)
+ dx

≤λ C2

∫
Ω′3

vα(x)
+ dx

≤λ C2

∫
Ω′3

vr
+ dx

≤λ C3 ‖v‖r−→p (·),

where C2 and C3 are positive constants.
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By the above inequalities we deduce that for a θ ∈ (0,min{1,‖v1‖−→p (·)}) small enough
we get

Kλ (v)≥

(
1

P+
+ NP+

+−1
−λ C3 ‖v‖

r−P+
+−→p (·)

)
‖v‖P+

+−→p (·).

Since r > P+
+ the proof of Lemma 4.8 is completed.

Lemma 4.9. Functional Kλ is coercive.

Proof. This proof can be carried out in a similar manner as the proof of Lemma 4.5 and for
that reason we shall omit it.
Proof of Theorem 3.1. By Lemma 4.8 and the Mountain Pass Theorem (see [1] with the
variant given by [17, Theorem 1.15]), we deduce that there exists a sequence {vn} ⊂
W 1,−→p (·)

0 (Ω) such that

(4.14) Kλ (vn)→ c > 0 and K′
λ
(vn)→ 0,

where
c = inf

γ∈Γ
max

t∈[0,1]
Kλ (γ(t))≥ a > 0 ,

with a given by Lemma 4.8 and

Γ = {γ ∈C([0,1],W 1,−→p (·)
0 (Ω)) : γ(0) = 0, γ(1) = v1}.

By relation (4.14) and Lemma 4.9, we obtain that {vn} is a bounded sequence and thus,
passing eventually to a subsequence of {vn}, still denoted by {vn} we may assume that
there exists v2 ∈W 1,−→p (·)

0 (Ω) such that {vn} converges weakly to v2 in W 1,−→p (·)
0 (Ω).

We will show that {vn} converges strongly to v2 in W 1,−→p (·)
0 (Ω).

By relation (4.14) we have that

(4.15) lim
n→∞
〈K′

λ
(vn),vn− v2〉= 0.

We get
(4.16)

〈I′(vn)− I′(v2),vn− v2〉= 〈K′λ (vn)−K′
λ
(v2)〉+λ

∫
Ω

[h(x,vn)−h(x,v2)] (vn− v2) dx.

Since by Theorem 2.1 the anisotropic variable exponent space W 1,−→p (·)
0 (Ω) is continu-

ously and compactly embedded in the Lebesgue spaces Lα(·)(Ω) and Lβ (·)(Ω), we conclude
that {vn} converges strongly to v2 in Lα(·)(Ω) and Lβ (·)(Ω).

Then by (4.15) and (4.16) we deduce that

〈I′(vn)− I′(v2),vn− v2〉= o(1)

which is equivalent with

(4.17) lim
n→∞

N

∑
i=1

∫
Ω

[
|∂xivn|pi(x)−2

∂xivn−|∂xiv2|pi(x)−2
∂xiv2

]
(∂xivn−∂xiv2) dx = 0.

Next, we recall again the inequality
(|η |t−2η−|ζ |t−2ζ )(η−ζ )≥ 2−t |η−ζ |t for all η ,ζ ∈ RN
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which is valid for all t ≥ 2. Applying the above inequality in equality (4.17), we get

lim
n→∞

N

∑
i=1

∫
Ω

|∂xivn−∂xiv2|pi(x) dx = 0,

and, consequently, the sequence {vn} converges strongly to v2 in W 1,−→p (·)
0 (Ω).

Since Kλ ∈ C1(W 1,−→p (·)
0 (Ω),R) and relation (4.14) holds true, we find Kλ (v2) = c > 0

and K′
λ
(v2) = 0 in

(
W 1,−→p (·)

0 (Ω)
)?

, the dual space of W 1,−→p (·)
0 (Ω).

By Lemma 4.7 and Remark 4.3 we deduce that 0 ≤ v2 ≤ v1 in Ω. Therefore, h(x,v2) =
vα(x)−1

2 − vβ (x)−1
2 and

H(x,v2) =
vα(x)

2
α(x)

−
vβ (x)

2
β (x)

and thus
Kλ (v2) = Jλ (v2) and K′

λ
(v2) = J′

λ
(v2).

We conclude that v2 is a critical point of functional Jλ and thus a weak solution of Prob-
lem (3.1).

Moreover, since Jλ (v2) = c > 0 = Jλ (0) it follows that v2 is nontrivial. On the other
hand, by relation Jλ (v2) = c > 0 > Jλ (v1), where the latter inequality is given by Remark
4.2, we have that v2 6= v1.

In conclusion, we proved that problem (3.1) has two distinct nonnegative and nontrivial
weak solutions for λ large enough. The proof of our main result is complete.
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