Signed k-Domatic Numbers of Digraphs

${ }^{1}$ H. Aram, ${ }^{2}$ M. Atapour, ${ }^{3}$ S. M. Sheikholeslami and ${ }^{4}$ L. Volkmann
1,2,3 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I. R. Iran
${ }^{4}$ Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
${ }^{1}$ h.aram@azaruniv.edu, ${ }^{2}$ m.atapour@azaruniv.edu, ${ }^{3}$ s.m.sheikholeslami@azaruniv.edu, ${ }^{4}$ volkm@math2.rwth-aachen.de

Abstract

Let D be a finite and simple digraph with vertex set $V(D)$, and let $f: V(D) \rightarrow$ $\{-1,1\}$ be a two-valued function. If $k \geq 1$ is an integer and $\sum_{x \in N^{-}[v]} f(x) \geq k$ for each $v \in V(D)$, where $N^{-}[v]$ consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed k-dominating functions of D with the property that $\sum_{i=1}^{d} f_{i}(v) \leq 1$ for each $v \in V(D)$, is called a signed k-dominating family (of functions) of D. The maximum number of functions in a signed k-dominating family of D is the signed k-domatic number of D, denoted by $d_{k S}(D)$. In this note we initiate the study of the signed k-domatic numbers of digraphs and present some sharp upper bounds for this parameter.

2010 Mathematics Subject Classification: 05C20, 05C69, 05C45
Keywords and phrases: Digraph, signed k-domatic number, signed k-dominating function, signed k-domination number.

1. Introduction

In this paper, D is a finite and simple digraph with vertex set $V=V(D)$ and arc set $A=A(D)$. Its underlying graph is denoted $G(D)$. We write $\operatorname{deg}_{D}^{+}(v)=\operatorname{deg}^{+}(v)$ for the outdegree of a vertex v and $\operatorname{deg}_{D}^{-}(v)=\operatorname{deg}^{-}(v)$ for its indegree. The minimum and maximum indegree are $\delta^{-}(D)$ and $\Delta^{-}(D)$. The sets $N^{+}(v)=\{x \mid(v, x) \in A(D)\}$ and $N^{-}(v)=\{x \mid(x, v) \in A(D)\}$ are called the outset and inset of the vertex v. Likewise, $N^{+}[v]=N^{+}(v) \cup\{v\}$ and $N^{-}[v]=$ $N^{-}(v) \cup\{v\}$. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. For an arc $(x, y) \in$ $A(D)$, the vertex y is an outer neighbor of x and x is an inner neighbor of y. Note that for any digraph D with m arcs,

$$
\begin{equation*}
\sum_{u \in V(D)} \operatorname{deg}^{-}(u)=\sum_{u \in V(D)} \operatorname{deg}^{+}(u)=m \tag{1.1}
\end{equation*}
$$

Consult [6] and [7] for notation and terminology which are not defined here.
For a real-valued function $f: V(D) \longrightarrow \mathbf{R}$ the weight of f is $w(f)=\sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$, we define $f(S)=\sum_{v \in S} f(v)$, so $w(f)=f(V(D))$. If $k \geq 1$ is an integer, then
the signed k-dominating function is defined as a function $f: V(D) \longrightarrow\{-1,1\}$ such that $f\left(N^{-}[v]\right)=\sum_{x \in N^{-}[v]} f(x) \geq k$ for every $v \in V(D)$. The signed k-domination number for a digraph D is

$$
\gamma_{k S}(D)=\min \{w(f) \mid f \text { is a signed } k \text {-dominating function of } D\} .
$$

A $\gamma_{k S}(D)$-function is a signed k-dominating function on D of weight $\gamma_{k S}(D)$. As the assumption $\delta^{-}(D) \geq k-1$ is necessary, we always assume that when we discuss $\gamma_{k S}(D)$, all digraphs involved satisfy $\delta^{-}(D) \geq k-1$ and thus $n(D) \geq k$. Then the function assigning +1 to every vertex of D is a SkD function, called the function ε, of weight n. Thus $\gamma_{k S}(D) \leq n$ for every digraph of order n with $\delta^{-} \geq k-1$. Moreover, the weight of every SkD function different from ε is at most $n-2$ and more generally, $\gamma_{k S}(D) \equiv n(\bmod 2)$. Hence $\gamma_{k S}(D)=n$ if and only if ε is the unique SkD function of D.

The signed k-domination number of digraphs was introduced by Atapour, Hajypory, Sheikholeslami and Volkmann [1]. When $k=1$, the signed k-domination number $\gamma_{k S}(D)$ is the usual signed domination number $\gamma_{S}(D)$, which was introduced by Zelinka in [16] and has been studied by several authors (see for example [8]).
Observation 1.1. ([1]) Let D be a digraph of order n. Then $\gamma_{k S}(D)=n$ if and only if $k-1 \leq$ $\delta^{-}(D) \leq k$ and for each $v \in V(D)$ there exists a vertex $u \in N^{+}[v]$ such that $\operatorname{deg}^{-}(u)=k-1$ or $\operatorname{deg}^{-}(u)=k$.

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed k-dominating functions on D with the property that $\sum_{i=1}^{d} f_{i}(v) \leq 1$ for each $v \in V(D)$, is called a signed k-dominating family on D. The maximum number of functions in a signed k-dominating family on D is the signed k domatic number of D, denoted by $d_{k S}(D)$. The signed k-domatic number is well-defined and $d_{k S}(D) \geq 1$ for all digraphs D in which $d_{D}^{-}(v) \geq k-1$ for all $v \in V$, since the set consisting of any one SkD function, for instance the function ε, forms a SkD family of D. A $d_{k S}(D)$-family of a digraph D is a SkD family containing $d_{k S}(D)$ SkD functions. When $k=1$, the signed k-domatic number of a digraph D is the usual signed domatic number $d_{S}(D)$, which was introduced by Sheikholeslami and L. Volkmann [9] and has been studied in [13].

Observation 1.2. Let D be a digraph of order n. If $\gamma_{k S}(D)=n$, then ε is the unique $S k D$ function of D and so $d_{k} S(D)=1$.

In this paper we initiate the study of the signed k-domatic number of digraphs, and we present different bounds on $d_{k S}(D)$. Some of our results are extensions of well-known properties of the signed domatic number $d_{S}(D)=d_{1 S}(D)$ of digraphs (see for example [9]) as well as the signed k-domatic number of graphs G (see for example [5, 14]).

We make use of the following results and observations in this paper.
Observation 1.3. Let $k \geq 1$ be an integer, and let D be a digraph with $\delta^{-}(D) \geq k-1$. If for every vertex $v \in V(D)$ the set $N^{+}[v]$ contains a vertex x such that $\operatorname{deg}^{-}(x) \leq k$, then $d_{k S}(D)=1$.

Proof. Assume that $N^{+}[v]$ contains a vertex x_{v} such that $\operatorname{deg}^{-}\left(x_{v}\right) \leq k$ for every vertex $v \in V(D)$, and let f be a signed k-dominating function on D. Since $\operatorname{deg}^{-}\left(x_{v}\right) \leq k$, we deduce that $f(v)=1$. Hence $f(v)=1$ for each $v \in V(D)$ and thus $d_{k S}(D)=1$.

A digraph is r-inregular if each vertex has indegree r.

Corollary 1.1. If D is an r-inregular digraph and $k=r-1$ or r, then $\gamma_{k S}(D)=n$ and $d_{k S}(D)=1$.

Observation 1.4. The signed k-domatic number of a digraph is an odd integer.
Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed k-dominating family on D such that $d=d_{k S}(D)$. Suppose to the contrary that $d_{k S}(D)$ is an even integer. If $x \in V(D)$ is an arbitrary vertex, then $\sum_{i=1}^{d} f_{i}(x) \leq 1$. On the left-hand side of this inequality a sum of an even number of odd summands occurs. Therefore it is an even number and we obtain $\sum_{i=1}^{d} f_{i}(x) \leq 0$ for each $x \in V(G)$. If v is an arbitrary vertex, then it follows that

$$
d \cdot k=\sum_{i=1}^{d} k \leq \sum_{i=1}^{d} \sum_{x \in N^{-}[v]} f_{i}(x)=\sum_{x \in N^{-}[v]} \sum_{i=1}^{d} f_{i}(x) \leq 0 .
$$

which is a contradiction, and the proof is complete.

2. Properties and upper bounds

In this section we present basic properties of the signed k-domatic number, and we find some sharp upper bounds for this parameter.
Proposition 2.1. If $k>p \geq 1$ are integers, then $d_{p S}(D) \geq d_{k S}(D)$ for any digraph D.
Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a SkD family on D such that $d=d_{k S}(D)$. Then $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ is also a SpD family on D and thus $d_{p S}(D) \geq d_{k S}(D)$.

Theorem 2.1. Let D be a digraph and $v \in V(D)$. Then

$$
d_{k S}(D) \leq\left\{\begin{array}{lll}
\frac{\operatorname{deg}^{-}(v)+1}{k+1} & \text { if } & \operatorname{deg}^{-}(v) \equiv k(\bmod 2) \\
\frac{\operatorname{deg}^{-}(v)+1}{k} & \text { if } & \operatorname{deg}^{-}(v) \equiv k+1(\bmod 2)
\end{array}\right.
$$

Moreover, if the equality holds, then for each function f_{i} of a SkD family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ and for every $u \in N^{-}[v], \sum_{u \in N^{-}[v]} f_{i}(u)=k+1$ if $\operatorname{deg}^{-}(v) \equiv k(\bmod 2), \sum_{u \in N^{-}[v]} f_{i}(u)=k$ if $\operatorname{deg}^{-}(v) \equiv k+1(\bmod 2)$ and $\sum_{i=1}^{d} f_{i}(u)=1$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a SkD family of D such that $d=d_{k S}(D)$. If $\operatorname{deg}^{-}(v) \equiv k(\bmod$ 2), then

$$
d=\sum_{i=1}^{d} 1 \leq \sum_{i=1}^{d} \frac{1}{k+1} \sum_{u \in N^{-}[v]} f_{i}(u)=\frac{1}{k+1} \sum_{u \in N^{-}[v]} \sum_{i=1}^{d} f_{i}(u) \leq \frac{1}{k+1} \sum_{u \in N^{-}[v]} 1=\frac{\operatorname{deg}^{-}(v)+1}{k+1} .
$$

Similarly, if $\operatorname{deg}^{-}(v) \equiv k+1(\bmod 2)$, then

$$
d=\sum_{i=1}^{d} 1 \leq \sum_{i=1}^{d} \frac{1}{k} \sum_{u \in N^{-}[v]} f_{i}(u)=\frac{1}{k} \sum_{u \in N^{-}[v]} \sum_{i=1}^{d} f_{i}(u) \leq \frac{1}{k} \sum_{u \in N^{-}[v]} 1=\frac{\operatorname{deg}^{-}(v)+1}{k} .
$$

If $d_{k S}(D)=\left(\operatorname{deg}^{-}(v)+1\right) /(k+1)$ when $\operatorname{deg}^{-}(v) \equiv k(\bmod 2)$ or $d_{k S}(D)=\left(\operatorname{deg}^{-}(v)+\right.$ $1) /(k)$ when $\operatorname{deg}^{-}(v) \equiv k+1(\bmod 2)$, then the two inequalities occurring in the proof of each corresponding case become equalities, which gives the properties given in the statement.

Corollary 2.1. Let D be a digraph and $1 \leq k \leq \delta^{-}(D)+1$. Then

$$
d_{k S}(D) \leq\left\{\begin{array}{lll}
\frac{\delta^{-}(D)+1}{k+1} \leq \frac{n}{k+1} & \text { if } \quad \delta^{-}(D) \equiv k(\bmod 2) \\
\frac{\delta^{-}(D)+1}{k} \leq \frac{n}{k} & \text { if } \quad \delta^{-}(D) \equiv k+1(\bmod 2)
\end{array}\right.
$$

The next corollary is a consequence of Observation 1.4 and Corollary 2.1.
Corollary 2.2. If D is a digraph of minimum degree δ^{-}, then $d_{k S}(D)=1$ for every integer k such that $\frac{\delta^{-}+1}{3}<k \leq \delta^{-}+1$.

Corollary 2.3. Let $k \geq 1$ be an integer, and let D be a $(k+1)$-inregular digraph of order n. If $k \geq 2$ or $k=1$ and $n \not \equiv 0(\bmod 3)$, then $d_{k S}(D)=1$.

Proof. By Corollary 2.1, $d_{k S}(D) \leq(k+2) / k$. If $k \geq 2$, then it follows from Observation 1.4 that $d_{k S}(D)=1$. Now let $k=1$. Then $d_{k S}(D)=1$ or $d_{k S}(D)=3$ by Observation 1.4. Suppose to the contrary that $d_{k S}(D)=3$. Let f belong to a signed k-dominating family on D of order 3. By Theorem 2.1, we have $\sum_{x \in N^{-}[v]} f(x)=1$ for every $v \in V(D)$. This implies that

$$
n=\sum_{v \in V(D)} \sum_{x \in N^{-}[v]} f(x)=\sum_{x \in N^{-}[v]} \sum_{v \in V(D)} f(x)=3 w(f) .
$$

Since $w(f)$ is an integer, 3 is a divisor of n which contradicts the hypothesis $n \not \equiv 0(\bmod 3)$, and the proof is complete.

Corollary 2.4. Let $k \geq 1$ be an integer, and let D be a ($k+4$)-inregular digraph of order n. If $k \geq 2$ or $k=1$ and $n \not \equiv 0(\bmod 5)$, then $d_{k S}(D)=1$.

Proof. According to Corollary 2.1, $d_{k S}(D) \leq(k+5) /(k+1)$. If $k \geq 2$, then we deduce from Observation 1.4 that $d_{k S}(D)=1$. Now let $k=1$. In view of Observation 1.4, $d_{k S}(D)=1$ or $d_{k S}(D)=3$. Suppose to the contrary that $d_{k S}(D)=3$. Let f belong to a signed k-dominating family on D of order 3. By Theorem 2.1, we have $\sum_{x \in N^{-}[r]} f(x)=2$ for every $v \in V(D)$. This implies that

$$
2 n=\sum_{v \in V(D)} \sum_{x \in N^{-}[v]} f(x)=\sum_{x \in N^{-}[v]} \sum_{v \in V(D)} f(x)=5 w(f) .
$$

Thus 5 is a divisor of n, a contradiction to the hypothesis $n \not \equiv 0(\bmod 5)$.
Corollary 2.5. Let $k \geq 1$ be an integer, and let D be a $(k+2)$-inregular digraph of order n. Then $d_{k S}(D)=1$.

Proof. By Corollary 2.1, $d_{k S}(D) \leq \frac{k+3}{k+1}$. Therefore Observation 1.4 implies that $d_{k S}(D)=$ 1.

Theorem 2.2. Let $k \geq 1$ be an integer, and let D be an r-inregular digraph of order n such that $r \geq k-1$. If $r<3 k-1$, then $d_{k S}(D)=1$, and if $r \geq 3 k-1$ and $(n, r+1)=1$, then

$$
d_{k S}(D)<\left\{\begin{array}{lll}
\frac{\delta^{-}(D)+1}{k+1} & \text { if } & \delta^{-}(D) \equiv k(\bmod 2) \\
\frac{\delta^{-}(D)+1}{k} & \text { if } & \delta^{-}(D) \equiv k+1(\bmod 2)
\end{array}\right.
$$

Proof. If $r<3 k-1$, then it follows from Corollary 2.1 that $d_{k S}(D) \leq(r+1) / k<3$. Therefore Observation 1.4 implies that $d_{k S}(D)=1$.

Now assume that $r \geq 3 k-1$ and $(n, r+1)=1$. First let $r=\delta^{-}(D) \equiv k(\bmod 2)$ (if $\delta^{-}(D) \equiv k+1(\bmod 2)$, then the proof is similar). Suppose to the contrary that $d_{k S}(D) \geq$ $\left(\delta^{-}(D)+1\right) /(k+1)$. Then by Corollary 2.1, $d_{k S}(D)=\left(\delta^{-}(D)+1\right) /(k+1)$. Let f belong to a signed k-dominating family on D of order $\left(\delta^{-}(D)+1\right) /(k+1)$. By Theorem 2.1, we have $\sum_{x \in N^{-}[v]} f(x)=k+1$ for every $v \in V(D)$. This implies that

$$
n(k+1)=\sum_{v \in V(D)} \sum_{x \in N^{-}[v]} f(x)=\sum_{x \in N^{-}[v]} \sum_{v \in V(D)} f(x)=(r+1) w(f) .
$$

Since $w(f)$ is an integer and $(n, r+1)=1$, the number $r+1$ is a divisor of $k+1$. It follows from $k-1 \leq \delta^{-}(D)=r$ that $r=k-1$ or $k=r$, a contradiction to the hypothesis that $r \geq 3 k-1$.

Theorem 2.3. Let D be a digraph with $\delta^{-}(D) \geq k-1$, and let $\Delta=\Delta(G(D))$ be the maximum degree of $G(D)$. Then

$$
d_{k S}(D) \leq\left\{\begin{array}{lll}
\frac{\Delta(G(D))+2}{2(k+1)} & \text { if } & \delta^{-}(D) \equiv k(\bmod 2) \\
\frac{\Delta(G(D))+2}{2 k} & \text { if } & \delta^{-}(D) \equiv k+1(\bmod 2)
\end{array}\right.
$$

Proof. First of all, we show that $\delta^{-}(D) \leq \Delta / 2$. Suppose to the contrary that $\delta^{-}(D)>\Delta / 2$. Then $\Delta^{+}(D) \leq \Delta-\delta^{-}(D)<\Delta / 2$, and (1.1) leads to the contradiction

$$
\frac{\Delta \cdot|V(D)|}{2}<\sum_{u \in V(D)} \operatorname{deg}^{-}(u)=\sum_{u \in V(D)} \operatorname{deg}^{+}(u)<\frac{\Delta \cdot|V(D)|}{2}
$$

Applying Corollary 2.1, we deduce the desired result.
Let D be a digraph. By D^{-1} we denote the digraph obtained by reversing all the arcs of D. A digraph without directed cycles of length 2 is called an oriented graph. An oriented graph D is a tournament when either $(x, y) \in A(D)$ or $(y, x) \in A(D)$ for each pair of distinct vertices $x, y \in V(D)$.

Theorem 2.4. For every oriented graph D of order n and $1 \leq k \leq \min \left\{\boldsymbol{\delta}^{-}(D)+1, \delta^{-}\left(D^{-1}\right)+\right.$ $1\}$,

$$
\begin{equation*}
d_{k S}(D)+d_{k S}\left(D^{-1}\right) \leq \frac{n+1}{k} \tag{2.1}
\end{equation*}
$$

with equality if and only if D is an r-regular tournament of order $n=2 r+1$ and $r=k-1$.
Proof. Since $\delta^{-}(D)+\delta^{-}\left(D^{-1}\right) \leq n-1$, Corollary 2.1 implies that

$$
d_{k S}(D)+d_{k S}\left(D^{-1}\right) \leq \frac{\delta^{-}(D)+1}{k}+\frac{\delta^{-}\left(D^{-1}\right)+1}{k} \leq \frac{n+1}{k}
$$

If D is an r-regular tournament of order $n=2 r+1$ and $r=k-1$, then D^{-1} is also an r-regular tournament, and it follows from Observation 1.3 that

$$
d_{k S}(D)+d_{k S}\left(D^{-1}\right)=2=\frac{2(r+1)}{k}=\frac{n+1}{k}
$$

If D is not a tournament or D is a non-regular tournament, then $\delta^{-}(D)+\delta^{-}\left(D^{-1}\right) \leq n-2$ and hence we deduce from Corollary 2.1 that

$$
d_{k S}(D)+d_{k S}\left(D^{-1}\right) \leq \frac{n}{k}
$$

If D is an r-regular tournament, then $n=2 r+1$. If $k-1<r<3 k-1$, then Theorem 2.2 leads to

$$
2=d_{k S}(D)+d_{k S}\left(D^{-1}\right)<\frac{n+1}{k}
$$

Finally, assume that $r \geq 3 k-1$. We observe that $(n, r+1)=(2 r+1, r+1)=1$. Using Theorem 2.2, we deduce that

$$
d_{k S}(D)+d_{k S}\left(D^{-1}\right)<\frac{\delta^{-}(D)+1}{k}+\frac{\delta^{-}\left(D^{-1}\right)+1}{k}=\frac{n+1}{k}
$$

and the proof is complete.
Theorem 2.5. Let D be a digraph of order n and $\delta^{-}(D) \geq k-1 \geq 0$. Then $\gamma_{k S}(D) \cdot d_{k S}(D) \leq$ n. Moreover if $\gamma_{k S}(D) \cdot d_{k S}(D)=n$, then for each $d=d_{k S}(D)$-family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ of D each function f_{i} is a $\gamma_{k S}(D)$-function and $\sum_{i=1}^{d} f_{i}(v)=1$ for all $v \in V$.
Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a SkD family of D such that $d=d_{k S}(D)$ and let $v \in V$. Then

$$
d \cdot \gamma_{k S}(D)=\sum_{i=1}^{d} \gamma_{k S}(D) \leq \sum_{i=1}^{d} \sum_{v \in V} f_{i}(v)=\sum_{v \in V} \sum_{i=1}^{d} f_{i}(v) \leq \sum_{v \in V} 1=n .
$$

If $\gamma_{k S}(D) \cdot d_{k S}(D)=n$, then the two inequalities occurring in the proof become equalities. Hence for the $d_{k S}(D)$-family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ of D and for each $i, \sum_{v \in V} f_{i}(v)=\gamma_{k S}(D)$, thus each function f_{i} is a $\gamma_{k S}(D)$-function, and $\sum_{i=1}^{d} f_{i}(v)=1$ for all v.

Corollary 2.6 is a consequence of Theorem 2.5 and Observation 1.4 and improves Observation 1.2.
Corollary 2.6. If $\gamma_{k S}(D)>n / 3$, then $d_{k S}(D)=1$.
Corollary 2.7. If D is a digraph of order n, then $\gamma_{k S}(D)+d_{k S}(D) \leq n+1$.
Proof. By Theorem 2.5,

$$
\begin{equation*}
\gamma_{k S}(D)+d_{k S}(D) \leq d_{k S}(D)+\frac{n}{d_{k S}(D)} \tag{2.2}
\end{equation*}
$$

Using the fact that the function $g(x)=x+n / x$ is decreasing for $1 \leq x \leq \sqrt{n}$ and increasing for $\sqrt{n} \leq x \leq n$, this inequality leads to the desired bound immediately.
Corollary 2.8. Let D be a digraph of order $n \geq 3$. If $2 \leq \gamma_{k S}(D) \leq n-1$, then

$$
\gamma_{k S}(D)+d_{k S}(D) \leq n
$$

Proof. Theorem 2.5 implies that

$$
\begin{equation*}
\gamma_{k S}(D)+d_{k S}(D) \leq \gamma_{k S}(D)+\frac{n}{\gamma_{k S}(D)} \tag{2.3}
\end{equation*}
$$

If we define $x=\gamma_{k S}(D)$ and $g(x)=x+n / x$ for $x>0$, then because $2 \leq \gamma_{k S}(D) \leq n-1$, we have to determine the maximum of the function g on the interval $I: 2 \leq x \leq n-1$. It is easy to see that
$\max _{x \in I}\{g(x)\}=\max \{g(2), g(n-1)\}=\max \left\{2+\frac{n}{2}, n-1+\frac{n}{n-1}\right\}=n-1+\frac{n}{n-1}<n+1$,
and we obtain $\gamma_{k S}(D)+d_{k S}(D) \leq n$. This completes the proof.
Corollary 2.9. Let D be a digraph of order n, and let $k \geq 1$ be an integer. If

$$
\min \left\{\gamma_{k S}(D), d_{k S}(D)\right\} \geq a \geq 2
$$

then

$$
\gamma_{k S}(D)+d_{k S}(D) \leq a+\frac{n}{a} .
$$

Proof. Since $\min \left\{\gamma_{k S}(D), d_{k S}(D)\right\} \geq a \geq 2$, it follows from Theorem 2.5 that $a \leq d_{k s}(D) \leq$ n / a. If we define $x=d_{k S}(D)$ and $g(x)=x+n / x$ for $x>0$, then we deduce from inequality (2.2) that

$$
\gamma_{k S}(D)+d_{k S}(D) \leq d_{k S}(D)+\frac{n}{d_{k S}(D)} \leq \max \{g(a), g(n / a)\}=a+\frac{n}{a}
$$

3. Signed k-domatic number of graphs

The signed k-dominating function of a graph G is defined in [15] as a function $f: V(G) \longrightarrow$ $\{-1,1\}$ such that $\sum_{x \in N_{G}[v]} f(x) \geq k$ for all $v \in V(G)$. The sum $\sum_{x \in V(G)} f(x)$ is the weight $w(f)$ of f. The minimum of weights $w(f)$, taken over all signed k-dominating functions f on G is called the signed k-domination number of G, denoted by $\gamma_{k S}(G)$. In the special case when $k=1, \gamma_{k S}(G)$ is the signed domination number investigated in [3] and has been studied by several authors (see for example [2, 4]).

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed k-dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(v) \leq 1$ for each $v \in V(G)$, is called a signed k-dominating family on G. The maximum number of functions in a signed k-dominating family on G is the signed k domatic number of G, denoted by $d_{k S}(G)$. This parameter was introduced by Favaron, Sheikholeslami and Volkmann in [5]. In the case $k=1$, we write $d_{S}(G)$ instead of $d_{1 S}(G)$ which was introduced by Volkmann and Zelinka [14] and has been studied in [10, 11, 12] .

The associated digraph $D(G)$ of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^{-}(v)=N_{G}(v)$ for each vertex $v \in V(G)=V(D(G))$, the following useful observation is valid.

Observation 3.1. If $D(G)$ is the associated digraph of a graph G, then $\gamma_{k S}(D(G))=\gamma_{k S}(G)$ and $d_{k S}(D(G))=d_{k S}(D)$.

There are a lot of interesting applications of Observation 3.1, as for example the following results. Using Observation 1.4, we obtain the first one.

Corollary 3.1. [14] The signed domatic number $d_{S}(G)$ of a graph G is an odd integer.
Since $\delta^{-}(D(G))=\delta(G)$, the next result follows from Observation 3.1 and Corollary 2.1.
Corollary 3.2. [5] If G is a graph with minimum degree $\delta(G) \geq k-1$, then

$$
d_{k S}(G) \leq\left\{\begin{array}{lll}
\frac{\delta(G)+1}{k+1} & \text { if } & \delta(G) \equiv k(\bmod 2) \\
\frac{\delta(G)+1}{k} & \text { if } & \delta(G) \equiv k+1(\bmod 2)
\end{array}\right.
$$

The case $k=1$ in Corollary 3.2 can be found in [14].
In view of Observation 3.1 and Corollary 2.7, we obtain the next result immediately.

Corollary 3.3. [5] If G is a graph of order n and minimum degree $\delta(G) \geq k-1$, then

$$
\gamma_{k S}(G)+d_{k S}(G) \leq n+1
$$

References

[1] M. Atapour, R. Hajypory, S. M. Sheikholeslami and L. Volkmann, The signed k-domination number of directed graphs, Cent. Eur. J. Math. 8 (2010), no. 6, 1048-1057.
[2] E. J. Cockayne and C. M. Mynhardt, On a generalisation of signed dominating functions of graphs, Ars Combin. 43 (1996), 235-245.
[3] J. Dunbar, S. T. Hedetniemi, M. A. Henning and P. J. Slater, Signed domination in graphs, in Graph Theory, Combinatorics, and Algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), 311-321, Wiley-Intersci. Publ, Wiley, New York.
[4] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996), no. 1-3, 287-293.
[5] O. Favaron, S. M. Sheikholeslami and L. Volkmann, Signed k-domatic numbers of graphs, Ars Combin. (to appear).
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208, Dekker, New York, 1998.
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, (editors), Domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, 209, Dekker, New York, 1998.
[8] H. Karami, S. M. Sheikholeslami and A. Khodkar, Lower bounds on the signed domination numbers of directed graphs, Discrete Math. 309 (2009), no. 8, 2567-2570.
[9] S. M. Sheikholeslami and L. Volkmann, Signed domatic number of directed graphs, submitted.
[10] D. Meierling, L. Volkmann and S. Zitzen, The signed domatic number of some regular graphs, Discrete Appl. Math. 157 (2009), no. 8, 1905-1912.
[11] L. Volkmann, Signed domatic numbers of the complete bipartite graphs, Util. Math. 68 (2005), 71-77.
[12] L. Volkmann, Some remarks on the signed domatic number of graphs with small minimum degree, Appl. Math. Lett. 22 (2009), no. 8, 1166-1169.
[13] L. Volkmann, Signed domination and signed domatic numbers of digraphs, Discuss. Math. Graph Theory $\mathbf{3 1}$ (2011), no. 3, 415-427.
[14] L. Volkmann and B. Zelinka, Signed domatic number of a graph, Discrete Appl. Math. 150 (2005), no. 1-3, 261-267.
[15] C. P. Wang, The signed k-domination numbers in graphs, Ars Combin. (to appear).
[16] B. Zelinka, Signed domination numbers of directed graphs, Czechoslovak Math. J. 55(130) (2005), no. 2, 479-482.

