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Abstract. For a locally compact group G, L1(G) is its group algebra and L∞(G) is the dual
of L1(G). Crombez and Govaerts introduced the notion of a uniformly measurable func-
tion in L∞(G) and proved that such a function induces a completely continuous operator.
The aim of this paper is to go further and generalize the above results to foundation semi-
group algebras. We study completely continuous linear maps on semigroup algebras which
commute with translations.
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1. Introduction and notations

Let S be a locally compact topological semigroup with convolution measure algebra M(S)
and let Mp(S), as usual, be the convolution semigroup of probability measures on S. Re-
call that Ma(S) denotes the space of all measures µ ∈ Ma(S) for which the mappings
x 7→ δx ∗ |µ| and x 7→ |µ| ∗ δx from S into M(S) are weakly continuous, where δx denotes
the Dirac measure at x [1]. A foundation semigroup is a locally compact semigroup such
that ∪{supp(µ); µ ∈ Ma(S)} is dense in S. A trivial example is a topological group and
in this case Ma(S) = L1(S) [6]. If S is a foundation topological semigroup with identity,
then Ma(S) is a closed two-sided L-ideal of M(S). We also note that if S is a foundation
semigroup with identity, then Ma(S) has a bounded approximate identity and, for every µ in
Ma(S), both mappings x 7→ δx ∗ |µ| and x 7→ |µ| ∗δx from S into Ma(S) are norm continuous
[5]. We denote by K the family of compact subsets of S.

For any foundation topological semigroup S, we denote by Ma(S)∗ and Ma(S)∗∗ its first
and second dual. By definition, the first Arens product on Ma(S)∗∗ is induced by the left
Ma(S)-module structure on Ma(S). That is, for E,F ∈ Ma(S)∗∗, f ∈ Ma(S)∗, and µ,ν ∈
Ma(S), we have

〈EF, f 〉= 〈E,F f 〉,
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where 〈F f ,µ〉 = 〈F, f µ〉 and 〈 f µ,ν〉 = 〈 f ,µ ∗ ν〉. Equipped with this multiplication,
Ma(S)∗∗ is a Banach algebra and this multiplication agrees on Ma(S) with the given pro-
duct [2].

Let LUC(S) be the space of all f ∈ Cb(S) such that the mapping x 7→ Lx f from S into
Cb(S), where Lx f (y) = f (xy), x,y ∈ S, is continuous. If S is a foundation topological
semigroup with identity, then LUC(S) = Ma(S)∗Ma(S), where Ma(S)∗Ma(S) = { f µ; f ∈
Ma(S)∗, µ ∈ Ma(S)}. Among the elements of LUC(S)∗ are the unit point masses δx for
x ∈ S. These do not appear in Ma(S)∗∗.

Let A be a Banach space. A bounded linear map T : A →A ∗ is called completely con-
tinuous or a Dunford-Pettis operator if every weakly convergent sequence {bn} is mapped
into a norm convergent sequence {T (bn)} (see 1.6.1 in [13] or [15]). It is known that every
completely continuous linear map T : A → A ∗ maps weak Cauchy sequences into norm
convergent sequences. Dunford and Schwartz [4] made a systematic study of representation
theorems for compact and weakly compact linear maps of L1 into a Banach space A [4].
Let (X ,σ ,µ) be a positive measure space and let T be a weakly compact linear map of
L1(X ,σ ,µ) into a B-space. Then T maps weak Cauchy sequences into strongly convergent
sequences, see p. 508 in [4].

Let S be a foundation topological semigroup with identity. For f ∈ Ma(S)∗, let λ f :
Ma(S)→Ma(S)∗ be the bounded linear map of multiplication by f on left, i.e., λ f (µ) = f µ .
f is called completely continuous if λ f maps any weakly convergent sequence onto a norm
convergent sequence.

In this paper, among the other things, we introduce the notion of a uniformly measurable
functional and prove that if f ∈ Ma(S)∗ is uniformly measurable then λ f is completely
continuous. Crombez and Govarets [3] proved that if G is a nondiscrete locally compact
metrizable group, then λ f : L1(G)→ L∞(G) is completely continuous if and only if f is
uniformly measurable.

2. Main results

The following theorem shows that the space of all bounded linear maps T : Ma(S)→Ma(S)∗

commuting with translations can be identified with Ma(S)∗. More information on linear
operators which commute with translations can be found in [10] and [7].

Theorem 2.1. Let S be a foundation topological semigroup with identity. Then the following
statements hold:

(i) Let T : Ma(S)→ Ma(S)∗ be a bounded linear map such that T (µ ∗ δx) = T (µ)δx
for every µ ∈Ma(S) and x ∈ S. Then there exists a unique functional f ∈Ma(S)∗

such that T = λ f and ‖T‖= ‖ f‖;
(ii) Further suppose that S is commutative. Let T : Ma(S)→ LUC(S)∗ be a bounded

linear map such that T (µ ∗ δx) = T (µ)δx for every µ ∈ Ma(S) and x ∈ S. Then
there exists a unique functional F ∈ LUC(S)∗ such that T = λF and ‖T‖= ‖F‖.

Proof. (i) By [8, Theorem 3] and its proof, there exists a functional f ∈ Ma(S)∗ such that
T (µ) = f µ for all µ ∈Ma(S). For any µ ∈Ma(S), ‖T (µ)‖ = ‖ f µ‖ ≤ ‖ f‖‖µ‖. It follows
that ‖T‖ ≤ ‖ f‖. Let µ ∈Ma(S), and let {eα} be a bounded approximate identity of Ma(S)
bounded by one [11]. Then

|〈 f ,µ〉|= lim
α
|〈 f ,eα ∗µ〉|= lim

α
|〈 f eα ,µ〉|= lim

α
|〈T (eα),µ〉| ≤ ‖T‖‖µ‖.
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This shows that ‖ f‖ ≤ ‖T‖, and so ‖T‖= ‖ f‖. It is easy to see that f is unique.
(ii) Let µ,ν ∈ Ma(S) and f ∈ LUC(S). It is easy to see that any f ∈ LUC(S) can be

written in the form f = f1η with f1 ∈Ma(S)∗ and η ∈Ma(S). Thus by [5]

〈T (µ ∗ν), f 〉= 〈T ∗( f ),µ ∗ν〉=
∫
〈T ∗( f ),µ ∗δx〉dν(x)

=
∫
〈T (µ ∗δx), f 〉dν(x) =

∫
〈T (µ), f1η ∗δx〉dν(x)

= 〈T (µ), f1η ∗ν〉= 〈T (µ)ν , f 〉.
Since this holds for all f ∈ LUC(S), we conclude that T (µ ∗ν) = T (µ)ν for every µ,ν ∈
Ma(S). Let {eα} be an approximate identity of norm one in Ma(S). By passing to a subnet
if necessary, we may assume that {T (eα)} converges to some F ∈ LUC(S)∗ in the weak∗

topology of LUC(S)∗ [14]. Then for every f ∈ LUC(S) and µ ∈Ma(S),

〈T (µ), f 〉= lim
α
〈T (eα ∗µ), f 〉= lim

α
〈T (eα), f µ〉= 〈F, f µ〉= 〈Fµ, f 〉.

This shows that T = λF . We will show that F is unique. Let E ∈ LUC(S)∗. What we must
show is that if Fµ = Eµ for all µ ∈Ma(S), then F = E. Let f ∈ LUC(S). Then f = f0η

for some f0 ∈Ma(S)∗ and η ∈Ma(S). We have

〈F, f 〉= 〈F, f0η〉= lim
α
〈F, f0η ∗ eα〉= lim

α
〈Feα , f0η〉= lim

α
〈Eeα , f0η〉

= lim
α
〈E, f0η ∗ eα〉= 〈E, f0η〉= 〈E, f 〉.

It is not hard to see that ‖T‖= ‖F‖.

Definition 2.1. If S is a foundation topological semigroup, a bounded linear functional f
on Ma(S) is said to be uniformly measurable if for all ε > 0 and K ∈K , there exists a Borel
measurable partition K = {Ki}m

i=1 of K such that, to each ν ∈Ma(S) and 1 ≤ i ≤ m, there
corresponds a complex number cν ,i such that |〈 f ,δx ∗ν〉− cν ,i|< ‖ν‖ε for all x ∈ Ki.

Note that the following theorem generalizes [3, Theorem 3.2].

Theorem 2.2. Let S be a foundation topological semigroup with identity. If f ∈Ma(S)∗ is
uniformly measurable, then λ f is completely continuous.

Proof. Let {µn} be a sequence in Ma(S) such that {µn} converges to 0 in the weak topology
of Ma(S). Thus {µn} is weakly bounded and so bounded [14]. Let c = sup{‖µn‖; n∈N}. If
‖ f‖= 0, we have trivially f µn→ 0 in the norm topology. We now consider the case ‖ f‖> 0.
Given ε ∈ (0,1), there exists a compact subset K in S such that |µn|(S \K) < ε/(3‖ f‖) for
every n ∈ N. By assumption, there exists a Borel measurable partition K = {Ki}m

i=1 of K
such that, to each ν ∈Ma(S) and 1≤ i≤ m, there corresponds a complex number cν ,i such
that |〈 f ,δx ∗ν〉− cν ,i| < (‖ν‖ε)/(3c + 1) for all x ∈ Ki. Clearly |cν ,i| ≤ (1 + ‖ f‖)‖ν‖ for
all ν ∈Ma(S) and i ∈ {1, ...,m}. For ν ∈Ma(S) with ‖ν‖ ≤ 1 and n ∈ N, by [5]

|〈 f µn,ν〉|=
∣∣∣∫

S\K
〈 f ,δx ∗ν〉dµn(x)

∣∣∣+ ∣∣∣∫
K
〈 f ,δx ∗ν〉dµn(x)

∣∣∣
≤ ε

3
+
∣∣∣ m

∑
i=1

∫
Ki

〈 f ,δx ∗ν〉− cν ,idµn(x)+
m

∑
i=1

∫
Ki

cν ,idµn(x)
∣∣∣

≤ ε

3
+
‖µn‖ε

3c
+
∣∣∣ m

∑
i=1

∫
Ki

cν ,idµn(x)
∣∣∣
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≤ 2ε

3
+
∣∣∣ m

∑
i=1

∫
Ki

cν ,idµn(x)
∣∣∣.

Since {µn} is weakly convergent to zero in Ma(S), the second member on the right hand
side of the above inequality is bounded by ε/3 for sufficiently large values of n. Since this
holds for all ν ∈ Ma(S) with ‖ν‖ ≤ 1, we have ‖ f µn‖ < ε for sufficiently large values of
n. We conclude that { f µn} is norm convergent to zero in Ma(S)∗. This shows that λ f is
completely continuous.

Take the additive group R of real numbers. Since R is nondiscrete, it follows from [3,
Theorem 3.5] that if f ∈ Ma(R)∗ is not uniformly measurable, then λ f is not completely
continuous.

Example 2.1. Take the additive group R of real numbers. For all n ∈ N, we consider the
measurable functions ϕn(x) = e−inxχ[0,2π](−x) where χ[0,2π] is the characteristic function
of [0,2π] in R. The sequence {ϕn} converges weakly to zero in Ma(R). If x = t + 2mπ

for t ∈ (0,2π] and m ∈ Z, we define f (x) = f (t + 2mπ) = eimt . Then f is bounded and
continuous. It is not hard to see that ‖ f ϕn‖> π for every n ∈ N. This shows that λ f is not
completely continuous [3]. For every n ∈N, choose a function hn in Cc(R) (the space of all
complex-valued continuous function on R having compact support) such that 0 ≤ hn ≤ 1,
and hn = 1 on [−n,n]. Clearly hn f is completely continuous and {hn f} converges to f in
the weak∗-topology of Ma(R)∗.

By Example 2.1, it is not true that for given f in Ma(S)∗ the function µ 7→ f µ from
Ma(S) to Ma(S)∗ is always completely continuous. From the following theorem, we deduce
that all λ f are completely continuous if f ∈Ma(S)∗Ma(S).

Recall that a functional f ∈Ma(S)∗ is called weakly almost periodic if the set { f µ; µ ∈
Ma(S),‖µ‖ ≤ 1} is relatively compact with respect to the weak topology on Ma(S)∗. The
set of weakly almost periodic functionals of Ma(S)∗ is denoted by wap(Ma(S)) [8].

Theorem 2.3. Let S be a foundation topological semigroup with identity. Then the following
statements hold:

(i) If f ∈Ma(S)∗Ma(S), then f is uniformly measurable;
(ii) If f ∈ wap(Ma(S)), then λ f is completely continuous.

Proof. (i) Let ε > 0 and K be a compact subset of S. For every x ∈ K, there exists a
neighbourhood Ux of x such that ‖ f δx− f δy‖ < ε/2 whenever y ∈ Ux. Indeed, f = hµ

for some h ∈ Ma(S)∗ and µ ∈ Ma(S). By [5], the mapping x 7→ µ ∗ δx from S into Ma(S)
is continuous. Thus we can find an open neighbourhood Ux of x such that ‖ f δx− f δy‖ <
ε/2. Now cover K by {Ux; x ∈ K}. By compactness we may extract a finite subcover
{Ux1 , ...,Uxk} of K. We can find a Borel measurable partition K = {Ki}m

i=1 of K such that
‖ f δx− f δy‖< ε whenever x,y ∈ Ki and 1≤ i≤m. For every i ∈ {1, ...,m}, we may choose
xi ∈ Ki. For every ν ∈Ma(S) with ‖ν‖ ≤ 1, we have

|〈 f ,δx ∗ν〉−〈 f ,δxi ∗ν〉| ≤ ‖ f δx− f δxi‖< ε,

whenever x ∈ Ki and i ∈ {1, ...,m}. Let ν ∈Ma(S) and 1≤ i≤ m, we put cν ,i = 〈 f ,δxi ∗ν〉.
This shows that f is uniformly measurable.

(ii) Let f ∈ wap(Ma(S)), and let {eα} be an approximate identity of norm one in Ma(S)
[5]. For every α ∈ I, f eα ∈ { f µ; µ ∈Ma(S),‖µ‖ ≤ 1}. By passing to a subnet if necessary,
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we may assume that { f eα} converges to some h ∈Ma(S)∗ in the weak topology. For µ ∈
Ma(S),

〈 f ,µ〉= lim
α
〈 f ,eα ∗µ〉= lim

α
〈 f eα ,µ〉= 〈h,µ〉.

We conclude that f = h, and so { f eα} converges to f in the weak topology. Finally, since
Ma(S)∗ is a locally convex space and { f µ; µ ∈Ma(S),‖µ‖≤ 1} is convex, the weak closure
of { f µ; µ ∈Ma(S),‖µ‖ ≤ 1} equals the closure of { f µ; µ ∈Ma(S),‖µ‖ ≤ 1} in the norm
topology on Ma(S)∗ [14]. Since Ma(S) has a bounded approximate identity, by Cohen’s fac-
torization theorem, Ma(S)∗Ma(S) is a Banach subspace of Ma(S)∗ (see [9, Theorem 32.22]).
It follows that

f ∈ { f µ; µ ∈Ma(S), ‖µ‖ ≤ 1} ⊆Ma(S)∗Ma(S).

By Theorem 2.2, f is completely continuous.

Corollary 2.1. Let S be a foundation topological semigroup with identity. Then the follow-
ing statements hold:

(i) If f ∈Ma(S)∗Ma(S), then λ f is completely continuous;
(ii) If S is discrete, then for every f ∈Ma(S)∗, λ f is completely continuous.

Proof. (i) From Theorem 2.2 and Theorem 2.3, we conclude that all λ f ( f ∈Ma(S)∗Ma(S))
are completely continuous.

(ii) Let S be a discrete semigroup. Then Ma(S)∗Ma(S) = Ma(S)∗. By (i), λ f is completely
continuous for every f ∈Ma(S)∗.

Whenever S is a discrete semigroup, every λ f is completely continuous. For non-discrete
S this property is not true: for instance, the sequence of functions t 7→ eint on the circle group
T is not norm convergent in Ma(T), but converges weakly to zero by the Riemann-Lebesgue
lemma.

Theorem 2.4. The set of all uniformly measurable functionals in Ma(S)∗ is a norm closed
linear subspace of Ma(S)∗.

Proof. It is trivial that the set of uniformly measurable functionals is closed under scalar
multiplication. It suffices to prove that this set is closed for addition. Let f1, f2 be uniformly
measurable functionals in Ma(S)∗, and let ε > 0, K ∈K . There exist K1 = {K1

i }
m1
i=1 and

K2 = {K2
j }

m2
j=1 of Borel measurable partitions of K such that for every ν ∈Ma(S) and 1 ≤

i≤ m1 (1≤ j ≤ m2), there corresponds a complex number c1
ν ,i (c2

ν , j) such that

|〈 f1,δx ∗ν〉− c1
ν ,i|<

‖ν‖ε
2

,
(
|〈 f2,δx ∗ν〉− c2

ν , j|<
‖ν‖ε

2

)
whenever x ∈ K1

i (x ∈ K2
j ) and 1≤ i≤ m1,1≤ j ≤ m2. Now define the partition K wanted

for f1 + f2 as K = {K1
i ∩K2

j ;1≤ i≤ m1,1≤ j ≤ m2}. For ν ∈Ma(S), we have

|〈 f1 + f2,δx ∗ν〉− c1
ν ,i− c2

ν , j| ≤ |〈 f1,δx ∗ν〉− c1
ν ,i|+ |〈 f2,δx ∗ν〉− c2

ν , j|< ‖ν‖ε

whenever x ∈ K1
i ∩K2

j and 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. This shows that the set of uniformly
measurable functionals is closed under addition.

Now let { fn} be a sequence of uniformly measurable functionals such that { fn} con-
verges to some f ∈Ma(S)∗ in the norm topology of Ma(S)∗. Let ε > 0 and K be a compact
subset of S. There exists n0 ∈ N such that ‖ fn0 − f‖ < ε/2. The triangle inequality shows
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that the partition of K for n0 and the numbers cν ,i for fn0 corresponding to a given measure
ν in Ma(S) may also be used for f . This completes the proof.

Definition 2.2. For a compact subset K in S and a Borel measurable partition K = {Ki}m
i=1

of K, we call a functional h in M(S)∗ an K-step functional if h is constant on each proba-
bility measure µ ∈ Mp(S) with µ(Kc

i ) = {0}. We write Step K for the space of all K-step
functionals in M(S)∗.

Theorem 2.5. For a functional f in Ma(S)∗, the following statements are equivalent:

(i) f is uniformly measurable;
(ii) For every ε > 0 and K ∈K , there exists a Borel measurable partition K = {Ki}m

i=1
of K and a dense subset Di of Ki (1≤ i≤ m) such that, to each ν ∈Ma(S) and 1≤
i≤m, there corresponds a complex number cν ,i such that |〈 f ,δx ∗ν〉−cν ,i|< ‖ν‖ε
for all x ∈ Di;

(iii) For every ε > 0 and K ∈K , there exists a Borel measurable partition K = {Ki}m
i=1

of K such that, to each ν ∈Ma(S), there corresponds a functional hν in Step K such
that

|〈 f ,µ ∗ν〉−〈hν ,µ〉|< ‖ν‖ε

for all 1≤ i≤ m and µ ∈Mp(S) with µ(Kc
i ) = {0}.

Proof. (i) implies (ii): This is trivial.
(ii) implies (i): Let ε > 0 and K be a compact subset in S. There exists a Borel measurable

partition K = {Ki}m
i=1 of K such that corresponding to any ν ∈ Ma(S) and 1 ≤ i ≤ m, a

complex number cν ,i may be found such that |〈 f ,δd ∗ν〉−cν ,i|< (‖ν‖ε)/2 for all d ∈Di (Di
is dense in Ki). On the other hand, the mapping x 7→ δx ∗ν of S into Ma(S) is continuous [5].
Given x ∈ Ki, there exists a neighbourhood Ux of x in S such that |〈 f ,δx ∗ν〉−〈 f ,δy ∗ν〉|<
(‖ν‖ε)/2 whenever y ∈Ux. Choose d ∈Ux∩Di, we have

|〈 f ,δx ∗ν〉− cν ,i| ≤ |〈 f ,δx ∗ν〉−〈 f ,δd ∗ν〉|+ |〈 f ,δd ∗ν〉− cν ,i|< ‖ν‖ε.

(i) implies (iii): Let ε > 0, and let K be a compact subset of S. Choose a partition K =
{Ki}m

i=1 of K such that (i) is true. For ν ∈Ma(S), we define hν on M(S) by hν = ∑
m
i=1 cν ,iχKi .

We have

|〈 f ,µ ∗ν〉−〈hν ,µ〉|=
∣∣∣∫

Ki

〈 f ,δx ∗ν〉− cν ,idµ(x)
∣∣∣< ‖ν‖ε,

whenever µ ∈Mp(S) and µ(Kc
i ) = {0}.

(iii) implies (i): If (i) did not hold, then there exist ε0 > 0 and a compact subset K of S
such that for any Borel measurable partition K = {Ki}m

i=1 of K a measure ν ∈ Ma(S) and
1≤ i≤ m may be found such that for every complex number cν ,i, there exist a point x in Ki
such that |〈 f ,δx ∗ν〉− cν ,i| ≥ ‖ν‖ε0. Defining hν on Ma(S)∗ by hν = cν ,iχKi . Without loss
of generality, we may assume that

|Re〈 f ,δx ∗ν〉− cν ,i|>
√

ε0

2
.

Since the mapping x 7→ δx ∗ ν is continuous [5], we can find a probability measure µ in
Mp(S) with µ(Kc

i ) = {0} such that |〈 f ,µ ∗ν〉− 〈hν ,µ〉| ≥ (
√

ε0)/2, which is a contradic-
tion.
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Remark 2.1. If X is a linear subspace of Ma(S)∗ containing the constant functional 1,
where 〈1,µ〉 = µ(S), µ ∈ Ma(S). We say that X is topologically invariant if f µ ∈ X for
any µ ∈ M(S) and f ∈ X . A functional M in X∗ is called a mean if and only if ‖M‖ =
〈M,1〉 = 1. A mean M is topologically left invariant if 〈M, f µ〉 = 〈M, f 〉 for any f ∈ X
and µ ∈Mp(S)∩Ma(S) [16]. Further information on topologically invariant means can be
found in [12]. Now, let M be a topologically left invariant mean on the set of all completely
continuous functionals. Let µ0 be in Mp(S)∩Ma(S). Define M′ ∈ Ma(S)∗∗ by 〈M′, f 〉 =
〈M, f µ0〉, f ∈Ma(S)∗. Note that M′ is well defined by Corollary 2.1. Clearly M′ is a mean
on Ma(S)∗. Let {eα} be an approximate identity in Mp(S)∩Ma(S) for Ma(S) [11]. For any
f ∈Ma(S)∗ and µ ∈Mp(S)∩Ma(S), we have

〈M′, f µ〉= 〈M, f µ ∗µ0〉= lim
α
〈M, f eα ∗µ ∗µ0〉= lim

α
〈M, f eα ∗µ0〉

= 〈M, f µ0〉= 〈M′, f 〉.
This shows that M′ is a topologically left invariant mean on Ma(S)∗.

Acknowledgement. The author is grateful to the referees for some valuable comments that
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